Please wait a minute...
金属学报  2025, Vol. 61 Issue (4): 643-652    DOI: 10.11900/0412.1961.2023.00175
  研究论文 本期目录 | 过刊浏览 |
He泡液态金属铝的动态拉伸断裂机制与损伤模型
周婷婷(), 赵福祺, 周洪强, 张凤国, 殷建伟
北京应用物理与计算数学研究所 北京 100094
Mechanism and Damage Model for the Dynamic Tensile Fracture of Liquid Aluminum Containing He Bubbles
ZHOU Tingting(), ZHAO Fuqi, ZHOU Hongqiang, ZHANG Fengguo, YIN Jianwei
Institute of Applied Physics and Computational Mathematics, Beijing 100094, China
引用本文:

周婷婷, 赵福祺, 周洪强, 张凤国, 殷建伟. 含He泡液态金属铝的动态拉伸断裂机制与损伤模型[J]. 金属学报, 2025, 61(4): 643-652.
Tingting ZHOU, Fuqi ZHAO, Hongqiang ZHOU, Fengguo ZHANG, Jianwei YIN. Mechanism and Damage Model for the Dynamic Tensile Fracture of Liquid Aluminum Containing He Bubbles[J]. Acta Metall Sin, 2025, 61(4): 643-652.

全文: PDF(1861 KB)   HTML
摘要: 

为揭示辐照缺陷(如He泡)对液态金属动态断裂的影响,并发展相应的损伤理论模型,本工作采用分子动力学模拟和连续介质力学理论计算研究了宽应变率范围内含He泡液态金属铝的动态拉伸断裂行为。模拟结果表明,在3.0 × 106~3.0 × 109 s-1应变率范围内,He泡增长是导致液态金属断裂的物理机制;在极高应变率下(如3.0 × 1010 s-1),除He泡增长,也观察到孔洞成核、增长,但He泡增长仍占据主导地位。He泡增长过程可分为快速增长和较慢增长2个阶段,该阶段性增长特征不受应变率影响,但He泡增长速率随着应变率的升高而显著增加。与液态纯Al相比,含He泡液态金属铝的动态拉伸强度显著降低,该差异在极高应变率下有所减小。进一步发展了含He泡液态金属的损伤断裂模型,采用该模型的理论计算结果与微观模拟结果在宽应变率范围内相符。

关键词 动态断裂He泡液态金属分子动力学损伤模型    
Abstract

The dynamic fracture of metals in liquid state has become a subject of considerable interest in current times because of its observation in various physical and technological processes such as inertial confinement fusion and high-power laser-driven surface micromachining. In addition, it has been found that the fractures at elevated temperature are highly correlated with the microstructure of materials. He bubbles are frequently observed in many metals exposed to irradiation environments as a result of radioactive or self-irradiation. Both experimental and theoretical studies have indicated that He bubbles can substantially affect the mechanical properties of irradiated metals, resulting in hardening, swelling, and embrittlement. In recent years, attention has been drawn to understand the effects of He bubbles on the dynamic properties of materials, including shock compression, dynamic fracture, and surface ejection. This study examines the dynamic tensile fracture behavior of liquid aluminum containing He bubbles across a wide range of strain rates by utilizing molecular dynamics (MD) simulations and continuum modeling. The physical mechanism leading to the dynamic fracture is revealed to be predominated by the growth of He bubble. Under strain rates ranging from 3.0 × 106 s-1 to 3.0 × 109 s-1, tension primarily induces bubble growth. At higher strain rates, such as 3.0 × 1010 s-1, both bubble growth and void nucleation-growth are observed, although bubble growth remains the dominant factor. The growth of He bubbles unfolds in two distinct phases: rapid growth followed by slower growth. These staged evolutionary characteristics appear to be consistent across strain rates, but the growth rate of helium bubbles markedly increases with increasing strain rates. Furthermore, the dynamic tensile strength at varying strain rates indicates a significant reduction for the metal containing He bubbles compared to the pure metal. However, this discrepancy decreases at extremely high strain rates, such as 3.0 × 1010 s-1. In addition, a continuum damage model is constructed based on the insights obtained from MD simulations to describe the dynamic tensile fracture of liquid metal containing He bubbles. This model accounts for external tensile stress, internal pressure of He bubbles, inertia, viscosity, and surface tension. Theoretical calculations using the damage model and the binomial equation of state, which depict the pressure-volume relationship of the metal substrate, exhibit excellent agreement with MD data over a wide range of strain rates. This includes the evolution of the tensile stress and He bubble radius. The self-consistent MD-continuum model proposed in this study has the potential to be applied in macroscopic hydrodynamic simulations, to depict the dynamic tensile fracture behavior of liquid metal with He bubbles.

Key wordsdynamic fracture    He bubble    liquid metal    molecular dynamics    damage model
收稿日期: 2023-04-20     
ZTFLH:  TG113.25  
基金资助:国家自然科学基金项目(12172063)
通讯作者: 周婷婷,zhou_tingting@iapcm.ac.cn,主要从事材料动态力学行为研究
Corresponding author: ZHOU Tingting, associate professor, Tel: (010)59872646, E-mail: zhou_tingting@iapcm.ac.cn
作者简介: 周婷婷,女,1986年生,副研究员,博士
图1  含He泡液态金属铝(简称含He泡铝)样品的初始结构与分子动力学(MD) (1100 K)优化后的结构
图2  应变率为3.0 × 108 s-1时纯Al和含He泡铝样品在拉伸过程中的He泡与孔洞演化
图3  应变率为3.0 × 108 s-1时含He泡铝样品在拉伸过程中的拉伸应力(P)、He泡半径(R)以及He泡内压(Pg)随时间的变化
图4  应变率为3.0 × 108 s-1时纯Al样品与含He泡铝样品在拉伸过程中的拉伸应力及He泡/孔洞体积随时间的变化
图5  应变率为3.0 × 109和3.0 × 107 s-1时含He泡铝样品在拉伸过程中的He泡演化
图7  含He泡铝样品和纯Al样品的动态拉伸强度随应变率的变化
图8  应变率为3.0 × 1010 s-1时含He泡铝样品在拉伸过程中的微结构演化
ε˙ / s-1R0 / nmpg0 / GPaγ / (J·m-2)nK1 / GPaK2 / GPaη / (Pa·s)
3.0 × 1061.8680.6320.594.6511300.03
3.0 × 1071.8680.6320.594.6511300.006
3.0 × 1081.8680.6320.594.6511300.0025
3.0 × 1091.8680.6320.594.6511300.0012
表1  损伤理论模型中的参数
图9  模型计算与MD模拟得到的不同应变率下含He泡铝样品的拉伸应力和He泡半径随时间的变化,及动态拉伸强度
图10  不同应变率下损伤模型中的黏性系数
1 Antoun T, Curran D R, Razorenov S V, et al. Spall Fracture [M]. New York: Springer, 2003: 1
2 Curran D R, Seaman L, Shockey D A. Dynamic failure of solids [J]. Phys. Rep., 1987, 147: 253
3 Johnson J N. Dynamic fracture and spallation in ductile solids [J]. J. Appl. Phys., 1981, 52: 2812
4 Andriot P, Chapron P, Lambert V, et al. Influence of melting on shocked free surface behavior using Doppler laser interferometry and X ray densitometry [A]. Shock Waves in Condensed Matter 1983 [M]. Amsterdam: Elsevier, 1984: 277
5 Luo S N, An Q, Germann T C, et al. Shock-induced spall in solid and liquid Cu at extreme strain rates [J]. J. Appl. Phys., 2009, 106: 013502
6 Smalyuk V A, Weber S V, Casey D T, et al. Hydrodynamic instability experiments with three-dimensional modulations at the national ignition facility [J]. High Power Laser Sci. Eng., 2015, 3: 1
7 Orth C D. Spallation as a dominant source of pusher-fuel and hot-spot mix in inertial confinement fusion capsules [J]. Phys. Plasmas, 2016, 23: 343
8 Tsakiris N, Anoop K K, Ausanio G, et al. Ultrashort laser ablation of bulk copper targets: Dynamics and size distribution of the generated nanoparticles [J]. J. Appl. Phys., 2014, 115: 243301
9 Oboňa J V, Ocelík V, Rao J C, et al. Modification of cu surface with picosecond laser pulses [J]. Appl. Surf. Sci., 2014, 303: 118
10 Shugaev M V, Shih C Y, Karim E T, et al. Generation of nanocrystalline surface layer in short pulse laser processing of metal targets under conditions of spatial confinement by solid or liquid overlayer [J]. Appl. Surf. Sci., 2017, 417: 54
11 Kanel G I, Savinykh A S, Garkushin G V, et al. Dynamic strength of tin and lead melts [J]. JETP Lett., 2015, 102: 548
12 de Rességuier T, Signor L, Dragon A, et al. Dynamic fragmentation of laser shock-melted tin: Experiment and modelling [J]. Int. J. Fract., 2010, 163: 109
13 de Rességuier T, Signor L, Dragon A, et al. Experimental investigation of liquid spall in laser shock-loaded tin [J]. J. Appl. Phys., 2007, 101: 013506
14 Signor L, de Rességuier T, Dragon A, et al. Investigation of fragments size resulting from dynamic fragmentation in melted state of laser shock-loaded tin [J]. Int. J. Impact Eng., 2010, 37: 887
15 Chen Y T, Hong R K, Chen H Y, et al. An improved Asay window technique for investigating the micro-spall of an explosively-driven tin [J]. Rev. Sci. Instrum., 2017, 88: 013904
16 Vogan W S, Anderson W W, Grover M, et al. Piezoelectric characterization of ejecta from shocked tin surfaces [J]. J. Appl. Phys., 2005, 98: 113508
17 Zaretsky E B. Experimental determination of the dynamic tensile strength of liquid Sn, Pb, and Zn [J]. J. Appl. Phys., 2016, 120: 025902
18 Zaretsky E B, Kanel G I. Response of copper to shock-wave loading at temperatures up to the melting point [J]. J. Appl. Phys., 2013, 114: 083511
19 Razorenov S V, Savinykh A S, Zaretsky E B. Elastic-plastic deformation and fracture of shock-compressed single-crystal and polycrystalline copper near melting [J]. Tech. Phys., 2013, 58: 1437
20 Kanel G I, Razorenov S V, Bogatch A, et al. Spall fracture properties of aluminum and magnesium at high temperatures [J]. J. Appl. Phys., 1996, 79: 8310
21 Garkushin G V, Kanel G I, Savinykh A S, et al. Influence of impurities on the resistance to spall fracture of aluminum near the melting temperature [J]. Int. J. Fract., 2016, 197: 185
22 Kanel G I, Razorenov S V, Baumung K, et al. Dynamic yield and tensile strength of aluminum single crystals at temperatures up to the melting point [J]. J. Appl. Phys., 2001, 90: 136
23 Xiang M Z, Hu H B, Chen J, et al. Molecular dynamics simulations of micro-spallation of single crystal lead [J]. Modell. Simul. Mater. Sci. Eng., 2013, 21: 055005
24 Shao J L, Wang P, He A M, et al. Spall strength of aluminium single crystals under high strain rates: molecular dynamics study [J]. J. Appl. Phys., 2013, 114: 173501
25 Mayer A E, Mayer P N. Strain rate dependence of spall strength for solid and molten lead and tin [J]. Int. J. Fract., 2020, 222: 171
26 Mayer A E, Mayer P N. Evolution of pore ensemble in solid and molten aluminum under dynamic tensile fracture: Molecular dynamics simulations and mechanical models [J]. Int. J. Mech. Sci., 2019, 157-158: 816
27 Mayer P N, Mayer A E. Evolution of foamed aluminum melt at high rate tension: A mechanical model based on atomistic simulations [J]. J. Appl. Phys., 2018, 124: 035901
28 Ullmaier H. Radiation damage in metallic materials [J]. MRS Bull., 1997, 22: 14
29 Trinkaus H, Singh B N. Helium accumulation in metals during irradiation—Where do we stand? [J]. J. Nucl. Mater., 2003, 323: 229
30 Hou P F, Wang X H, Liu Y X, et al. A neutron irradiation-induced displacement damage of indium vacancies in α-In2Se3 nanoflakes [J]. Phys. Chem. Chem. Phys., 2020, 22: 15799
31 Xie H X, Gao N, Xu K, et al. A new loop-punching mechanism for helium bubble growth in tungsten [J]. Acta Mater., 2017, 141: 10
32 Schwartz A J, Wall M A, Zocco T G, et al. Characterization and modelling of helium bubbles in self-irradiated plutonium alloys [J]. Philos. Mag., 2005, 85: 479
33 Li Q, Parish C M, Powers K A, et al. Helium solubility and bubble formation in a nanostructured ferritic alloy [J]. J. Nucl. Mater., 2014, 445: 165
34 Chung B W, Thompson S R, Lema K E, et al. Evolving density and static mechanical properties in plutonium from self-irradiation [J]. J. Nucl. Mater., 2009, 385: 91
35 Schäublin R, Chiu Y L. Effect of helium on irradiation-induced hardening of iron: A simulation point of view [J]. J. Nucl. Mater., 2007, 362: 152
36 Osetsky Y N, Stoller R E. Atomic-scale mechanisms of helium bubble hardening in iron [J]. J. Nucl. Mater., 2015, 465: 448
37 Ding M S, Tian L, Han W Z, et al. Nanobubble fragmentation and bubble-free-channel shear localization in helium-irradiated submicron-sized copper [J]. Phys. Rev. Lett., 2016, 117: 215501
38 Ding M S, Du J P, Wan L, et al. Radiation-induced helium nanobubbles enhance ductility in submicron-sized single-crystalline copper [J]. Nano Lett., 2016, 16: 4118
39 Li S H, Zhang J, Han W Z. Helium bubbles enhance strength and ductility in small-volume Al-4Cu alloys [J]. Scr. Mater., 2019, 165: 112
40 Glam B, Eliezer S, Moreno D, et al. Dynamic fracture and spall in aluminum with helium bubbles [J]. Int. J. Fract., 2010, 163: 217
41 Glam B, Strauss M, Eliezer S, et al. Shock compression and spall formation in aluminum containing helium bubbles at room temperature and near the melting temperature: Experiments and simulations [J]. Int. J. Impact Eng., 2014, 65: 1
42 Li Y H, Chang J Z, Zhang L, et al. Experimental investigation of spall damage in pure aluminum with helium bubbles [J]. Chin. J. High Press. Phys., 2021, 35: 054101
42 李英华, 常敬臻, 张 林 等. 氦泡铝的层裂特性实验研究 [J]. 高压物理学报, 2021, 35: 054101
43 Xiao D W, He L F, Zhou P, et al. Spall in aluminium with helium bubbles under laser shock loading [J]. Chin. Phys. Lett., 2017, 34: 056201
44 Qi M L, He H L, Wang Y G, et al. Dynamic analysis of helium bubble growth in the pure al under high strain-rate loading [J]. Chin. J. High Press. Phys., 2007, 21: 145
44 祁美兰, 贺红亮, 王永刚 等. 高应变率拉伸下纯铝中氦泡长大的动力学研究 [J]. 高压物理学报, 2007, 21: 145
45 Zhang F G, Hu X M, Wang P, et al. Numerical analysis of spall response in aluminum with helium bubbles [J]. Expl. Shock Waves, 2017, 37: 699
45 张凤国, 胡晓棉, 王 裴 等. 含氦泡金属铝层裂响应的数值分析 [J]. 爆炸与冲击, 2017, 37: 699
46 Kubota A, Reisman D B, Wolfer W G. Dynamic strength of metals in shock deformation [J]. Appl. Phys. Lett., 2006, 88: 241924
47 Wang H Y, Li X S, Zhu W J, et al. Atomistic modelling of the plastic deformation of helium bubbles and voids in aluminium under shock compression [J]. Radiat. Eff. Defects Solids, 2014, 169: 109
48 Shao J L, Wang P, He A M, et al. Influence of voids or He bubbles on the spall damage in single crystal Al [J]. Modell. Simul. Mater. Sci. Eng., 2014, 22: 025012
49 Zhou T T, He A M, Wang P, et al. Spall damage in single crystal Al with helium bubbles under decaying shock loading via molecular dynamics study [J]. Comput. Mater. Sci., 2019, 162: 255
50 Zhou T T, He A M, Wang P. Dynamic evolution of He bubble and its effects on void nucleation-growth and thermomechanical properties in the spallation of aluminum [J]. J. Nucl. Mater., 2020, 542: 152496
51 Zhou T T, Zhao F Q, Zhou H Q, et al. Atomistic simulation and continuum modeling of the dynamic tensile fracture and damage evolution of solid single crystalline al with He bubble [J]. Int. J. Mech. Sci., 2022, 234: 107681
52 Zope R R, Mishin Y. Interatomic potentials for atomistic simulations of the Ti-Al system [J]. Phys. Rev., 2003, 68B: 024102
53 Young D A, McMahan A K, Ross M. Equation of state and melting curve of helium to very high pressure [J]. Phys. Rev., 1981, 24B: 5119
54 Plimpton S. Fast parallel algorithms for short-range molecular dynamics [J]. J. Comput. Phys., 1995, 117: 1
55 Stukowski A. Visualization and analysis of atomistic simulation data with OVITO—The open visualization tool [J]. Modell. Simul. Mater. Sci. Eng., 2010, 18: 015012
56 Reif F. Fundamentals of Statistical and Thermal Physics [M]. New York: McGraw-Hill, 1965: 1
57 Ibach H. Physics of Surfaces and Interfaces [M]. Berlin: Springer, 2006: 1
58 Agranat M B, Anisimov S I, Ashitkov S I, et al. Strength properties of an aluminum melt at extremely high tension rates under the action of femtosecond laser pulses [J]. JETP Lett., 2010, 91: 471
59 Kuksin A, Norman G, Stegailov V, et al. Dynamic fracture kinetics, influence of temperature and microstructure in the atomistic model of aluminum [J]. Int. J. Fract., 2010, 162: 127
60 Ashitkov S I, Agranat M B, Kanel G I, et al. Behavior of aluminum near an ultimate theoretical strength in experiments with femtosecond laser pulses [J]. JETP Lett., 2010, 92: 516
61 Ashitkov S I, Komarov P S, Ovchinnikov A V, et al. Strength of liquid tin at extremely high strain rates under a femtosecond laser action [J]. JETP Lett., 2016, 103: 544
62 Kanel G I. Spall fracture: Methodological aspects, mechanisms and governing factors [J]. Int. J. Fract., 2010, 163: 173
63 Grady D E. Strain-rate dependence of the effective viscosity under steady-wave shock compression [J]. Appl. Phys. Lett., 1981, 38: 825
64 Chivapornthip P, Bohez E L J. Dependence of bulk viscosity of polypropylene on strain, strain rate, and melt temperature [J]. Polym. Eng. Sci., 2017, 57: 830
[1] 柏智文, 丁志刚, 周爱龙, 侯怀宇, 刘伟, 刘峰. α-Fe单晶拉伸变形热-动力学的分子动力学模拟[J]. 金属学报, 2024, 60(6): 848-856.
[2] 孟子凯, 孟智超, 高长源, 郭辉, 陈汉森, 陈刘涛, 徐东生, 杨锐. 不同条件下纳米晶 α-Zr蠕变行为的分子动力学模拟[J]. 金属学报, 2024, 60(5): 699-712.
[3] 白菊菊, 李健健, 付崇龙, 陈双建, 李志军, 林俊. GH3535合金焊缝高温氦离子辐照效应[J]. 金属学报, 2024, 60(3): 299-310.
[4] 任军强, 邵珊, 王启, 卢学峰, 薛红涛, 汤富领. 含氧纳米多晶 α-Ti拉伸力学性能与变形机制的分子动力学模拟[J]. 金属学报, 2024, 60(2): 220-230.
[5] 陈名毅, 胡俊伟, 余耀辰, 牛海洋. 机器学习分子动力学辅助材料凝固形核研究进展[J]. 金属学报, 2024, 60(10): 1329-1344.
[6] 刘仕, 黄佳玮, 武静. 机器学习势在铁电材料研究中的应用[J]. 金属学报, 2024, 60(10): 1312-1328.
[7] 李志尚, 赵龙, 宗洪祥, 丁向东. 机器学习型分子力场在金属材料相变与变形领域的研究进展[J]. 金属学报, 2024, 60(10): 1388-1404.
[8] 吴欣强, 戎利建, 谭季波, 陈胜虎, 胡小锋, 张洋鹏, 张兹瑜. Pb-Bi腐蚀Si增强型铁素体/马氏体钢和奥氏体不锈钢的研究进展[J]. 金属学报, 2023, 59(4): 502-512.
[9] 李海勇, 李赛毅. Al <111>对称倾斜晶界迁移行为温度相关性的分子动力学研究[J]. 金属学报, 2022, 58(2): 250-256.
[10] 梁晋洁, 高宁, 李玉红. 体心立方Fe中微裂纹与间隙型位错环相互作用的分子动力学模拟[J]. 金属学报, 2020, 56(9): 1286-1294.
[11] 李美霖, 李赛毅. 金属Mg二阶锥面<c+a>刃位错运动特性的分子动力学模拟[J]. 金属学报, 2020, 56(5): 795-800.
[12] 李源才, 江五贵, 周宇. 纳米孔洞对单晶/多晶Ni复合体拉伸性能的影响[J]. 金属学报, 2020, 56(5): 776-784.
[13] 李源才, 江五贵, 周宇. 温度对碳纳米管增强纳米蜂窝镍力学性能的影响[J]. 金属学报, 2020, 56(5): 785-794.
[14] 马小强,杨坤杰,徐喻琼,杜晓超,周建军,肖仁政. 金属Nb级联碰撞的分子动力学模拟[J]. 金属学报, 2020, 56(2): 249-256.
[15] 周霞,刘霄霞. 石墨烯纳米片增强镁基复合材料力学性能及增强机制[J]. 金属学报, 2020, 56(2): 240-248.