Please wait a minute...
金属学报  2013, Vol. 49 Issue (5): 593-598    DOI: 10.3724/SP.J.1037.2012.00702
  论文 本期目录 | 过刊浏览 |
CeO2/ZrO2-Y2O3纳米结构热障涂层的高温稳定性及耐腐蚀性能
宫文彪1),李任伟1),李于朋1),孙大千2),王文权2)
1)长春工业大学 先进结构材料教育部重点实验室, 长春;130012
2)吉林大学材料科学与工程学院, 长春;130025
STABILIZATION AND CORROSION RESISTANCE UNDER HIGH-TEMPERATURE OF NANOSTRUCTURED CeO2/ZrO2-Y2O3 THERMAL BARRIER COATING
GONG Wenbiao1), LI Renwei1),  LI Yupeng1),SUN Daqian2), WANG Wenquan2)
1)Key Laboratory of Advanced Structrural Materials, Ministry of Education, Changchun University of Technology,Changchun 130012
2)School of Materials Science and Engineering, Jilin University, Changchun 130025
引用本文:

宫文彪,李任伟,李于朋,孙大千,王文权. CeO2/ZrO2-Y2O3纳米结构热障涂层的高温稳定性及耐腐蚀性能[J]. 金属学报, 2013, 49(5): 593-598.
GONG Wenbiao, LI Renwei, LI Yupeng, SUN Daqian, WANG Wenquan. STABILIZATION AND CORROSION RESISTANCE UNDER HIGH-TEMPERATURE OF NANOSTRUCTURED CeO2/ZrO2-Y2O3 THERMAL BARRIER COATING[J]. Acta Metall Sin, 2013, 49(5): 593-598.

全文: PDF(1580 KB)  
摘要: 

采用等离子喷涂方法(APS)在GH30高温合金表面分别制备了纳米ZrO2-8%Y2O3 (YSZ, 质量分数)和掺杂25%(质量分数)纳米CeO2的三元CeO2/ZrO2-8%Y2O3(CSZ)热障涂层. 使用FESEM和XRD分析了涂层的微观组织, 研究了CSZ涂层在1100 ℃加热条件下分别保温不同时间及固定加热时间10 h, 改变加热温度时涂层晶粒尺寸的变化情况, 测试了2种涂层在高温下的耐Na2SO4熔盐腐蚀能力. 结果表明, CSZ涂层在高温长时间加热时, 平均晶粒尺寸从喷涂态的45 nm增至63 nm, 变化较小, 在900 ℃, Na2SO4熔盐腐蚀条件下长时间加热无m-ZrO2相析出, 耐蚀性能要高于YSZ涂层.

关键词 热障涂层等离子喷涂纳米结构高温稳定性熔盐腐蚀    
Abstract

Thermal barrier coating (TBC) systems are being used in thermal insulation components in the hot sections of gas turbines in order to increase operation temperature with better efficiency. The typical material of TBC is yttria stabilized zirconia (YSZ) because of its high thermal expansion coefficient, which closely matches that of the substrate, and low thermal conductivity. However, YSZ based TBC systems cannot be successfully applied due to hot corrosion problems caused by molten salts, such as Na, S and V, contained in low quality fuels. In recent years, nanostructured TBC attracted intense attentions due to their enhanced thermal physical properties, but the thermal stability and resistance to molten salt performance are rarely studied.As a new candidate TBC material, ceria and yttria stabilized zirconia currently looks to be promising. The purpose of this work was to obtain the better understanding of microstructure and molten salt corrosion capability of plasma-sprayed nanostructured CSZ coating and to provide some foundation for improving the properties of TBC. In this work, nano-sized ZrO2-8%Y2O3 (YSZ, mass fraction) and nano-YSZ doped with 25% of nanometer CeO2 (CeO2/ZrO2-8%Y2O3, CSZ) were deposited on GH30 superalloy surface through air plasma spray process (APS) to form a thermal barrier coating. The morphology and microstructure of the CSZ coating were characterized using FESEM and XRD. The grain size of CSZ coating under the following two conditions were examined, firstly, the CSZ coating was heated to 1100 ℃ and held for various durations, thenthe CSZ coating was heated for a fixed 10 h but up to various temperatures. Its corrosion resistance under high temperature molten Na2SO4 salt was also tested. The results showed that average grain size of CSZ coating grown from 45 to 63 nm under prolonged exposure to high temperature and CSZ has showed better corrosion resistance than YSZ coating with no m-ZrO2 phase precipitated at under prolonged high temperature at 900 ℃ in Na2SO4 salt corrosion.

Key wordsthermal barrier coating    plasma spray    nano-structure    stabilization under high temperature    molten salt corrosion
收稿日期: 2012-11-23     
基金资助:

吉林省自然科学基金项目20080507和总装备部武器预研基金项目51461020201JW1301资助

作者简介: 宫文彪, 男, 1966年生, 教授

[1] Cao X Q.  Material of Heat Barrier Coat. Beijing: Science Press, 2007: 2


(曹学强. 热障涂层材料. 北京: 科学出版社, 2007: 2)

[2] Evans A G, Mumm D R, Hutchinson J W, Meier G H, Pettit F S.  Prog Mater Sci, 2001; 46: 505

[3] Cao X Q, Vassen R, Stoever D.  J Eur Ceram Soc, 2004; 24: 1

[4] Clarke D R, Phillpot S R.  Mater Today, 2005; 6: 22

[5] Chwa S O, Ohmori A.  Surf Coat Technol, 2002; 153: 304

[6] Lima R S, Kucuk A, Berndt C C.  Mater Sci Eng, 2001; A313: 75

[7] Wang W Q, Sha C K, Sun D Q, Gu X Y.  Mater Sci Eng, 2006; A424: 1

[8] Liang B, Ding C X.  Surf Coat Technol, 2005; 197: 185

[9] Liang B, Ding C X.  J Inorg Mater, 2006; 21: 250

(梁波, 丁传贤. 无机材料学报, 2006; 21: 250)

[10] Racek O, Berndt C C, Guru D N, Heberlein J.  Surf Coat Technol, 2006; 201: 338

[11] Zhang Y J, Sun X F, Jin T, Zhao N R, Guan H R, Hu Z Q.  Acta Metall Sin, 2003; 39: 395

(张玉娟, 孙晓峰, 金涛, 赵乃仁, 管恒荣, 胡壮麒. 金属学报, 2003; 39: 395)

[12] Li H, Khor K A, Kumar R, Cheang P.  Surf Coat Technol, 2004; 182: 227

[13] Sun J, Zhang L L, Zhao D.  J Rare Earths, 2010; 28: 198

[14] Xu B S.  Nano Surface Engineering. Beijing: Chemical Industry Press, 2004: 14

(徐滨士. 纳米表面工程. 北京: 化学工业出版社, 2004: 14)

[15] Lee C H, Kim H K, Choi H S, Ahn H S.  Surf Coat Technol, 2000; 124: 1

[16] Zhu C, Li P, Javed A, Liang G Y, Xiao P.  Surf Coat Technol, 2012; 206: 3739

[17] Zhang C Y, Li M H, Sun X F, Gong S K, Guan H R, Hu Z Q.  J Chin Soc Corros Prot, 2002; 22: 111

(张重远, 李美姮, 孙晓峰, 宫声凯, 管恒荣, 胡壮麒. 中国腐蚀与防护学报, 2002; 22: 111)

[18] Park S Y, Kim J H, Kim M C, Song H S, Park C G.  Surf Coat Technol, 2005; 190: 357

[19] Srinivasan R, Merrilea J M.  Surf Coat Technol, 2002; 160: 187

[20] Gong W B, Li Y P, Liu W, Sun D Q, Wang W Q.  J Inorg Mater, 2010; 25: 860

(宫文彪, 李于鹏, 刘威, 孙大千, 王文权. 无机材料学报, 2010; 25: 860)

[21] Lima R S, Kucuka A, Berndt C C.  Surf Coat Technol, 2001; 135: 166

[22] Gong W B, Sun D Q, Sun X B, Liu W.  Trans Mater Heat Treat, 2007; 4: 125

(宫文彪, 孙大千, 孙喜兵, 刘威. 材料热处理学报, 2007; 4: 125)

[23] Gonw W B, Sha C K, Sun D Q, Wang W Q.  Surf Coat Technol, 2006; 201: 3109

[24] Lu K, Sui M L.  J Mater Sci Technol, 1993; 9: 419

[25] Sun X K, Gong H T, Sun M, Yang M C.  Mater Trans, 2003; 31A: 17

[26] Colaizzi J.  Int Powder Metall, 2001; 37: 45

[27] Wang Z B, Zhou C G, Xun H B, Gong S K.  Chin J Aeronaut, 2004; 2: 119

(王振波, 周春根, 徐惠彬, 宫声凯. 中国航空学报, 2004; 2: 119)

[28] Sodeoka S, Suzuki M, Inoue T, Ueno. In: Berndt C C, ed.,  The 9th National Thermal Spray Conference.

Ohio: Materials Park, ASM International, 1996: 311
[1] 王磊, 刘梦雅, 刘杨, 宋秀, 孟凡强. 镍基高温合金表面冲击强化机制及应用研究进展[J]. 金属学报, 2023, 59(9): 1173-1189.
[2] 赵晓峰, 李玲, 张晗, 陆杰. 热障涂层高熵合金粘结层材料研究进展[J]. 金属学报, 2022, 58(4): 503-512.
[3] 董昕远, 雒晓涛, 李成新, 李长久. B清除大气等离子喷涂CuNi熔滴氧化物效应[J]. 金属学报, 2022, 58(2): 206-214.
[4] 卢磊, 赵怀智. 异质纳米结构金属强化韧化机理研究进展[J]. 金属学报, 2022, 58(11): 1360-1370.
[5] 郭磊, 高远, 叶福兴, 张馨木. 航空发动机热障涂层的CMAS腐蚀行为与防护方法[J]. 金属学报, 2021, 57(9): 1184-1198.
[6] 刘悦, 汤鹏正, 杨昆明, 沈一鸣, 吴中光, 范同祥. 抗辐照损伤金属基纳米结构材料界面设计及其响应行为的研究进展[J]. 金属学报, 2021, 57(2): 150-170.
[7] 李晓倩, 王富国, 梁爱民. 喷涂工艺对Ta2O5原位复合钽基纳米晶涂层微观结构及摩擦磨损性能的影响[J]. 金属学报, 2021, 57(2): 237-246.
[8] 杨建海,张玉祥,葛利玲,陈家照,张鑫. 2A14铝合金混合表面纳米化对电化学腐蚀行为的影响*[J]. 金属学报, 2016, 52(11): 1413-1422.
[9] 侯晓光,王恩刚,许秀杰,邓安元,王万林. 弯月面热障涂层方法对结晶器传热及铸坯振痕形貌的影响[J]. 金属学报, 2015, 51(9): 1145-1152.
[10] 黄海威, 王镇波, 刘莉, 雍兴平, 卢柯. 马氏体不锈钢上梯度纳米结构表层的形成及其对电化学腐蚀行为的影响*[J]. 金属学报, 2015, 51(5): 513-518.
[11] 卢柯. 梯度纳米结构材料[J]. 金属学报, 2015, 51(1): 1-10.
[12] 陶乃镕, 卢柯. 纳米结构金属材料的塑性变形制备技术*[J]. 金属学报, 2014, 50(2): 141-147.
[13] 付翀,王俊勃,杨敏鸽,侯锦丽,丁秉钧. 等离子喷涂Ag/(Sn0.8La0.2)O2涂层的组织及电性能[J]. 金属学报, 2013, 49(3): 325-329.
[14] 项建英 陈树海 黄继华 赵兴科 张华. 等离子喷涂La2(Zr0.7Ce0.3)2O7热障涂层的抗热震性能[J]. 金属学报, 2012, 48(8): 965-970.
[15] 刘静 盛洪飞 张保山 彭良明. 含等离子喷涂ZrO2热障涂层的Ti3XC2(X=Al, Si)性能研究[J]. 金属学报, 2011, 47(9): 1141-1146.