Please wait a minute...
金属学报  2014, Vol. 50 Issue (2): 129-136    DOI: 10.3724/SP.J.1037.2013.00697
  论文 本期目录 | 过刊浏览 |
纳米孪晶金属塑性变形机制*
卢磊, 尤泽升
(中国科学院金属研究所沈阳材料科学国家(联合)实验室, 沈阳110016)
PLASTIC DEFORMATION MECHANISMS IN NANOTWINNED METALS
LU Lei, YOU Zesheng
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
全文: PDF(2381 KB)   HTML
摘要: 本文综述了纳米孪晶金属材料的塑性变形机制. 通过分析纳米孪晶二维结构变形时可启动的滑移位错类型, 揭示纳米孪晶金属塑性变形的3种位错机制, 即位错塞积并穿过孪晶界机制, Shockley不全位错诱导孪晶界迁移机制以及贯穿位错在孪晶片层内受限滑移机制. 通过改变加载方向与孪晶界面的相对取向可实现这3类位错机制的可控转变.
关键词 纳米孪晶金属变形机制位错滑移各向异性力学性能    
Abstract:A brief overview is provided about the plastic deformation mechanisms in nanotwinned metals. The unique two-dementional nanoscale twin lamellae lead to different dislocation slip systems activated during plastic deformation. It has been revealed that there are three distinctly different dislocation-mediated deformation mechanisms in nanotwinned metals, namely dislocation pile-up against and slip transfer across twin boundaries, Shockley partials gliding on twin boundaries leading to twin boundary migration, and threading dislocations slip confined by neighboring twin boundaries. It is further demonstrated that these three dislocation-mediated mechanisms are switchable upon changing in the loading direction with respect to twin boundaries.
Key wordsnano-twinned metal    deformation mechanism    dislocation slip    anisotropy    mechanical property
    
ZTFLH:  TG146  
基金资助:* 国家重点基础研究发展计划项目2012CB932202以及国家自然科学基金项目51071153和51371171资助
Corresponding author: LU Lei, professor, Tel: (024)23971939, E-mail: llu@imr.ac.cn   
作者简介: 卢 磊, 女, 1970年生, 研究员, 博士

引用本文:

卢磊, 尤泽升. 纳米孪晶金属塑性变形机制*[J]. 金属学报, 2014, 50(2): 129-136.
LU Lei, YOU Zesheng. PLASTIC DEFORMATION MECHANISMS IN NANOTWINNED METALS. Acta Metall Sin, 2014, 50(2): 129-136.

链接本文:

https://www.ams.org.cn/CN/10.3724/SP.J.1037.2013.00697      或      https://www.ams.org.cn/CN/Y2014/V50/I2/129

[1] Lu L, Shen Y F, Chen X H, Qian L H, Lu K. Science, 2004; 304: 422
[2] Lu K, Lu L, Suresh S. Science, 2009; 324: 349
[3] Zhu T, Li J. Prog Mater Sci, 2010; 55: 710
[4] Shen Y F, Lu L, Lu Q H, Jin Z H, Lu K. Scr Mater, 2005; 52: 989
[5] Zhang X, Misra A, Wang H, Nastasi M, Embury J D, Mitchell T E, Hoagland R G, Hirth J P. Appl Phys Lett, 2004; 84: 1096
[6] Zhang X, Misra A, Wang H, Shen T D, Nastasi M, Mitchell T E, Hirth J P, Hoagland R G, Embury J D. Acta Mater, 2004; 52: 995
[7] Lu L, Schwaiger R, Shan Z W, Dao M, Lu K, Suresh S. Acta Mater, 2005; 53: 2169
[8] Chen X H, Lu L. Scr Mater, 2007; 57: 133
[9] Chen X H, Lu L, Lu K. Scr Mater, 2011; 64: 311
[10] Lu L, You Z S, Lu K. Scr Mater, 2012; 66: 837
[11] Shute C J, Myers B D, Xie S, Barbee Jr T W, Hodge A M, Weertman J R. Scr Mater, 2009; 60: 1073
[12] Shute C J, Myers B D, Xie S, Li S Y, Barbee Jr T W, Hodge A M, Weertman J R. Acta Mater, 2011; 59: 4569
[13] Hodge A M, Furnish T A, Shute C J, Liao Y, Huang X, Hong C S, Zhu Y T, Barbee Jr T W, Weertman J R. Scr Mater, 2012; 66: 872
[14] Pan Q S, Lu Q H, Lu L. Acta Mater, 2013; 61: 1383
[15] Singh A, Tang L, Dao M, Lu L, Suresh S. Acta Mater, 2011; 59: 2437
[16] Shen Y F, Lu L, Dao M, Suresh S. Scr Mater, 2006; 55: 319
[17] Lu L, Dao M, Zhu T, Li J. Scr Mater, 2009; 60: 1062
[18] Lu L, Zhu T, Shen Y, Dao M, Lu K, Suresh S. Acta Mater, 2009; 57: 5165
[19] Wu Z X, Zhang Y W, Srolovitz D J. Acta Mater, 2009; 57: 4508
[20] Wu Z X, Zhang Y W, Srolovitz D J. Acta Mater, 2011; 59: 6890
[21] Asaro R J, Kulkarni Y. Scr Mater, 2008; 58: 389
[22] Kulkarni Y, Asaro R J. Acta Mater, 2009; 57: 4835
[23] Dao M, Lu L, Shen Y F, Suresh S. Acta Mater, 2006; 54: 5421
[24] Jerusalem A, Dao M, Suresh S, Radovitzky R. Acta Mater, 2008; 56: 4647
[25] Asaro R J, Suresh S. Acta Mater, 2005; 53: 3369
[26] Zhang X, Wang H, Chen X H, Lu L, Lu K, Hoagland R G, Misra A. Appl Phys Lett, 2006; 88: 173116
[27] Hartley C S, Blachon D L A. J Appl Phys, 1978; 49: 4788
[28] Zhu T, Gao H. Scr Mater, 2012; 66: 843
[29] Hall E O. Proc Phys Soc London, 1951; 64B: 747
[30] Petch N J. J Iron Steel Int, 1953; 174: 25
[31] Jin Z H, Gumbsch P, Ma E, Albe K, Lu K, Hahn H, Gleiter H. Scr Mater, 2006; 54: 1163
[32] Jin Z H, Gumbsch P, Albe K, Ma E, Lu K, Gleiter H, Hahn H. Acta Mater, 2008; 56: 1126
[33] Shabib I, Miller R E. Modell Simul Mater Sci Eng, 2009; 17: 055009
[34] Shabib I, Miller R E. Acta Mater, 2009; 57: 4364
[35] Lu L, Chen X, Huang X, Lu K. Science, 2009; 323: 607
[36] Li X, Wei Y, Lu L, Lu K, Gao H. Nature, 2010; 464: 877
[37] Merz M D, Dahlgren S D. J Appl Phys, 1975; 46: 3235
[38] Hodge A M, Wang Y M, Barbee Jr T W, Scr Mater, 2008; 59: 163
[39] Anderoglu O, Misra A, Wang J, Hoagland R G, Hirth J P, Zhang X. Int J Plast, 2010; 26: 875
[40] You Z S, Lu L, Lu K. Acta Mater, 2011; 59: 6927
[41] Misra A, Hirth J P, Hoagland R G. Acta Mater, 2005; 53: 4817
[42] Nix W. Metall Mater Trans, 1989; 20A: 2217
[43] Freund L B. J Appl Mech, 1987; 54: 553
[44] Matthews J W, Blakeslee A E. J Cryst Growth, 1975; 29: 273
[45] You Z, Li X, Gui L, Lu Q, Zhu T, Gao H, Lu L. Acta Mater, 2013; 61: 217
[46] Deng C, Sansoz F. Acta Mater, 2009; 57: 6090
[47] Deng C, Sansoz F. Nano Lett, 2009; 9: 1517
[48] Cao A J, Wei Y G, Mao S X. Appl Phys Lett, 2007; 90: 151909
[49] Hu Q, Li L, Ghoniem N M. Acta Mater, 2009; 57: 4866
[50] Li L, Ghoniem N M. Phys Rev, 2009; 79B: 075444
[51] Jang D, Li X, Gao H, Greer J R. Nat Nanotechnol, 2012; 7: 594
[52] Idrissi H, Wang B, Colla M S, Raskin J P, Schryvers D, Pardoen T. Adv Mater, 2011; 23: 2119
[53] Bufford D, Wang H, Zhang X. Acta Mater, 2011; 59: 93
[54] Lu K, Yan F K, Wang H T, Tao N R. Scr Mater, 2012; 66: 878
[1] 黄远, 杜金龙, 王祖敏. 二元互不固溶金属合金化的研究进展[J]. 金属学报, 2020, 56(6): 801-820.
[2] 刘金来, 叶荔华, 周亦胄, 李金国, 孙晓峰. 一种单晶高温合金的弹性性能的各向异性[J]. 金属学报, 2020, 56(6): 855-862.
[3] 耿遥祥, 樊世敏, 简江林, 徐澍, 张志杰, 鞠洪博, 喻利花, 许俊华. 选区激光熔化专用AlSiMg合金成分设计及力学性能[J]. 金属学报, 2020, 56(6): 821-830.
[4] 张阳, 邵建波, 陈韬, 刘楚明, 陈志永. Mg-5.6Gd-0.8Zn合金多向锻造过程中的变形机制及动态再结晶[J]. 金属学报, 2020, 56(5): 723-735.
[5] 赵燕春, 毛雪晶, 李文生, 孙浩, 李春玲, 赵鹏彪, 寇生中. Fe-15Mn-5Si-14Cr-0.2C非晶钢微观组织与腐蚀行为[J]. 金属学报, 2020, 56(5): 715-722.
[6] 姚小飞, 魏敬鹏, 吕煜坤, 李田野. (CoCrFeMnNi)97.02Mo2.98高熵合金σ相析出演变及力学性能[J]. 金属学报, 2020, 56(5): 769-775.
[7] 梁孟超, 陈良, 赵国群. 人工时效对2A12铝板力学性能和强化相的影响[J]. 金属学报, 2020, 56(5): 736-744.
[8] 李源才, 江五贵, 周宇. 温度对碳纳米管增强纳米蜂窝镍力学性能的影响[J]. 金属学报, 2020, 56(5): 785-794.
[9] 蒋一,程满浪,姜海洪,周庆龙,姜美雪,江来珠,蒋益明. 高强度含NNi奥氏体不锈钢08Cr19Mn6Ni3Cu2N (QN1803)的显微组织及性能[J]. 金属学报, 2020, 56(4): 642-652.
[10] 杨柯,史显波,严伟,曾云鹏,单以银,任毅. 新型含Cu管线钢——提高管线耐微生物腐蚀性能的新途径[J]. 金属学报, 2020, 56(4): 385-399.
[11] 于雷,罗海文. 部分再结晶退火对无取向硅钢的磁性能与力学性能的影响[J]. 金属学报, 2020, 56(3): 291-300.
[12] 曹育菡,王理林,吴庆峰,何峰,张忠明,王志军. CoCrFeNiMo0.2高熵合金的不完全再结晶组织与力学性能[J]. 金属学报, 2020, 56(3): 333-339.
[13] 周霞,刘霄霞. 石墨烯纳米片增强镁基复合材料力学性能及增强机制[J]. 金属学报, 2020, 56(2): 240-248.
[14] 程超,陈志勇,秦绪山,刘建荣,王清江. TA32钛合金厚板的微观组织、织构与力学性能[J]. 金属学报, 2020, 56(2): 193-202.
[15] 胡斌,李树索,裴延玲,宫声凯,徐惠彬. <111>取向小角偏离对一种镍基单晶高温合金蠕变性能的影响[J]. 金属学报, 2019, 55(9): 1204-1210.