Please wait a minute...
金属学报  2014, Vol. 50 Issue (2): 141-147    DOI: 10.3724/SP.J.1037.2013.00803
  本期目录 | 过刊浏览 |
纳米结构金属材料的塑性变形制备技术*
陶乃镕(), 卢柯
中国科学院金属研究所沈阳材料科学国家(联合)实验室, 沈阳 110016
PREPARATION TECHNIQUES FOR NANO-STRUCTURED METALLIC MATERIALS VIA PLASTIC DEFORMATION
TAO Nairong(), LU Ke
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
引用本文:

陶乃镕, 卢柯. 纳米结构金属材料的塑性变形制备技术*[J]. 金属学报, 2014, 50(2): 141-147.
Nairong TAO, Ke LU. PREPARATION TECHNIQUES FOR NANO-STRUCTURED METALLIC MATERIALS VIA PLASTIC DEFORMATION[J]. Acta Metall Sin, 2014, 50(2): 141-147.

全文: PDF(2183 KB)   HTML
摘要: 

本文总结了制备纳米结构金属材料的塑性变形技术, 包括大应变量变形技术(冷轧、累积叠轧、等通道挤压和高压扭转)、高应变速率变形技术(动态塑性变形)和高应变梯度变形技术(表面机械研磨和表面机械碾压), 分析了变形方式及变形参数对晶粒细化的影响规律, 展望了利用塑性变形技术制备纳米结构金属材料的发展趋势及挑战.

关键词 纳米结构金属材料塑性变形表面机械研磨动态塑性变形表面机械碾压    
Abstract

This work summarized the deformation techniques of preparing the nanostructured metallic materials, including large-strain deformation techniques (clod rolling, accumulative cold-bonding, equal channel angular pressing, high pressure torsion), high-strain-rate deformation technique (dynamic plastic deformation), and high-strain-gradient deformation techniques (surface mechanical attrition treatment and surface mechanical grinding treatment). The effects of deformation modes and deformation parameters on grain refinement are analyzed. Future trends and challenges of the deformation techniques for preparing nanostructured metallic materials are discussed.

Key wordsnanostructured metallic material    plastic deformation    surface mechanical attrition treatment    dynamic plastic deformation    surface mechanical grinding treatment
收稿日期: 2013-12-10     
ZTFLH:  TG146  
基金资助:*国家重点基础研究发展计划项目2012CB932201和国家自然科学基金项目51171181和51371172资助
图1  
图 2  
图3  
图4  
图5  
图6  
[1] Segal V M, Reznikov V I, Drobyshevkij A E, Kopylov V I. Russ Metall, 1981; 1: 99
[2] Segal V M, Reznikov V I, Pavlik D A, Malyshev V F. Processes of Plastic Transformation of Metals. Minsk: Navuka Teknika, 1984: 295
[3] Valiev R Z, Annales de Chimie. Science des Materiaux, 1996; 21: 369
[4] Smirnova N A, Levit V I, Pilyugin V I, Kuznetsov R I, Davydova L S, Sazonnova V A. Fiz Met Metalloved, 1986; 61: 1170
[5] Zhilyaev A P, Nurislamova G V, Kim B K, Baro M D, Szpunar J A, Langdon T G. Acta Mater, 2003; 51: 753
[6] Zhilyaev A P, Langdon T G. Prog Mater Sci, 2008; 53: 893
[7] Saito Y, Tsuji N, Utsunomiya H, Sakai T, Hong R G. Scr Mater, 1998; 39: 1221
[8] Hosseini S A, Manesh H D. Mater Des, 2009; 30: 2911
[9] Tsuji N, Saito Y, Lee S H, Minamino Y. 2nd Int Conf on Nanomaterials by Severe Plastic Deformation (SPD): Fundamentals Processing Applications, Vienna, Austria: Wiley-V C H Verlag Gmbh, 2003: 338
[10] Lu K, Lu J. J Mater Sci Technol, 1999; 15: 193
[11] Tao N R, Sui M L, Lu J, Lu K. Nanostruct Mater, 1999; 11: 433
[12] Tao N R, Wang Z B, Tong W P, Sui M L, Lu J, Lu K. Acta Mater, 2002; 50: 4603
[13] Tong W P, Tao N R, Wang Z B, Lu J, Lu K. Science, 2003; 31: 299
[14] Lu K, Lu J. Mater Sci Eng, 2004; 375: 38
[15] Li W L, Tao N R, Lu K. Scr Mater, 2008; 59: 546
[16] Fang T H, Li W L, Tao N R, Lu K. Science, 2011; 331: 1587
[17] Zhao W S, Tao N R, Guo J Y, Lu Q H, Lu K. Scr Mater, 2005; 53: 745
[18] Tao N R, Lu K. J Mater Sci Technol, 2007; 23: 771
[19] Li Y S, Tao N R, Lu K. Acta Mater, 2008; 56: 230
[20] Bay B, Hansen N. Mater Sci Eng, 1989; A113: 385
[21] Ananthan V S, Leffers T, Hughes D A. Scr Metall Mater, 1991; 25: 137
[22] Hansen N. Mater Sci Technol, 1990; 6: 1039
[23] Li B L, Godfrey A, Meng Q C, Liu Q. Acta Mater, 2004; 52: 1069
[24] Liu Q, Huang X, Lloyd D J, Hansen N. Acta Mater, 2002; 50: 3789
[25] Wang Y M, Chen M W, Sheng H W, Ma E. J Mater Res, 2002; 17: 3004
[26] Valiev R Z, Krasilnikov N A, Tsenev N K. 5th Int Symp on Plasticity of Metals and Alloys, Prague, Czechoslovakia: Elsevier Science Sa Lausanne, 1990: 35
[27] Valiev R Z, Korznikov A V, Mulyukov R R. Symp on Nanophase Materials, at the Emrs 1992 Fall Meeting of the European-Materials-Research-Soc, Strasbourg, France: Elsevier Science Sa Lausanne, 1992: 141
[28] Valiev R Z, Langdon T G. Prog Mater Sci, 2006; 51: 881
[29] Valiev R Z, Islamgaliev R K, Alexandrov I V. Prog Mater Sci, 2000; 45: 103
[30] Bridgman P W. J Appl Phys, 1943; 15: 273
[31] Jiang H G, Zhu Y T, Butt D P, Alexandrov I V, Lowe T C. Mater Sci Eng, 2000; A290: 128
[32] Sakai G, Horita Z, Langdon T G. Mater Sci Eng, 2005; A393: 344
[33] Zhang Y, Tao N R, Lu K. Acta Mater, 2011; 58: 6048
[34] Hong C S, Tao N R, Huang X, Lu K. Acta Mater, 2010; 58: 3103
[35] Xiao G H, Tao N R, Lu K. Scr Mater, 2011; 65: 119
[36] Lu K, Yan F K, Wang H T, Tao N R. Scr Mater, 2012; 66: 878
[37] Yan F K, Liu G Z, Tao N R, Lu K. Acta Mater, 2012; 60: 1059
[38] Wang H T, Tao N R, Lu K. Acta Mater, 2012; 60: 4027
[39] Huang F, Tao N R, Lu K. J Mater Sci Technol, 2011; 27: 1
[40] Luo Z P, Zhang H W, Hansen N, Lu K. Acta Mater, 2012; 60: 1322
[41] Zhu K Y, Vassel A, Brisset F, Lu K, Lu J. Acta Mater, 2004; 52: 4101
[42] Wang K, Tao N R, Liu G, Lu J, Lu K. Acta Mater, 2006; 54: 5281
[43] Sun H Q, Shi Y N, Zhang M X, Lu K. Acta Mater, 2007; 55: 975
[44] Zhang H W, Hei Z K, liu G, Lu J, Lu K. Acta Mater, 2003; 51: 1871
[45] Wu X, Tao N, Hong Y, Lu J, Lu K. Acta Mater, 2002; 50: 2075
[46] Tao N R, Wu X L, Sui M L, Lu J, Lu K. J Mater Res, 2004; 19: 1623
[47] Liu X C, Zhang H W, Lu K. Science, 2013; 342: 337
[48] Zener C, Hollomon J H. J Appl Phys, 1944; 15: 22
[49] Li Y S, Zhang Y, Tao N R, Lu K. Acta Mater, 2009; 57: 761
[50] Ashby M F. Philos Mag, 1970; 21: 399
[1] 张海峰, 闫海乐, 方烽, 贾楠. FeMnCoCrNi高熵合金双晶微柱变形机制的分子动力学模拟[J]. 金属学报, 2023, 59(8): 1051-1064.
[2] 万涛, 程钊, 卢磊. 组元占比对层状纳米孪晶Cu力学行为的影响[J]. 金属学报, 2023, 59(4): 567-576.
[3] 郭祥如, 申俊杰. 孪生诱发软化与强化效应的Cu晶体塑性行为模拟[J]. 金属学报, 2022, 58(3): 375-384.
[4] 任少飞, 张健杨, 张新房, 孙明月, 徐斌, 崔传勇. 新型Ni-Co基高温合金塑性变形连接中界面组织演化及愈合机制[J]. 金属学报, 2022, 58(2): 129-140.
[5] 林鹏程, 庞玉华, 孙琦, 王航舵, 刘东, 张喆. 45钢块体超细晶棒材3D-SPD轧制法[J]. 金属学报, 2021, 57(5): 605-612.
[6] 石增敏, 梁静宇, 李箭, 王毛球, 方子帆. 板条马氏体拉伸塑性行为的原位分析[J]. 金属学报, 2021, 57(5): 595-604.
[7] 曹庆平, 吕林波, 王晓东, 蒋建中. 物理气相沉积制备金属玻璃薄膜及其力学性能的样品尺寸效应[J]. 金属学报, 2021, 57(4): 473-490.
[8] 陈永君, 白妍, 董闯, 解志文, 燕峰, 吴迪. 基于有限元分析的准晶磨料强化不锈钢表面钝化行为[J]. 金属学报, 2020, 56(6): 909-918.
[9] 陈翔,陈伟,赵洋,禄盛,金晓清,彭向和. 考虑塑性变形和相变耦合效应的NiTiNb记忆合金管接头装配性能模拟[J]. 金属学报, 2020, 56(3): 361-373.
[10] 王磊, 安金岚, 刘杨, 宋秀. 多场耦合作用下GH4169合金变形行为与强韧化机制[J]. 金属学报, 2019, 55(9): 1185-1194.
[11] 彭剑,高毅,代巧,王颖,李凯尚. 316L奥氏体不锈钢非对称载荷下的疲劳与循环塑性行为[J]. 金属学报, 2019, 55(6): 773-782.
[12] 吉宗威,卢松,于慧,胡青苗,Vitos Levente,杨锐. 第一性原理研究反位缺陷对TiAl基合金力学行为的影响[J]. 金属学报, 2019, 55(5): 673-682.
[13] 涂爱东, 滕春禹, 王皞, 徐东生, 傅耘, 任占勇, 杨锐. Ti-Al合金γ/α2界面结构及拉伸变形行为的分子动力学模拟[J]. 金属学报, 2019, 55(2): 291-298.
[14] 熊健,魏德安,陆宋江,阚前华,康国政,张旭. 位错密度梯度结构Cu单晶微柱压缩的三维离散位错动力学模拟[J]. 金属学报, 2019, 55(11): 1477-1486.
[15] 郭祥如, 孙朝阳, 王春晖, 钱凌云, 刘凤仙. 基于三维离散位错动力学的fcc结构单晶压缩应变率效应研究[J]. 金属学报, 2018, 54(9): 1322-1332.