Please wait a minute...
金属学报  2014, Vol. 50 Issue (2): 129-136    DOI: 10.3724/SP.J.1037.2013.00697
  本期目录 | 过刊浏览 |
纳米孪晶金属塑性变形机制*
卢磊(), 尤泽升
中国科学院金属研究所沈阳材料科学国家(联合)实验室, 沈阳110016
PLASTIC DEFORMATION MECHANISMS IN NANOTWINNED METALS
LU Lei(), YOU Zesheng
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
引用本文:

卢磊, 尤泽升. 纳米孪晶金属塑性变形机制*[J]. 金属学报, 2014, 50(2): 129-136.
Lei LU, Zesheng YOU. PLASTIC DEFORMATION MECHANISMS IN NANOTWINNED METALS[J]. Acta Metall Sin, 2014, 50(2): 129-136.

全文: PDF(2381 KB)   HTML
摘要: 

本文综述了纳米孪晶金属材料的塑性变形机制. 通过分析纳米孪晶二维结构变形时可启动的滑移位错类型, 揭示纳米孪晶金属塑性变形的3种位错机制, 即位错塞积并穿过孪晶界机制, Shockley不全位错诱导孪晶界迁移机制以及贯穿位错在孪晶片层内受限滑移机制. 通过改变加载方向与孪晶界面的相对取向可实现这3类位错机制的可控转变.

关键词 纳米孪晶金属变形机制位错滑移各向异性力学性能    
Abstract

A brief overview is provided about the plastic deformation mechanisms in nanotwinned metals. The unique two-dementional nanoscale twin lamellae lead to different dislocation slip systems activated during plastic deformation. It has been revealed that there are three distinctly different dislocation-mediated deformation mechanisms in nanotwinned metals, namely dislocation pile-up against and slip transfer across twin boundaries, Shockley partials gliding on twin boundaries leading to twin boundary migration, and threading dislocations slip confined by neighboring twin boundaries. It is further demonstrated that these three dislocation-mediated mechanisms are switchable upon changing in the loading direction with respect to twin boundaries.

Key wordsnano-twinned metal    deformation mechanism    dislocation slip    anisotropy    mechanical property
收稿日期: 2013-11-05     
ZTFLH:  TG146  
基金资助:* 国家重点基础研究发展计划项目2012CB932202以及国家自然科学基金项目51071153和51371171资助
作者简介: null

卢 磊, 女, 1970年生, 研究员, 博士

图 1  
No. Category Slip plane Slip direction Miller index
1 Hard mode I DBC DB ( 1 1 - 1 ) [ 011 ]
2 DBC DC ( 1 1 - 1 ) [ 110 ]
3 DAC DA ( 1 - 11 ) [ 101 ]
4 DAC DC ( 1 - 11 ) [ 110 ]
5 DAB DA ( 11 1 - ) [ 101 ]
6 DAB DB ( 11 1 - ) [ 011 ]
7 Hard mode II DBC BC ( 1 1 - 1 ) [ 1 - 01 ]
8 DAC AC ( 1 - 11 ) [ 01 1 - ]
9 DAB AB ( 11 1 - ) [ 1 - 10 ]
10 Soft mode ABC AB ( 111 ) [ 1 - 10 ]
11 ABC AC ( 111 ) [ 01 1 - ]
12 ABC BC ( 111 ) [ 1 - 01 ]
表1  
图 2  
图 3  
图4  
图 5  
[1] Lu L, Shen Y F, Chen X H, Qian L H, Lu K. Science, 2004; 304: 422
[2] Lu K, Lu L, Suresh S. Science, 2009; 324: 349
[3] Zhu T, Li J. Prog Mater Sci, 2010; 55: 710
[4] Shen Y F, Lu L, Lu Q H, Jin Z H, Lu K.Scr Mater, 2005; 52: 989
[5] Zhang X, Misra A, Wang H, Nastasi M, Embury J D, Mitchell T E, Hoagland R G, Hirth J P. Appl Phys Lett, 2004; 84: 1096
[6] Zhang X, Misra A, Wang H, Shen T D, Nastasi M, Mitchell T E, Hirth J P, Hoagland R G, Embury J D. Acta Mater, 2004; 52: 995
[7] Lu L, Schwaiger R, Shan Z W, Dao M, Lu K, Suresh S. Acta Mater, 2005; 53: 2169
[8] Chen X H, Lu L. Scr Mater, 2007; 57: 133
[9] Chen X H, Lu L, Lu K. Scr Mater, 2011; 64: 311
[10] Lu L, You Z S, Lu K. Scr Mater, 2012; 66: 837
[11] Shute C J, Myers B D, Xie S, Barbee Jr T W, Hodge A M, Weertman J R. Scr Mater, 2009; 60: 1073
[12] Shute C J, Myers B D, Xie S, Li S Y, Barbee Jr T W, Hodge A M, Weertman J R. Acta Mater, 2011; 59: 4569
[13] Hodge A M, Furnish T A, Shute C J, Liao Y, Huang X, Hong C S, Zhu Y T, Barbee Jr T W, Weertman J R.Scr Mater, 2012; 66: 872
[14] Pan Q S, Lu Q H, Lu L. Acta Mater, 2013; 61: 1383
[15] Singh A, Tang L, Dao M, Lu L, Suresh S. Acta Mater, 2011; 59: 2437
[16] Shen Y F, Lu L, Dao M, Suresh S. Scr Mater, 2006; 55: 319
[17] Lu L, Dao M, Zhu T, Li J. Scr Mater, 2009; 60: 1062
[18] Lu L, Zhu T, Shen Y, Dao M, Lu K, Suresh S. Acta Mater, 2009; 57: 5165
[19] Wu Z X, Zhang Y W, Srolovitz D J.Acta Mater, 2009; 57: 4508
[20] Wu Z X, Zhang Y W, Srolovitz D J. Acta Mater, 2011; 59: 6890
[21] Asaro R J, Kulkarni Y. Scr Mater, 2008; 58: 389
[22] Kulkarni Y, Asaro R J. Acta Mater, 2009; 57: 4835
[23] Dao M, Lu L, Shen Y F, Suresh S.Acta Mater, 2006; 54: 5421
[24] Jerusalem A, Dao M, Suresh S, Radovitzky R. Acta Mater, 2008; 56: 4647
[25] Asaro R J, Suresh S. Acta Mater, 2005; 53: 3369
[26] Zhang X, Wang H, Chen X H, Lu L, Lu K, Hoagland R G, Misra A. Appl Phys Lett, 2006; 88: 173116
[27] Hartley C S, Blachon D L A.J Appl Phys, 1978; 49: 4788
[28] Zhu T, Gao H. Scr Mater, 2012; 66: 843
[29] Hall E O. Proc Phys Soc London, 1951; 64B: 747
[30] Petch N J.J Iron Steel Int, 1953; 174: 25
[31] Jin Z H, Gumbsch P, Ma E, Albe K, Lu K, Hahn H, Gleiter H. Scr Mater, 2006; 54: 1163
[32] Jin Z H, Gumbsch P, Albe K, Ma E, Lu K, Gleiter H, Hahn H. Acta Mater, 2008; 56: 1126
[33] Shabib I, Miller R E. Modell Simul Mater Sci Eng, 2009; 17: 055009
[34] Shabib I, Miller R E. Acta Mater, 2009; 57: 4364
[35] Lu L, Chen X, Huang X, Lu K. Science, 2009; 323: 607
[36] Li X, Wei Y, Lu L, Lu K, Gao H. Nature, 2010; 464: 877
[37] Merz M D, Dahlgren S D. J Appl Phys, 1975; 46: 3235
[38] Hodge A M, Wang Y M, Barbee Jr T W, Scr Mater, 2008; 59: 163
[39] Anderoglu O, Misra A, Wang J, Hoagland R G, Hirth J P, Zhang X. Int J Plast, 2010; 26: 875
[40] You Z S, Lu L, Lu K. Acta Mater, 2011; 59: 6927
[41] Misra A, Hirth J P, Hoagland R G. Acta Mater, 2005; 53: 4817
[42] Nix W. Metall Mater Trans, 1989; 20A: 2217
[43] Freund L B. J Appl Mech, 1987; 54: 553
[44] Matthews J W, Blakeslee A E. J Cryst Growth, 1975; 29: 273
[45] You Z, Li X, Gui L, Lu Q, Zhu T, Gao H, Lu L.Acta Mater, 2013; 61: 217
[46] Deng C, Sansoz F. Acta Mater, 2009; 57: 6090
[47] Deng C, Sansoz F. Nano Lett, 2009; 9: 1517
[48] Cao A J, Wei Y G, Mao S X. Appl Phys Lett, 2007; 90: 151909
[49] Hu Q, Li L, Ghoniem N M. Acta Mater, 2009; 57: 4866
[50] Li L, Ghoniem N M. Phys Rev, 2009; 79B: 075444
[51] Jang D, Li X, Gao H, Greer J R. Nat Nanotechnol, 2012; 7: 594
[52] Idrissi H, Wang B, Colla M S, Raskin J P, Schryvers D, Pardoen T. Adv Mater, 2011; 23: 2119
[53] Bufford D, Wang H, Zhang X.Acta Mater, 2011; 59: 93
[54] Lu K, Yan F K, Wang H T, Tao N R. Scr Mater, 2012; 66: 878
[1] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[2] 郑亮, 张强, 李周, 张国庆. /降氧过程对高温合金粉末表面特性和合金性能的影响:粉末存储到脱气处理[J]. 金属学报, 2023, 59(9): 1265-1278.
[3] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[4] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[5] 张海峰, 闫海乐, 方烽, 贾楠. FeMnCoCrNi高熵合金双晶微柱变形机制的分子动力学模拟[J]. 金属学报, 2023, 59(8): 1051-1064.
[6] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[7] 丁桦, 张宇, 蔡明晖, 唐正友. 奥氏体基Fe-Mn-Al-C轻质钢的研究进展[J]. 金属学报, 2023, 59(8): 1027-1041.
[8] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[9] 袁江淮, 王振玉, 马冠水, 周广学, 程晓英, 汪爱英. Cr2AlC涂层相结构演变对力学性能的影响[J]. 金属学报, 2023, 59(7): 961-968.
[10] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[11] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[12] 侯娟, 代斌斌, 闵师领, 刘慧, 蒋梦蕾, 杨帆. 尺寸设计对选区激光熔化304L不锈钢显微组织与性能的影响[J]. 金属学报, 2023, 59(5): 623-635.
[13] 刘满平, 薛周磊, 彭振, 陈昱林, 丁立鹏, 贾志宏. 后时效对超细晶6061铝合金微观结构与力学性能的影响[J]. 金属学报, 2023, 59(5): 657-667.
[14] 吴欣强, 戎利建, 谭季波, 陈胜虎, 胡小锋, 张洋鹏, 张兹瑜. Pb-Bi腐蚀Si增强型铁素体/马氏体钢和奥氏体不锈钢的研究进展[J]. 金属学报, 2023, 59(4): 502-512.
[15] 李述军, 侯文韬, 郝玉琳, 杨锐. 3D打印医用钛合金多孔材料力学性能研究进展[J]. 金属学报, 2023, 59(4): 478-488.