Please wait a minute...
金属学报  2020, Vol. 56 Issue (10): 1386-1392    DOI: 10.11900/0412.1961.2020.00009
  本期目录 | 过刊浏览 |
原位研究Cu/Sn-37Pb/Cu微焊点液-固电迁移行为
张志杰1, 黄明亮2()
1 江苏科技大学材料科学与工程学院 镇江 212003
2 大连理工大学材料科学与工程学院 大连 116024
In Situ Study on Liquid-Solid Electromigration Behavior in Cu/Sn-37Pb/Cu Micro-Interconnect
ZHANG Zhijie1, HUANG Mingliang2()
1 School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China
2 School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, China
引用本文:

张志杰, 黄明亮. 原位研究Cu/Sn-37Pb/Cu微焊点液-固电迁移行为[J]. 金属学报, 2020, 56(10): 1386-1392.
Zhijie ZHANG, Mingliang HUANG. In Situ Study on Liquid-Solid Electromigration Behavior in Cu/Sn-37Pb/Cu Micro-Interconnect[J]. Acta Metall Sin, 2020, 56(10): 1386-1392.

全文: PDF(2003 KB)   HTML
摘要: 

利用同步辐射实时成像技术原位研究了Cu/Sn-37Pb/Cu微焊点在185 ℃、1×104 A/cm2电流密度条件下液-固电迁移过程中Pb原子的扩散迁移行为及其析出机制。在微焊点加热熔化阶段,Pb原子向阳极定向迁移并聚集形成富Pb相,其厚度随时间的延长而增大;在保温阶段,阳极的富Pb相部分溶解,Pb原子反向扩散至阴极,最终钎料内部形成两相平衡组织;在冷却凝固阶段,Pb原子再次向阳极定向迁移,直至凝固,最终钎料内部形成三相组织:富Pb相、Sn-Pb相和富Sn相。基于加热阶段富Pb相的生长动力学,计算获得Pb原子在185 ℃下的有效电荷数(Z*)为-3.20,为Pb原子的电迁移方向提供了判断依据。Pb原子在电迁移中的反常迁移行为归因于电迁移通量(Jem)与化学势通量(Jchem)的竞争机制。

关键词 同步辐射实时成像技术Sn-37Pb微焊点液-固电迁移界面反应有效电荷数    
Abstract

Electromigration (EM), which describes the mass transport due to momentum exchange between conducting electrons and diffusing metal atoms under an applied electric field, has become a serious reliability issue in high-density packaging. With the increasing demands for miniaturization, liquid-solid (L-S) EM will pose a critical challenge to the reliability of solder interconnects. In this work, synchrotron radiation real-time imaging technology is used to in situ study the interfacial reaction and atom migration in Cu/Sn-37Pb/Cu solder interconnects undergoing L-S EM at 185 ℃ with a current density of 1.0×104 A/cm2. In the heating stage, Pb atoms directionally migrate from the cathode toward the anode, resulting in the growth of Pb-rich phase at the anode. In the dwelling stage, Pb atoms diffuse backward, then equilibrium phase is obtained. In the cooling stage, Pb atoms directionally migrate from the cathode toward the anode again until the solder solidified, three phases is obtained: the Pb-rich phase, the Sn-Pb phase and the Sn-rich phase. The abnormal migration behavior of Pb atoms in different stages is determined by the combined effect of the chemical potential gradient flux (Jchem) and EM-induced flux (Jem). Jem is determined by the effective charge number (Z*) of Pb atoms, which was calculated to be -3.20 at 185 ℃ based on the growth kinetics of the Pb-rich layer model.

Key wordssynchrotron radiation real-time imaging technology    Sn-37Pb micro-interconnect    liquid-solid electromigration    interfacial reaction    effective charge number
收稿日期: 2020-01-07     
ZTFLH:  TG115  
基金资助:国家自然科学基金项目(51801079);国家自然科学基金项目(U1837208);国家自然科学基金项目(51671046);江苏省自然科学基金青年基金项目(BK20180987)
作者简介: 张志杰,女,1986年生,副教授,博士
图1  Cu/Sn-37Pb/Cu线性焊点示意图和电迁移试样示意图
图2  Cu/Sn-37Pb/Cu焊点在185 ℃、1.0×104 A/cm2条件下液-固电迁移过程中的同步辐射照片
图3  185 ℃、1.0×104 A/cm2液-固电迁移后的Cu/Sn-37Pb/Cu焊点的SEM像
图4  Cu/Sn-37Pb/Cu焊点液-固电迁移过程中富Pb相的生长动力学曲线
图5  Cu/Sn-37Pb/Cu焊点液-固电迁移过程Pb原子扩散通量及微观组织演变示意图
[1] Tu K N, Gusak A M. A unified model of mean-time-to-failure for electromigration, thermomigration, and stress-migration based on entropy production [J]. J. Appl. Phys., 2019, 126: 075109
[2] Attari V, Ghosh S, Duong T, et al. On the interfacial phase growth and vacancy evolution during accelerated electromigration in Cu/Sn/Cu microjoints [J]. Acta Mater., 2018, 160: 185
[3] Liu Y C, Yu Y S, Lin S K, et al. Electromigration effect upon single- and two-phase Ag-Cu alloy strips: An in situ study [J]. Scr. Mater., 2019, 173: 134
[4] Tu K N, Liu Y X, Li M L. Effect of Joule heating and current crowding on electromigration in mobile technology [J]. Appl. Phys. Rev., 2017, 4: 011101
[5] Zhang Z H, Cao H J, Chen H T. Formation mechanism of a cathodic serrated interface and voids under high current density [J]. Mater. Lett., 2018, 211: 191
doi: 10.1016/j.matlet.2017.09.111
[6] Chen C, Liang S W. Electromigration issues in lead-free solder joints [J]. J. Mater. Sci. Mater. Electron., 2007, 18: 259
doi: 10.1007/s10854-006-9020-8
[7] Yeh E C C, Choi W J, Tu K N. Current-crowding-induced electromigration failure in flip chip solder joints [J]. Appl. Phys. Lett., 2002, 80: 580
[8] Cahoon J R. A modified "hole" theory for solute impurity diffusion in liquid metals [J]. Metall. Mater. Trans., 1997, 28A: 583
[9] Huang J R, Tsai C M, Lin Y W, et al. Pronounced electromigration of Cu in molten Sn-based solders [J]. J. Mater. Res., 2008, 23: 250
[10] Zhang Z J, Huang M L. Abnormal migration behavior and segregation mechanism of Bi atoms undergoing liquid-solid electromigration [J]. J. Mater. Sci., 2019, 54: 7975
[11] Huang M L, Zhou Q, Zhao N, et al. Abnormal diffusion behavior of Zn in Cu/Sn-9wt.%Zn/Cu interconnects during liquid-solid electromigration [J]. J. Electron. Mater., 2013, 42: 2975
[12] Huang M L, Zhang Z J, Zhao N, et al. A synchrotron radiation real-time in situ imaging study on the reverse polarity effect in Cu/Sn-9Zn/Cu interconnect during liquid-solid electromigration [J]. Scr. Mater., 2013, 68: 853
[13] Huang M L, Zhang Z J, Zhao N, et al. In situ study on reverse polarity effect in Cu/Sn-9Zn/Ni interconnect undergoing liquid-solid electromigration [J]. J. Alloys Compd., 2015, 619: 667
[14] Huang M L, Zhou Q, Zhao N, et al. Reverse polarity effect and cross-solder interaction in Cu/Sn-9Zn/Ni interconnect during liquid-solid electromigration [J]. J. Mater. Sci., 2014, 49: 1755
[15] Huang M L, Zhang Z J, Zhao N, et al. Migration behavior of indium atoms in Cu/Sn-52In/Cu interconnects during electromigration [J]. J. Mater. Res., 2015, 30: 3316
[16] Zhang Z J, Huang M L. Liquid-solid electromigration behavior of Cu/Sn-52In/Cu micro-interconnect [J]. Acta Metall. Sin., 2017, 53: 592
[16] (张志杰, 黄明亮. Cu/Sn-52In/Cu微焊点液-固电迁移行为研究[J]. 金属学报, 2017, 53: 592)
[17] Qi Y, Lam R, Ghorbani H R, et al. Temperature profile effects in accelerated thermal cycling of SnPb and Pb-free solder joints [J]. Microelectron. Reliab., 2006, 46: 574
[18] Zeng X Z. Thermodynamic analysis of influence of Pb contamination on Pb-free solder joints reliability [J]. J. Alloys Compd., 2003, 348: 184
[19] Hu Y C, Lin Y H, Kao C R, et al. Electromigration failure in flip chip solder joints due to rapid dissolution of copper [J]. J. Mater. Res., 2003, 18: 2544
[20] Liao C N, Chung C P, Chen W T. Electromigration-induced Pb segregation in eutectic Sn-Pb molten solder [J]. J. Mater. Res., 2005, 20: 3425
doi: 10.1557/jmr.2005.0420
[21] Tammaro M. Investigation of the temperature dependence in Black's equation using microscopic electromigration modeling [J]. J. Appl. Phys., 1999, 86: 3612
doi: 10.1063/1.371268
[22] Fiks V B. On the mechanism of the mobility of ions in metals [J]. Soviet Phys. Solid State, 1959, 40: 14
doi: 10.1134/1.1130222
[23] Tu K N. Electromigration in stressed thin films [J]. Phys. Rev., 1992, 45B: 1409
[24] Adams P D, Leach J S L. Resistivity of liquid lead-tin alloys [J]. Phys. Rev., 1967, 156: 178
doi: 10.1103/PhysRev.156.178
[25] Kumar P, Howarth J, Dutta I. Electric current induced flow of liquid metals: Mechanism and substrate-surface effects [J]. J. Appl. Phys., 2014, 115: 044915
[1] 沈莹莹, 张国兴, 贾清, 王玉敏, 崔玉友, 杨锐. SiCf/TiAl复合材料界面反应及热稳定性[J]. 金属学报, 2022, 58(9): 1150-1158.
[2] 宋庆忠, 潜坤, 舒磊, 陈波, 马颖澈, 刘奎. 镍基高温合金K417G与氧化物耐火材料的界面反应[J]. 金属学报, 2022, 58(7): 868-882.
[3] 王超, 张旭, 王玉敏, 杨青, 杨丽娜, 张国兴, 吴颖, 孔旭, 杨锐. SiCf/Ti65复合材料界面反应与基体相变机理[J]. 金属学报, 2020, 56(9): 1275-1285.
[4] 冯业飞,周晓明,邹金文,王超渊,田高峰,宋晓俊,曾维虎. 粉末高温合金中SiO2夹杂物与基体的界面反应机理及对其变形行为的影响[J]. 金属学报, 2019, 55(11): 1437-1447.
[5] 邱丰, 佟昊天, 沈平, 丛晓霜, 王轶, 姜启川. 综述:SiC/Al界面反应与界面结构演变规律及机制[J]. 金属学报, 2019, 55(1): 87-100.
[6] 赵宁,邓建峰,钟毅,殷录桥. 热迁移下Ni/Sn-xCu/Ni微焊点钎焊界面金属间化合物的演变[J]. 金属学报, 2017, 53(7): 861-868.
[7] 张志杰,黄明亮. Cu/Sn-52In/Cu微焊点液-固电迁移行为研究[J]. 金属学报, 2017, 53(5): 592-600.
[8] 靳鹏,隋然,李富祥,俞伟元,林巧力. 熔融6061/4043铝合金在TC4钛合金表面的反应润湿[J]. 金属学报, 2017, 53(4): 479-486.
[9] 王玉敏, 张国兴, 张旭, 杨青, 杨丽娜, 杨锐. 连续SiC纤维增强钛基复合材料研究进展*[J]. 金属学报, 2016, 52(10): 1153-1170.
[10] 吴铭方,刘飞,王凤江,乔岩欣. 陶瓷基复合材料辅助脉冲电流液相扩散连接的界面反应及接头强化机制[J]. 金属学报, 2015, 51(9): 1129-1135.
[11] 陈晓燕,金喆,白雪峰,周亦胄,金涛,孙晓峰. C对一种镍基高温合金与陶瓷型壳界面反应及润湿性的影响*[J]. 金属学报, 2015, 51(7): 853-858.
[12] 黄明亮, 张志杰, 冯晓飞, 赵宁. 液-固电迁移Ni/Sn-9Zn/Ni焊点反极性效应研究[J]. 金属学报, 2015, 51(1): 93-99.
[13] 陈晓燕, 周亦胄, 张朝威, 金涛, 孙晓峰. Hf对一种高温合金与陶瓷材料润湿性及界面反应的影响*[J]. 金属学报, 2014, 50(8): 1019-1024.
[14] 柯常波, 周敏波, 张新平. Sn/Cu互连体系界面金属间化合物Cu6Sn5演化和生长动力学的相场法模拟*[J]. 金属学报, 2014, 50(3): 294-304.
[15] 谭向虎,单际国,任家烈. Cr层对低碳钢/CFRP激光连接接头剪切强度及界面结合特征的影响[J]. 金属学报, 2013, 49(6): 751-756.