Please wait a minute...
金属学报  2013, Vol. 49 Issue (5): 599-604    DOI: 10.3724/SP.J.1037.2012.00733
  论文 本期目录 | 过刊浏览 |
异步轧制纯Ti薄板表面纳米晶的形成
刘刚1),刘金阳2),王小兰3),王福会3),赵骧2),左良2)
1) 东北大学研究院, 沈阳 110819
2) 东北大学材料电磁过程研究教育部重点实验室, 沈阳 110819
3) 中国科学院金属研究所金属腐蚀与防护国家重点实验室, 沈阳 110016
FORMATION OF NANOCRYSTALLINES IN THE SURFACE LAYER OF COMMERCIAL PURE TITANIUM THIN SHEET DURING ASYMMETRIC ROLLING
LIU Gang1), LIU Jinyang 2), WANG Xiaolan 3), WANG Fuhui 3),ZHAO Xiang 2), ZUO Liang 2)
1) Research Academy, Northeastern University, Shenyang 110819
2) Key Laboratory of Electromagnetic Processing of Materials (Ministry of Education), Northeastern University,Shenyang 110819
3) State Key Laboratory for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences ,Shenyang 110016
全文: PDF(2081 KB)  
摘要: 

对工业纯Ti板材进行异步轧制, 在板材表面获得纳米晶组织, 对显微组织演变和硬度沿板材深度的分布进行了测试分析. 结果表明, 经过异步轧制后, 工业纯Ti表面形成了等轴状、尺寸介于30-60 nm的纳米晶组织, 证明异步轧制可以使大尺寸金属板材在轧制过程中实现表面纳米化. 异步轧制板材表面纳米晶的形成过程包括: 在外力的反复作用下, 位错密度升高, 并通过滑移、湮灭和重组形成了亚微米尺度的位错胞/亚微晶. 随着轧制道次和压下量的增加, 高密度位错重复上述过程使晶粒尺寸不断减小、取向差持续增大, 最终形成等轴状、具有中等到大角度晶界的纳米晶组织. 表面梯度层在轧制初期形成, 其厚度随着压下量增加而逐渐增大, 层内硬度变化与晶粒尺寸密切相关.

关键词 工业纯Ti异步轧制表面纳米化结构硬度    
Abstract

Commercial pure titanium sheet was rolled by means of asymmetric rolling in order to obtain nanocrystallines in the top-surface layer, the microstructural evolution was examined by using different experimental techniques. Experimental results show that, after the asymmetric rolling, equiaxed nanocrystallines of about 30-60 nm in size form in the top-surface layer of sheet. The research work indicates that the surface nanocrystallization can be realized for large-dimensional metal sheets during the rolling process by using the asymmetric rolling. The asymmetric rolling induced surface nanocrystallization mechanism was summarized as follows: upon the application of repeated loads, dislocation cells/sub-micro-grains form through slips, annihilations and recombinations of high density of dislocations; with the increment of rolling pass and reduction,high density of dislocations in the refined cells/grains developing in above route lead to the reduction of grain size and the increment of misorientations between the refined grains, and finally equiaxed nanocrystallines with medium to large angle grain boundaries form. A gradient-structured surface layer of about 30μm thick was observed to form in the initial stage,its thickness increases with increasing rolling reduction, and the hardness variation along the depth was found to relate to the grain size.

Key wordscommercial pure titanium,    asymmetric rolling    surface nanocrystallization, structure, hardness
收稿日期: 2012-12-12     
基金资助:

国家自然科学基金资助项目50571095

通讯作者: 刘刚     E-mail: gliu@mail.neu.edu.cn
作者简介: 刘刚, 男, 1963年生, 教授

引用本文:

刘刚,刘金阳,王小兰,王福会,赵骧,左良. 异步轧制纯Ti薄板表面纳米晶的形成[J]. 金属学报, 2013, 49(5): 599-604.
LIU Gang, LIU Jinyang, WANG Xiaolan, WANG Fuhui, ZHAO Xiang, ZUO Liang. FORMATION OF NANOCRYSTALLINES IN THE SURFACE LAYER OF COMMERCIAL PURE TITANIUM THIN SHEET DURING ASYMMETRIC ROLLING. Acta Metall Sin, 2013, 49(5): 599-604.

链接本文:

https://www.ams.org.cn/CN/10.3724/SP.J.1037.2012.00733      或      https://www.ams.org.cn/CN/Y2013/V49/I5/599

[1] Lu K, Lu J.  Mater Sci Eng, 2004; A375-377: 38


[2] Liu G, Wang S C, Lou X F, Lu J, Lu K.  Scr Mater, 2001; 44: 1791

[3] Umemoto M, Todaka Y, Tsuchiya K.  Mater Trans, 2003; 44: 1488

[4] Xiong T Y, Liu Z W, Li Z C.  Mater Rev, 2003; 17: 69

(熊天英, 刘志文, 李智超. 材料导报, 2003; 17: 69)

[5] Wang T, Wang D P, Liu G, Gong B M, Song N S.  Appl Surf Sci, 2008; 255: 1829

[6] Wu X, Tao N, Hong Y, Xu B, Lu J, Lu K.  Acta Mater, 2002; 50: 2075

[7] Zhang H W, Hei Z K, Liu G, Lu J, Lu K.  Acta Mater, 2003; 51: 1871

[8] Wang K, Tao N R, Liu G, Lu J, Lu K.  Acta Mater, 2006; 54: 5281

[9] Zhou L, Liu G, Ma X L, Lu J, Lu K.  Acta Mater, 2008; 56: 78

[10] Yong X P, Liu G, Lu J, Lu K.  J Mater Sci Technol, 2003; 19: 1

[11] Roland T, Retraint D, Lu J, Lu K.  Scr Mater, 2006; 54: 1949

[12] Prakash N A, Gnanamoorthy R, Kamaraj M.  Mater Sci Eng, 2010; B168: 176

[13] Lu A Q, Zhang Y, Li Y, Liu G, Liu C M.  Acta Metall Sin, 2005; 41: 271

(吕爱强, 张洋, 李瑛, 刘刚, 刘春明. 金属学报, 2005; 41: 271)

[14] Liu G, Mo C G, Wu B L, Zuo L.  Iron Steel, 2011; 46: 70

(刘刚, 莫成刚, 武保林, 左良. 钢铁, 2011; 46: 70)

[15] Mousavi S A A A, Ebrahimi S M, Madoliat R.  J Mater Process Technol, 2007; 187-188: 725

[16] Jiang J H, Ding Y, Zuo F Q, Shan A D.  Scr Mater, 2009; 60: 905

[17] Kim W J, Yoo S J, Jeong H T, Kim D M, Choe B H, Lee J B.  Scr Mater, 2011; 64: 49

[18] Ji Y H, Park J J, Kim W J.  Mater Sci Eng, 2007; A454-455: 570

[19] Ji Y H, Park J J.  Mater Sci Eng, 2008; A485: 299

[20] Zhu K Y, Vassel A, Brisset F, Lu K, Lu J.  Acta Mater, 2004; 52: 4101
[1] 陈文雄, 胡宝佳, 贾春妮, 郑成武, 李殿中. 热变形后Ni-30%Fe模型合金中奥氏体的亚动态软化行为[J]. 金属学报, 2020, 56(6): 874-884.
[2] 黄远, 杜金龙, 王祖敏. 二元互不固溶金属合金化的研究进展[J]. 金属学报, 2020, 56(6): 801-820.
[3] 王霞, 王维, 杨光, 王超, 任宇航. 激光沉积薄壁结构热力演化的尺寸效应[J]. 金属学报, 2020, 56(5): 745-752.
[4] 王友德,徐善华,李晗,张海江. 一般大气环境下锈蚀结构钢表面特征与随机模型[J]. 金属学报, 2020, 56(2): 148-160.
[5] 姚美意,张兴旺,侯可可,张金龙,胡鹏飞,彭剑超,周邦新. Zr-0.75Sn-0.35Fe-0.15Cr合金在250 ℃去离子水中的初期腐蚀行为[J]. 金属学报, 2020, 56(2): 221-230.
[6] 邓聪坤,江鸿翔,赵九洲,何杰,赵雷. Ag-Ni偏晶合金凝固过程研究[J]. 金属学报, 2020, 56(2): 212-220.
[7] 王慧远,李超,李志刚,徐进,韩洪江,管志平,宋家旺,王珵,马品奎. 纳米增强体强化轻合金复合材料制备及构型设计研究进展与展望[J]. 金属学报, 2019, 55(6): 683-691.
[8] 李博,张忠铧,刘华松,罗明,兰鹏,唐海燕,张家泉. 高强耐蚀管钢点状偏析及带状缺陷的特征与演变[J]. 金属学报, 2019, 55(6): 762-772.
[9] 丁健翔,田无边,汪丹丹,张培根,陈坚,孙正明. Ag/Ti2AlC复合材料的电弧侵蚀及退化机理[J]. 金属学报, 2019, 55(5): 627-637.
[10] 李萍, 林泉, 周玉峰, 薛克敏, 吴玉程. W高压扭转显微组织演化过程TEM分析[J]. 金属学报, 2019, 55(4): 521-528.
[11] 储双杰,杨勇杰,和正华,沙玉辉,左良. 基于磁畴结构交互作用的激光刻痕取向硅钢磁致伸缩系数计算[J]. 金属学报, 2019, 55(3): 362-368.
[12] 吕钊钊,祖宇飞,沙建军,鲜玉强,张伟,崔鼎,严从林. 含Cu界面层碳纤维增强铝基复合材料制备工艺及其力学性能研究[J]. 金属学报, 2019, 55(3): 317-324.
[13] 陈丽群, 邱正琛, 于涛. Ru对NiAl[100](010)刃型位错电子结构的影响[J]. 金属学报, 2019, 55(2): 223-228.
[14] 万响亮, 胡锋, 成林, 黄刚, 张国宏, 吴开明. 两步贝氏体转变对中碳微纳结构钢韧性的影响[J]. 金属学报, 2019, 55(12): 1503-1511.
[15] 姚美意, 林雨晨, 侯可可, 梁雪, 胡鹏飞, 张金龙, 周邦新. Sn对锆合金在280 LiOH水溶液中初期腐蚀行为的影响[J]. 金属学报, 2019, 55(12): 1551-1560.