Please wait a minute...
金属学报  2012, Vol. 48 Issue (6): 678-686    DOI: 10.3724/SP.J.1037.2012.00101
  论文 本期目录 | 过刊浏览 |
结构变化对\Cu/Sn-58Bi/Cu微焊点电迁移行为和组织演变的影响
岳武,秦红波,周敏波,马骁,张新平
华南理工大学材料科学与工程学院, 广州 510640
INFLUENCE OF SOLDER JOINT CONFIGURATION ON ELECTROMIGRATION BEHAVIOR AND MICROSTRUCTURAL EVOLUTION OF Cu/Sn-58Bi/Cu MICROSCALE JOINTS
YUE Wu, QIN Hongbo, ZHOU Minbo, MA Xiao, ZHANG Xinping
School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640
引用本文:

岳武,秦红波,周敏波,马骁,张新平. 结构变化对\Cu/Sn-58Bi/Cu微焊点电迁移行为和组织演变的影响[J]. 金属学报, 2012, 48(6): 678-686.
, , , , . INFLUENCE OF SOLDER JOINT CONFIGURATION ON ELECTROMIGRATION BEHAVIOR AND MICROSTRUCTURAL EVOLUTION OF Cu/Sn-58Bi/Cu MICROSCALE JOINTS[J]. Acta Metall Sin, 2012, 48(6): 678-686.

全文: PDF(3951 KB)  
摘要: 利用SEM观察、聚焦离子束(FIB)微区分析和有限元模拟对比研究了直角型和线型Cu/Sn-58Bi/Cu微焊点在高电流密度下(1.5×104A/cm2)的电迁移行为, 从原子扩散距离和微区域电阻变化及阴阳极物相变化的角度研究了焊点结构变化对电迁移影响的机理. 结果表明, 2种焊点通电112和224 h后均发生了Bi向阳极迁移并聚集及 Sn在阴极富集的现象; 直角型焊点阳极由于Bi聚集后膨胀而产生压应力进而导致小丘状凸起和微裂纹出现, 而阴极存在拉应力引发凹陷和微裂纹, 且沿界面呈非均匀变化. 微区组织分析表明, 电迁移作用下焊点内部 Bi原子的扩散速度大于Sn原子的扩散速度. 观察分析和模拟结果还表明, 具有结构不均匀性的直角型焊点中电子流易向电阻较小区域聚集而产生电流拥挤效应, 这是引起直角型焊点电迁移现象严重的根本原因.
关键词 焊点结构电迁移组织演变SnBi钎料电流拥挤效应    
Abstract:With the increasing miniaturization of electronic devices and systems, the pitch size and dimension of solder interconnects become smaller, accordingly the current density in solder interconnects gets higher and this results in severe electromigration (EM) effect that may deteriorate the performance of solder interconnects. The studies on flip chip interconnects have shown that the configurable change of solder joints can significantly affect the electromigration behavior. In this study, the microscale Cu/Sn-58Bi/Cu joints with different geometrical configurations, i.e., right angle-type and line-type solder joints, were designed and the electromigration behavior of joints under a direct current of a density 1.5×104 A/cm2 were investigated by SEM observation, microanalysis based on focused ion beam (FIB) and finite element simulation. The focus was placed on clarifying the influence of the solder joint configuration on the electromigration mechanism of the joint in terms of atomic diffusion distance, microregional resistance change and the change of phases in anode and cathode. Results showed that for both types of solder joints after current stressing for 112 and 224 h, Bi migrated to the anode side and congregated there, while Sn tended to enrich near the cathode side; in particular for the right angle-type solder joint the microscale hillocks and microcracks occurred at the anode side caused by the compressive stress which was attributed to Bi congregation and the consequent volume expansion of the phase, while the microscale concave valleys and microcracks appeared at the cathode side caused by the tensile stress, and it was worth noticing that the phenomenon above happened non-uniformly along the interface in right angle-type joint. The microanalysis results revealed that the diffusion velocity of Bi atoms was faster than that of Sn under current stressing in the solder joint. Furthermore, observations and finite element simulation results showed that for the solder joint with an asymmetrical configuration like the right angle-type solder joint the electrons flowed toward the bottom corner of the joint where the resistance was smaller and thus the current crowding effect occurred, and this was the primary factor for causing the severe electromigration.
Key wordsconfiguration of solder joint    electromigration    microstructural evolution    SnBi solder    current crowding effect
收稿日期: 2012-02-27     
ZTFLH: 

TG113

 
基金资助:

高等学校博士点科研基金项目20110172110003和广东省重大科技专项项目2009A080204005资助

作者简介: 岳武, 男, 1975年生, 博士生
[1] Brandenburg S, Yeh S.  Proceedings of Surface Mount International Conference and Exhibition, San Jose, CA: SMTA, 1998: 337

[2] Zeng K, Tu K N.  Mater Sci Eng, 2002; R38: 55

[3] Tu K N.  J Appl Phys, 2003; 94: 5451

[4] Chan Y C, Yang D.  Prog Mater Sci, 2010; 55: 428

[5] Matin M A, Vellinga W P, Geers M G D.  Acta Mater, 2004; 52: 3475

[6] Wu B Y, Alam M O, Chan Y C, Zhong H W.  J Electron Mater, 2008; 37: 469

[7] Gan H, Tu K N.  J Appl Phys, 2005; 97: 063514

[8] Zhang X F, Guo J D, Shang J K.  Scr Mater, 2007; 57: 513

[9] Lin Y H, Hu Y C, Tsai C M, Kao C R, Tu K N.  Acta Mater, 2005; 53: 2029

[10] Liang S W, Chang Y W, Shao T L, Chen C, Tu K N.  Appl Phys Lett, 2006; 89: 022117

[11] Tu K N.  Phys Rev, 1994; 49B: 2030

[12] Ouyang F Y, Chen K, Tu K N, Lai Y S.  Appl Phys Lett, 2007; 91: 231919

[13] Tsai C M, Lin Y L, Tsai J Y, Lai Y S, Kao C R.  J Electron Mater, 2006; 35: 1005

[14] Liang S W, Chiu S H, Chen C.  Appl Phys Lett, 2007; 90: 082103

[15] Ding M, Wang G T, Chao B, Ho P S, Su P, Uehling T.  J Appl Phys, 2006; 99: 094906

[16] Ren F, Nah J W, Tu K N, Xiong B S, Xu L H, Pang J H L.  Appl Phys Lett, 2006; 89: 141914

[17] Yeh E C C, Choi W J, Tu K N, Elenius P, Balkan H.  Appl Phys Lett, 2002; 80: 580

[18] Chen C M, Huang C C, Liao C N, Liou K M.  J Electron Mater, 2007; 36: 760

[19] Gu X, Chan Y C.  J Electron Mater, 2008; 37: 1721

[20] Lee T Y, Tu K N, Kuo S M, Frear D R.  J Appl Phys, 2001; 89: 3189

[21] Blech I A.  J Appl Phys, 1976; 47: 1203

[22] Wei C C, Chen C.  Appl Phys Lett, 2006; 88: 182105

[23] Zhou W, Liu L J, Li B L, Wu P.  Thin Solid Films, 2010; 518: 5875

[24] Sun J, Xu G C, Guo F, Xia Z D, Lei Y P, Shi Y W, Li X Y, Wang X T.  J Mater Sci, 2011; 46: 3544

[25] Yoshida K, Morigami H.  Microelectron Rel, 2004; 44: 303

[26] Harper J M E, Cabral C, Jr., Andricacos P C, Gignac L, Noyan I C, Rodbell K P, Hu C K. J Appl Phys, 1999; 86: 2516
[1] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[2] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[3] 王法, 江河, 董建新. 高合金化GH4151合金复杂析出相演变行为[J]. 金属学报, 2023, 59(6): 787-796.
[4] 方远志, 戴国庆, 郭艳华, 孙中刚, 刘红兵, 袁秦峰. 激光摆动对激光熔化沉积钛合金微观组织及力学性能的影响[J]. 金属学报, 2023, 59(1): 136-146.
[5] 李钊, 江河, 王涛, 付书红, 张勇. GH2909低膨胀高温合金热处理中的组织演变行为[J]. 金属学报, 2022, 58(9): 1179-1188.
[6] 梁琛, 王小娟, 王海鹏. 快速凝固Ti-Al-Nb合金B2相形成机制与显微力学性能[J]. 金属学报, 2022, 58(9): 1169-1178.
[7] 徐静辉, 李龙飞, 刘心刚, 李辉, 冯强. 热力耦合对一种第四代镍基单晶高温合金1100℃蠕变组织演变的影响[J]. 金属学报, 2021, 57(2): 205-214.
[8] 刘超, 姚志浩, 郭婧, 彭子超, 江河, 董建新. 粉末高温合金FGH4720Li在近服役温度下的组织演变规律[J]. 金属学报, 2021, 57(12): 1549-1558.
[9] 李娟, 赵宏龙, 周念, 张英哲, 秦庆东, 苏向东. CoCrFeNiCu高熵合金与304不锈钢真空扩散焊[J]. 金属学报, 2021, 57(12): 1567-1578.
[10] 刘晨曦, 毛春亮, 崔雷, 周晓胜, 余黎明, 刘永长. 低活化铁素体/马氏体钢组织调控及其固相连接研究进展[J]. 金属学报, 2021, 57(11): 1521-1538.
[11] 吴贇, 刘雅辉, 康茂东, 高海燕, 王俊, 孙宝德. K4169合金循环加载过程中的微观组织演变[J]. 金属学报, 2020, 56(9): 1185-1194.
[12] 王涛,万志鹏,李钊,李佩桓,李鑫旭,韦康,张勇. 热处理工艺对GH4720Li合金细晶铸锭组织与热加工性能的影响[J]. 金属学报, 2020, 56(2): 182-192.
[13] 张志杰, 黄明亮. 原位研究Cu/Sn-37Pb/Cu微焊点液-固电迁移行为[J]. 金属学报, 2020, 56(10): 1386-1392.
[14] 吴静,刘永长,李冲,伍宇婷,夏兴川,李会军. 高Fe、Cr含量多相Ni3Al基高温合金组织与性能研究进展[J]. 金属学报, 2020, 56(1): 21-35.
[15] 江河,董建新,张麦仓,姚志浩,杨静. 服役条件下镍基高温合金应力松弛微观机制[J]. 金属学报, 2019, 55(9): 1211-1220.