Please wait a minute...
金属学报  2025, Vol. 61 Issue (4): 632-642    DOI: 10.11900/0412.1961.2023.00225
  研究论文 本期目录 | 过刊浏览 |
固溶态Mg-10Gd-6Y-1.5Zn-0.5Zr合金热加工图构建及微观组织演变
包成利1, 李豪1, 胡励1(), 周涛1, 唐明2, 何曲波3, 刘相果4
1 重庆理工大学 材料科学与工程学院 重庆 400054
2 哈尔滨工程大学 机电工程学院 哈尔滨 150001
3 重庆材料研究院有限公司 重庆 400707
4 重庆中镭科技有限公司 重庆 400800
Construction of Hot Processing Map of Solutionized Mg-10Gd-6Y-1.5Zn-0.5Zr Alloy and Microstructure Evolution
BAO Chengli1, LI Hao1, HU Li1(), ZHOU Tao1, TANG Ming2, HE Qubo3, LIU Xiangguo4
1 College of Materials Science and Engineering, Chongqing University of Technology, Chongqing 400054, China
2 College of Mechanical and Electrical Engineering, Harbin Engineering University, Harbin 150001, China
3 Chongqing Material Research Institute Co. Ltd., Chongqing 400707, China
4 Chongqing Zhonglei Tech. Co. Ltd., Chongqing 400800, China
引用本文:

包成利, 李豪, 胡励, 周涛, 唐明, 何曲波, 刘相果. 固溶态Mg-10Gd-6Y-1.5Zn-0.5Zr合金热加工图构建及微观组织演变[J]. 金属学报, 2025, 61(4): 632-642.
Chengli BAO, Hao LI, Li HU, Tao ZHOU, Ming TANG, Qubo HE, Xiangguo LIU. Construction of Hot Processing Map of Solutionized Mg-10Gd-6Y-1.5Zn-0.5Zr Alloy and Microstructure Evolution[J]. Acta Metall Sin, 2025, 61(4): 632-642.

全文: PDF(3986 KB)   HTML
摘要: 

含长周期堆垛有序结构的Mg-RE-Zn合金的热变形行为及微观组织特征高度复杂。为拓展该类合金的工程应用,本研究在变形温度为350~500 ℃、应变速率为0.001~1 s-1条件下对固溶态Mg-10Gd-6Y-1.5Zn-0.5Zr合金进行热压缩实验,以研究该合金的热变形行为,构建其热加工图并确定热加工窗口;结合微观组织表征,研究该合金热变形过程中动态再结晶和长周期堆垛有序结构(LPSO)相扭折变形的相互作用。结果表明:该合金的流变应力随温度的升高和应变速率的降低而降低。在较高应变速率下,流变应力对温度的敏感性更高。在较低的温度下变形时,流变应力对应变速率的敏感性更高。基于Murty理论构建热加工图,发现在应变为0.7时存在2个最佳加工区域,位于变形温度400~450 ℃、应变速率0.001~0.027 s-1和变形温度450~487 ℃、应变速率0.12~1 s-1范围内。通过对所构建热加工图不同区域对应样品的微观组织表征(即再结晶晶粒的体积分数分析),验证了热加工图的准确性。通过统计不同温度下流变曲线的软化应力(峰值应力-稳态应力)、再结晶晶粒体积分数和层状LPSO相扭折角,发现层状LPSO相的扭折变形程度随变形温度的升高而降低,再结晶晶粒体积分数随变形温度升高而升高,且层状LPSO相的扭折变形对动态再结晶具有抑制作用,流变曲线的软化应力受动态再结晶和层状LPSO相扭折变形的共同影响。

关键词 Mg-RE-Zn合金热变形行为热加工图动态再结晶LPSO相扭折变形    
Abstract

Mg-rare earth (RE)-Zn alloys with long period stacking ordered (LPSO) phases have received extensive attention in the past few years because of their excellent mechanical properties compared with conventional wrought Mg alloys. However, the corresponding hot deformation behaviors and microstructure characteristics of Mg-RE-Zn alloys are rather complex. An in-depth investigation into this would broaden their engineering applications. In this work, hot compression experiments of solutionized Mg-10Gd-6Y-1.5Zn-0.5Zr alloys at 350-500 oC and a strain rate of 0.001-1 s-1 have been conducted to investigate the hot deformation behavior, construct the hot processing map, and determine the hot working window. Afterward, the interaction between dynamic recrystallization (DRX) and kink deformation of LPSO phase during hot deformation has been studied through microstructure characterization. Results show that the flow stress decreases with the increase of temperature and the decrease of strain rate. When deformed at a relatively high strain rate, the sensitivity of flow stress to temperature is evident. When deformed at a relatively low temperature, the sensitivity of flow stress to strain rate is prominent. The corresponding hot processing map was constructed based on Murty criterion. Under a strain of 0.7, two optimal processing areas are found at 400-450 oC (0.001-0.027 s-1) and 450-487 oC (0.12-1 s-1). The accuracy of the constructed hot processing map has been verified by using microstructure characterization (via volume fraction analysis of recrystallized grains) of deformed samples, which correspond to different regions in the constructed hot processing map. By analyzing the softening stress of the flow curve at different temperatures (peak stress minus state stress), DRX volume fraction and kinking angle of the lamellar LPSO phase, the degree of kink deformation of the lamellar LPSO phase decreases with the increase of deformation temperature. In addition, the DRX volume fraction increases with the increase of deformation temperature. Moreover, the kink deformation of the lamellar LPSO phase has an inhibitory effect on DRX and the softening stress of the flow curve could be jointly affected by DRX and the kink deformation of the lamellar LPSO phase.

Key wordsMg-RE-Zn alloy    hot deformation behavior    hot processing map    dynamic recrystallization    kink deformation of LPSO phase
收稿日期: 2023-05-18     
ZTFLH:  TG146.22  
基金资助:中国博士后科学基金项目(2021M703592);重庆市博士后研究(一等)项目(2021XM1022);重庆市教育委员会科学技术研究项目(KJQN202101141);重庆市研究生创新项目(CYS22640);重庆理工大学本科生科研立项项目(KLA21024)
通讯作者: 胡 励,huli@cqut.edu.cn,主要从事镁合金板材特种塑性加工及变形行为研究
Corresponding author: HU Li, associate professor, Tel: 17358428920, E-mail: huli@cqut.edu.cn
作者简介: 包成利,女,1997年生,硕士生
图1  等温热压缩流程示意图
图2  固溶态Mg-10Gd-6Y-1.5Zn-0.5Zr合金的FESEM像和EDS元素面分布图
PointAtomic fraction / %MorphologyPhase
MgGdYZnZr
I96.252.101.230.360.06MatrixMg
II87.023.862.866.26-BlockyLPSO phase
III75.748.3915.470.40-CuboidRE-rich phase
表1  图2a中固溶态Mg-10Gd-6Y-1.5Zn-0.5Zr合金的EDS结果
图3  固溶态Mg-10Gd-6Y-1.5Zn-0.5Zr合金的OM像和晶粒尺寸分布图
图4  不同变形温度下固溶态Mg-10Gd-6Y-1.5Zn-0.5Zr合金的真应力-真应变曲线
图5  固溶态Mg-10Gd-6Y-1.5Zn-0.5Zr合金峰值应力敏感性分析
图6  固溶态Mg-10Gd-6Y-1.5Zn-0.5Zr合金不同应变下的三维功率耗散系数图
图7  固溶态Mg-10Gd-6Y-1.5Zn-0.5Zr合金在不同应变条件下的热加工图
图8  不同变形条件下(图7d中A~E) Mg-10Gd-6Y-1.5Zn-0.5Zr合金变形样品的EBSD像和再结晶体积分数
图9  固定应变速率(0.01 s-1)不同温度下Mg-10Gd-6Y-1.5Zn-0.5Zr合金变形样品的OM像
图10  图9变形样品中层状LPSO相扭折角度和再结晶晶粒分数统计
1 Wang C, Ma A B, Liu H, et al. Research progress on heat resistance of magnesium-rare earth alloys reinforced by long period stacking ordered phase [J]. Mater. Rep., 2019, 33: 3298
1 王 策, 马爱斌, 刘 欢 等. LPSO相增强镁稀土合金耐热性能研究进展 [J]. 材料导报, 2019, 33: 3298
2 Zhang R Q, Wang J F, Huang S, et al. Substitution of Ni for Zn on microstructure and mechanical properties of Mg-Gd-Y-Zn-Mn alloy [J]. J. Magnes. Alloy., 2017, 5: 355
3 Liu H, Bai J, Yan K, et al. Comparative studies on evolution behaviors of 14H LPSO precipitates in as-cast and as-extruded Mg-Y-Zn alloys during annealing at 773 K [J]. Mater. Des., 2016, 93: 9
4 Liao H X, Kim J, Lv J B, et al. Microstructure and mechanical properties with various pre-treatment and Zn content in Mg-Gd-Y-Zn alloys [J]. J. Alloys Compd., 2020, 831: 154873
5 Li X, Mao P L, Wang F, et al. A literature review on study of long-period stacking ordered phase and its effect on magnesium alloys [J]. Mater. Rep., 2019, 33: 1182
5 李 响, 毛萍莉, 王 峰 等. 长周期有序堆垛相(LPSO)的研究现状及在镁合金中的作用 [J]. 材料导报, 2019, 33: 1182
6 Deng Y H. Research progress and development trend in Mg-RE alloys [J]. Chin. Rare Earths, 2009, 30(1): 76
6 邓永和. 稀土镁合金研究现状与发展趋势 [J]. 稀土, 2009, 30(1): 76
7 Xu D K, Han E H, Xu Y B. Effect of long-period stacking ordered phase on microstructure, mechanical property and corrosion resistance of Mg alloys: A review [J]. Prog. Nat. Sci. Mater. Int., 2016, 26: 117
8 Chen Z Y, Li Q A, Chen X Y, et al. Research status and application of Zn-containing magnesium alloys and influence of LPSO on alloy properties [J]. J. Chin. Soc. Rare Earths, 2021, 39: 860
8 陈籽佚, 李全安, 陈晓亚 等. 含锌镁合金的研究现状与应用及其LPSO相对合金性能的影响 [J]. 中国稀土学报, 2021, 39: 860
9 Xing Q Y, Meng L G, Yang S J, et al. Research progress of new magnesium-rare earth alloy [J]. Foundry, 2018, 67: 317
9 邢清源, 孟令刚, 杨守杰 等. 新型稀土镁合金的研究进展 [J]. 铸造, 2018, 67: 317
10 Ullmann M, Kittner K, Prahl U. Hot deformation and dynamic recrystallisation behaviour of twin-roll cast Mg-6.8Y-2.5Zn-0.4Zr magnesium alloy [J]. Materials, 2021, 14: 307
11 Esmaeilpour H, Zarei-Hanzaki A, Eftekhari N, et al. Strain induced transformation, dynamic recrystallization and texture evolution during hot compression of an extruded Mg-Gd-Y-Zn-Zr alloy [J]. Mater. Sci. Eng., 2020, A778: 139021
12 Bao C L, Zhou T, Shi L X, et al. Hot deformation behavior and constitutive analysis of as-extruded Mg-6Zn-5Ca-3Ce alloy fabricated by rapid solidification [J]. Metals, 2021, 11: 480
13 Nie Y J F, Zheng J, Han R, et al. Hot deformation behaviour and constitutive equation of Mg-9Gd-4Y-2Zn-0.5Zr alloy [J]. Materials, 2022, 15: 1779
14 Zhang L, Wu X Y, Zhang X F, et al. Constitutive model and recrystallization mechanism of Mg-8.7Gd-4.18Y-0.42Zr magnesium alloy during hot deformation [J]. Materials, 2022, 15: 3914
15 Xia X S, Chen Q, Li J P, et al. Characterization of hot deformation behavior of as-extruded Mg-Gd-Y-Zn-Zr alloy [J]. J. Alloys Compd., 2014, 610: 203
16 Chen B, Zhou W M, Li S, et al. Hot compression deformation behavior and processing maps of Mg-Gd-Y-Zr alloy [J]. J. Mater. Eng. Perform., 2013, 22: 2458
17 Xu W C, Jin X Z, Shan D B, et al. Study on the effect of solution treatment on hot deformation behavior and workability of Mg-7Gd-5Y-0.6Zn-0.8Zr magnesium alloy [J]. J. Alloys Compd., 2017, 720: 309
18 Xue T X, Yu J B, Wang Z, et al. Investigation on hot workability of Fe-6.5Si-2Cr-12Ni high-silicon steel based on processing map and microstructural evolution [J]. Metall. Mater. Trans., 2023, 54A: 2227
19 Li B, Teng B G, Xu W C. Hot deformation characterization of homogenized Mg-Gd-Y-Zn-Zr alloy during isothermal compression [J]. JOM, 2019, 71: 4059
20 Liu H N, Li Y J, Zhang K, et al. Microstructure, hot deformation behavior, and textural evolution of Mg-3wt%Zn-1wt%Ca-0.5wt% Sr alloy [J]. J. Mater. Sci., 2020, 55: 12434
21 Hu L, Lang M A, Shi L X, et al. Study on hot deformation behavior of homogenized Mg-8.5Gd-4.5Y-0.8Zn-0.4Zr alloy using a combination of strain-compensated Arrhenius constitutive model and finite element simulation method [J]. J. Magnes. Alloy., 2023, 11: 1016
22 Li K, Chen Z Y, Chen T, et al. Hot deformation and dynamic recrystallization behaviors of Mg-Gd-Zn alloy with LPSO phases [J]. J. Alloys Compd., 2019, 792: 894
23 Jeong H T, Kim W J. The hot compressive deformation behavior of cast Mg-Gd-Y-Zn-Zr alloys with and without LPSO phase in their initial microstructures [J]. J. Magnes. Alloy., 2022, 10: 2901
24 Murty S V S N, Rao B N. On the development of instability criteria during hotworking with reference to IN 718 [J]. Mater. Sci. Eng., 1998, A254: 76
25 Prasad Y V R K, Gegel H L, Doraivelu S M, et al. Modeling of dynamic material behavior in hot deformation: forging of Ti-6242 [J]. Metall. Trans., 1984, 15A: 1883
26 Prasad Y V R K, Seshacharyulu T. Processing maps for hot working of titanium alloys [J]. Mater. Sci. Eng., 1998, A243: 82
27 Srinivasan N, Prasad Y V R K, Rao P R. Hot deformation behaviour of Mg-3Al alloy—A study using processing map [J]. Mater. Sci. Eng., 2008, A476: 146
28 Wang L, Sabisch J, Lilleodden E T. Kink formation and concomitant twin nucleation in Mg-Y [J]. Scr. Mater., 2016, 111: 68
29 Liu C, Yang X H, Peng J C, et al. In-situ and ex-situ investigation of deformation behaviors of a dual-phase Mg-Ni-Y alloy [J]. Scr. Mater., 2023, 226: 115264
30 Zhou Y C, Luo Q, Jiang B, et al. Strength-ductility synergy in Mg98.3Y1.3Ni0.4 alloy processed by high temperature homogenization and rolling [J]. Scr. Mater., 2022, 208: 114345
[1] 周雯慧, 熊锦涛, 黄思程, 王鹏昊, 刘勇. AZ31镁合金双峰组织形成机制及其变形行为[J]. 金属学报, 2025, 61(3): 488-498.
[2] 刘光辉, 王卫国, Rohrer Gregory S, 陈松, 林燕, 童芳, 冯小铮, 周邦新. 高温压缩变形Al-Zn-Mg-Cu合金动态再结晶后的{111}/{111}近奇异晶界[J]. 金属学报, 2024, 60(9): 1165-1178.
[3] 杨瑞泽, 翟汝宗, 任少飞, 孙明月, 徐斌, 乔岩欣, 杨兰兰. 1Cr22Mn16N高氮奥氏体不锈钢塑性变形连接中界面组织演化及愈合机制[J]. 金属学报, 2024, 60(7): 915-925.
[4] 陈胜虎, 王琪玉, 姜海昌, 戎利建. δ-铁素体对钠冷快堆用316KD奥氏体不锈钢热变形行为和动态再结晶的影响[J]. 金属学报, 2024, 60(3): 367-376.
[5] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[6] 李福林, 付锐, 白云瑞, 孟令超, 谭海兵, 钟燕, 田伟, 杜金辉, 田志凌. 初始晶粒尺寸和强化相对GH4096高温合金热变形行为和再结晶的影响[J]. 金属学报, 2023, 59(7): 855-870.
[7] 娄峰, 刘轲, 刘金学, 董含武, 李淑波, 杜文博. 轧制态Mg-xZn-0.5Er合金板材组织及室温成形性能[J]. 金属学报, 2023, 59(11): 1439-1447.
[8] 吴彩虹, 冯迪, 臧千昊, 范诗春, 张豪, 李胤樹. 喷射成形AlSiCuMg合金的热变形组织演变及再结晶行为[J]. 金属学报, 2022, 58(7): 932-942.
[9] 任少飞, 张健杨, 张新房, 孙明月, 徐斌, 崔传勇. 新型Ni-Co基高温合金塑性变形连接中界面组织演化及愈合机制[J]. 金属学报, 2022, 58(2): 129-140.
[10] 姜伟宁, 武晓龙, 杨平, 顾新福, 解清阁. 热轧硅钢表层动态再结晶区形成规律及剪切织构特征[J]. 金属学报, 2022, 58(12): 1545-1556.
[11] 倪珂, 杨银辉, 曹建春, 王刘行, 刘泽辉, 钱昊. 18.7Cr-1.0Ni-5.8Mn-0.2NNi型双相不锈钢的大变形热压缩软化行为[J]. 金属学报, 2021, 57(2): 224-236.
[12] 刘庆琦, 卢晔, 张翼飞, 范笑锋, 李瑞, 刘兴硕, 佟雪, 于鹏飞, 李工. Al19.3Co15Cr15Ni50.7高熵合金的热变形行为[J]. 金属学报, 2021, 57(10): 1299-1308.
[13] 李天瑞, 刘国怀, 于少霞, 王文娟, 张风奕, 彭全义, 王昭东. 直接包套轧制铸态Ti-46Al-8Nb合金的组织特征及热变形机制[J]. 金属学报, 2020, 56(8): 1091-1102.
[14] 陈文雄, 胡宝佳, 贾春妮, 郑成武, 李殿中. 热变形后Ni-30%Fe模型合金中奥氏体的亚动态软化行为[J]. 金属学报, 2020, 56(6): 874-884.
[15] 张阳, 邵建波, 陈韬, 刘楚明, 陈志永. Mg-5.6Gd-0.8Zn合金多向锻造过程中的变形机制及动态再结晶[J]. 金属学报, 2020, 56(5): 723-735.