|
|
含He泡液态金属铝的动态拉伸断裂机制与损伤模型 |
周婷婷( ), 赵福祺, 周洪强, 张凤国, 殷建伟 |
北京应用物理与计算数学研究所 北京 100094 |
|
Mechanism and Damage Model for the Dynamic Tensile Fracture of Liquid Aluminum Containing He Bubbles |
ZHOU Tingting( ), ZHAO Fuqi, ZHOU Hongqiang, ZHANG Fengguo, YIN Jianwei |
Institute of Applied Physics and Computational Mathematics, Beijing 100094, China |
引用本文:
周婷婷, 赵福祺, 周洪强, 张凤国, 殷建伟. 含He泡液态金属铝的动态拉伸断裂机制与损伤模型[J]. 金属学报, 2025, 61(4): 643-652.
Tingting ZHOU,
Fuqi ZHAO,
Hongqiang ZHOU,
Fengguo ZHANG,
Jianwei YIN.
Mechanism and Damage Model for the Dynamic Tensile Fracture of Liquid Aluminum Containing He Bubbles[J]. Acta Metall Sin, 2025, 61(4): 643-652.
1 |
Antoun T, Curran D R, Razorenov S V, et al. Spall Fracture [M]. New York: Springer, 2003: 1
|
2 |
Curran D R, Seaman L, Shockey D A. Dynamic failure of solids [J]. Phys. Rep., 1987, 147: 253
|
3 |
Johnson J N. Dynamic fracture and spallation in ductile solids [J]. J. Appl. Phys., 1981, 52: 2812
|
4 |
Andriot P, Chapron P, Lambert V, et al. Influence of melting on shocked free surface behavior using Doppler laser interferometry and X ray densitometry [A]. Shock Waves in Condensed Matter 1983 [M]. Amsterdam: Elsevier, 1984: 277
|
5 |
Luo S N, An Q, Germann T C, et al. Shock-induced spall in solid and liquid Cu at extreme strain rates [J]. J. Appl. Phys., 2009, 106: 013502
|
6 |
Smalyuk V A, Weber S V, Casey D T, et al. Hydrodynamic instability experiments with three-dimensional modulations at the national ignition facility [J]. High Power Laser Sci. Eng., 2015, 3: 1
|
7 |
Orth C D. Spallation as a dominant source of pusher-fuel and hot-spot mix in inertial confinement fusion capsules [J]. Phys. Plasmas, 2016, 23: 343
|
8 |
Tsakiris N, Anoop K K, Ausanio G, et al. Ultrashort laser ablation of bulk copper targets: Dynamics and size distribution of the generated nanoparticles [J]. J. Appl. Phys., 2014, 115: 243301
|
9 |
Oboňa J V, Ocelík V, Rao J C, et al. Modification of cu surface with picosecond laser pulses [J]. Appl. Surf. Sci., 2014, 303: 118
|
10 |
Shugaev M V, Shih C Y, Karim E T, et al. Generation of nanocrystalline surface layer in short pulse laser processing of metal targets under conditions of spatial confinement by solid or liquid overlayer [J]. Appl. Surf. Sci., 2017, 417: 54
|
11 |
Kanel G I, Savinykh A S, Garkushin G V, et al. Dynamic strength of tin and lead melts [J]. JETP Lett., 2015, 102: 548
|
12 |
de Rességuier T, Signor L, Dragon A, et al. Dynamic fragmentation of laser shock-melted tin: Experiment and modelling [J]. Int. J. Fract., 2010, 163: 109
|
13 |
de Rességuier T, Signor L, Dragon A, et al. Experimental investigation of liquid spall in laser shock-loaded tin [J]. J. Appl. Phys., 2007, 101: 013506
|
14 |
Signor L, de Rességuier T, Dragon A, et al. Investigation of fragments size resulting from dynamic fragmentation in melted state of laser shock-loaded tin [J]. Int. J. Impact Eng., 2010, 37: 887
|
15 |
Chen Y T, Hong R K, Chen H Y, et al. An improved Asay window technique for investigating the micro-spall of an explosively-driven tin [J]. Rev. Sci. Instrum., 2017, 88: 013904
|
16 |
Vogan W S, Anderson W W, Grover M, et al. Piezoelectric characterization of ejecta from shocked tin surfaces [J]. J. Appl. Phys., 2005, 98: 113508
|
17 |
Zaretsky E B. Experimental determination of the dynamic tensile strength of liquid Sn, Pb, and Zn [J]. J. Appl. Phys., 2016, 120: 025902
|
18 |
Zaretsky E B, Kanel G I. Response of copper to shock-wave loading at temperatures up to the melting point [J]. J. Appl. Phys., 2013, 114: 083511
|
19 |
Razorenov S V, Savinykh A S, Zaretsky E B. Elastic-plastic deformation and fracture of shock-compressed single-crystal and polycrystalline copper near melting [J]. Tech. Phys., 2013, 58: 1437
|
20 |
Kanel G I, Razorenov S V, Bogatch A, et al. Spall fracture properties of aluminum and magnesium at high temperatures [J]. J. Appl. Phys., 1996, 79: 8310
|
21 |
Garkushin G V, Kanel G I, Savinykh A S, et al. Influence of impurities on the resistance to spall fracture of aluminum near the melting temperature [J]. Int. J. Fract., 2016, 197: 185
|
22 |
Kanel G I, Razorenov S V, Baumung K, et al. Dynamic yield and tensile strength of aluminum single crystals at temperatures up to the melting point [J]. J. Appl. Phys., 2001, 90: 136
|
23 |
Xiang M Z, Hu H B, Chen J, et al. Molecular dynamics simulations of micro-spallation of single crystal lead [J]. Modell. Simul. Mater. Sci. Eng., 2013, 21: 055005
|
24 |
Shao J L, Wang P, He A M, et al. Spall strength of aluminium single crystals under high strain rates: molecular dynamics study [J]. J. Appl. Phys., 2013, 114: 173501
|
25 |
Mayer A E, Mayer P N. Strain rate dependence of spall strength for solid and molten lead and tin [J]. Int. J. Fract., 2020, 222: 171
|
26 |
Mayer A E, Mayer P N. Evolution of pore ensemble in solid and molten aluminum under dynamic tensile fracture: Molecular dynamics simulations and mechanical models [J]. Int. J. Mech. Sci., 2019, 157-158: 816
|
27 |
Mayer P N, Mayer A E. Evolution of foamed aluminum melt at high rate tension: A mechanical model based on atomistic simulations [J]. J. Appl. Phys., 2018, 124: 035901
|
28 |
Ullmaier H. Radiation damage in metallic materials [J]. MRS Bull., 1997, 22: 14
|
29 |
Trinkaus H, Singh B N. Helium accumulation in metals during irradiation—Where do we stand? [J]. J. Nucl. Mater., 2003, 323: 229
|
30 |
Hou P F, Wang X H, Liu Y X, et al. A neutron irradiation-induced displacement damage of indium vacancies in α-In2Se3 nanoflakes [J]. Phys. Chem. Chem. Phys., 2020, 22: 15799
|
31 |
Xie H X, Gao N, Xu K, et al. A new loop-punching mechanism for helium bubble growth in tungsten [J]. Acta Mater., 2017, 141: 10
|
32 |
Schwartz A J, Wall M A, Zocco T G, et al. Characterization and modelling of helium bubbles in self-irradiated plutonium alloys [J]. Philos. Mag., 2005, 85: 479
|
33 |
Li Q, Parish C M, Powers K A, et al. Helium solubility and bubble formation in a nanostructured ferritic alloy [J]. J. Nucl. Mater., 2014, 445: 165
|
34 |
Chung B W, Thompson S R, Lema K E, et al. Evolving density and static mechanical properties in plutonium from self-irradiation [J]. J. Nucl. Mater., 2009, 385: 91
|
35 |
Schäublin R, Chiu Y L. Effect of helium on irradiation-induced hardening of iron: A simulation point of view [J]. J. Nucl. Mater., 2007, 362: 152
|
36 |
Osetsky Y N, Stoller R E. Atomic-scale mechanisms of helium bubble hardening in iron [J]. J. Nucl. Mater., 2015, 465: 448
|
37 |
Ding M S, Tian L, Han W Z, et al. Nanobubble fragmentation and bubble-free-channel shear localization in helium-irradiated submicron-sized copper [J]. Phys. Rev. Lett., 2016, 117: 215501
|
38 |
Ding M S, Du J P, Wan L, et al. Radiation-induced helium nanobubbles enhance ductility in submicron-sized single-crystalline copper [J]. Nano Lett., 2016, 16: 4118
|
39 |
Li S H, Zhang J, Han W Z. Helium bubbles enhance strength and ductility in small-volume Al-4Cu alloys [J]. Scr. Mater., 2019, 165: 112
|
40 |
Glam B, Eliezer S, Moreno D, et al. Dynamic fracture and spall in aluminum with helium bubbles [J]. Int. J. Fract., 2010, 163: 217
|
41 |
Glam B, Strauss M, Eliezer S, et al. Shock compression and spall formation in aluminum containing helium bubbles at room temperature and near the melting temperature: Experiments and simulations [J]. Int. J. Impact Eng., 2014, 65: 1
|
42 |
Li Y H, Chang J Z, Zhang L, et al. Experimental investigation of spall damage in pure aluminum with helium bubbles [J]. Chin. J. High Press. Phys., 2021, 35: 054101
|
42 |
李英华, 常敬臻, 张 林 等. 氦泡铝的层裂特性实验研究 [J]. 高压物理学报, 2021, 35: 054101
|
43 |
Xiao D W, He L F, Zhou P, et al. Spall in aluminium with helium bubbles under laser shock loading [J]. Chin. Phys. Lett., 2017, 34: 056201
|
44 |
Qi M L, He H L, Wang Y G, et al. Dynamic analysis of helium bubble growth in the pure al under high strain-rate loading [J]. Chin. J. High Press. Phys., 2007, 21: 145
|
44 |
祁美兰, 贺红亮, 王永刚 等. 高应变率拉伸下纯铝中氦泡长大的动力学研究 [J]. 高压物理学报, 2007, 21: 145
|
45 |
Zhang F G, Hu X M, Wang P, et al. Numerical analysis of spall response in aluminum with helium bubbles [J]. Expl. Shock Waves, 2017, 37: 699
|
45 |
张凤国, 胡晓棉, 王 裴 等. 含氦泡金属铝层裂响应的数值分析 [J]. 爆炸与冲击, 2017, 37: 699
|
46 |
Kubota A, Reisman D B, Wolfer W G. Dynamic strength of metals in shock deformation [J]. Appl. Phys. Lett., 2006, 88: 241924
|
47 |
Wang H Y, Li X S, Zhu W J, et al. Atomistic modelling of the plastic deformation of helium bubbles and voids in aluminium under shock compression [J]. Radiat. Eff. Defects Solids, 2014, 169: 109
|
48 |
Shao J L, Wang P, He A M, et al. Influence of voids or He bubbles on the spall damage in single crystal Al [J]. Modell. Simul. Mater. Sci. Eng., 2014, 22: 025012
|
49 |
Zhou T T, He A M, Wang P, et al. Spall damage in single crystal Al with helium bubbles under decaying shock loading via molecular dynamics study [J]. Comput. Mater. Sci., 2019, 162: 255
|
50 |
Zhou T T, He A M, Wang P. Dynamic evolution of He bubble and its effects on void nucleation-growth and thermomechanical properties in the spallation of aluminum [J]. J. Nucl. Mater., 2020, 542: 152496
|
51 |
Zhou T T, Zhao F Q, Zhou H Q, et al. Atomistic simulation and continuum modeling of the dynamic tensile fracture and damage evolution of solid single crystalline al with He bubble [J]. Int. J. Mech. Sci., 2022, 234: 107681
|
52 |
Zope R R, Mishin Y. Interatomic potentials for atomistic simulations of the Ti-Al system [J]. Phys. Rev., 2003, 68B: 024102
|
53 |
Young D A, McMahan A K, Ross M. Equation of state and melting curve of helium to very high pressure [J]. Phys. Rev., 1981, 24B: 5119
|
54 |
Plimpton S. Fast parallel algorithms for short-range molecular dynamics [J]. J. Comput. Phys., 1995, 117: 1
|
55 |
Stukowski A. Visualization and analysis of atomistic simulation data with OVITO—The open visualization tool [J]. Modell. Simul. Mater. Sci. Eng., 2010, 18: 015012
|
56 |
Reif F. Fundamentals of Statistical and Thermal Physics [M]. New York: McGraw-Hill, 1965: 1
|
57 |
Ibach H. Physics of Surfaces and Interfaces [M]. Berlin: Springer, 2006: 1
|
58 |
Agranat M B, Anisimov S I, Ashitkov S I, et al. Strength properties of an aluminum melt at extremely high tension rates under the action of femtosecond laser pulses [J]. JETP Lett., 2010, 91: 471
|
59 |
Kuksin A, Norman G, Stegailov V, et al. Dynamic fracture kinetics, influence of temperature and microstructure in the atomistic model of aluminum [J]. Int. J. Fract., 2010, 162: 127
|
60 |
Ashitkov S I, Agranat M B, Kanel G I, et al. Behavior of aluminum near an ultimate theoretical strength in experiments with femtosecond laser pulses [J]. JETP Lett., 2010, 92: 516
|
61 |
Ashitkov S I, Komarov P S, Ovchinnikov A V, et al. Strength of liquid tin at extremely high strain rates under a femtosecond laser action [J]. JETP Lett., 2016, 103: 544
|
62 |
Kanel G I. Spall fracture: Methodological aspects, mechanisms and governing factors [J]. Int. J. Fract., 2010, 163: 173
|
63 |
Grady D E. Strain-rate dependence of the effective viscosity under steady-wave shock compression [J]. Appl. Phys. Lett., 1981, 38: 825
|
64 |
Chivapornthip P, Bohez E L J. Dependence of bulk viscosity of polypropylene on strain, strain rate, and melt temperature [J]. Polym. Eng. Sci., 2017, 57: 830
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|