|
|
固溶态Mg-10Gd-6Y-1.5Zn-0.5Zr合金热加工图构建及微观组织演变 |
包成利1, 李豪1, 胡励1( ), 周涛1, 唐明2, 何曲波3, 刘相果4 |
1 重庆理工大学 材料科学与工程学院 重庆 400054 2 哈尔滨工程大学 机电工程学院 哈尔滨 150001 3 重庆材料研究院有限公司 重庆 400707 4 重庆中镭科技有限公司 重庆 400800 |
|
Construction of Hot Processing Map of Solutionized Mg-10Gd-6Y-1.5Zn-0.5Zr Alloy and Microstructure Evolution |
BAO Chengli1, LI Hao1, HU Li1( ), ZHOU Tao1, TANG Ming2, HE Qubo3, LIU Xiangguo4 |
1 College of Materials Science and Engineering, Chongqing University of Technology, Chongqing 400054, China 2 College of Mechanical and Electrical Engineering, Harbin Engineering University, Harbin 150001, China 3 Chongqing Material Research Institute Co. Ltd., Chongqing 400707, China 4 Chongqing Zhonglei Tech. Co. Ltd., Chongqing 400800, China |
引用本文:
包成利, 李豪, 胡励, 周涛, 唐明, 何曲波, 刘相果. 固溶态Mg-10Gd-6Y-1.5Zn-0.5Zr合金热加工图构建及微观组织演变[J]. 金属学报, 2025, 61(4): 632-642.
Chengli BAO,
Hao LI,
Li HU,
Tao ZHOU,
Ming TANG,
Qubo HE,
Xiangguo LIU.
Construction of Hot Processing Map of Solutionized Mg-10Gd-6Y-1.5Zn-0.5Zr Alloy and Microstructure Evolution[J]. Acta Metall Sin, 2025, 61(4): 632-642.
1 |
Wang C, Ma A B, Liu H, et al. Research progress on heat resistance of magnesium-rare earth alloys reinforced by long period stacking ordered phase [J]. Mater. Rep., 2019, 33: 3298
|
1 |
王 策, 马爱斌, 刘 欢 等. LPSO相增强镁稀土合金耐热性能研究进展 [J]. 材料导报, 2019, 33: 3298
|
2 |
Zhang R Q, Wang J F, Huang S, et al. Substitution of Ni for Zn on microstructure and mechanical properties of Mg-Gd-Y-Zn-Mn alloy [J]. J. Magnes. Alloy., 2017, 5: 355
|
3 |
Liu H, Bai J, Yan K, et al. Comparative studies on evolution behaviors of 14H LPSO precipitates in as-cast and as-extruded Mg-Y-Zn alloys during annealing at 773 K [J]. Mater. Des., 2016, 93: 9
|
4 |
Liao H X, Kim J, Lv J B, et al. Microstructure and mechanical properties with various pre-treatment and Zn content in Mg-Gd-Y-Zn alloys [J]. J. Alloys Compd., 2020, 831: 154873
|
5 |
Li X, Mao P L, Wang F, et al. A literature review on study of long-period stacking ordered phase and its effect on magnesium alloys [J]. Mater. Rep., 2019, 33: 1182
|
5 |
李 响, 毛萍莉, 王 峰 等. 长周期有序堆垛相(LPSO)的研究现状及在镁合金中的作用 [J]. 材料导报, 2019, 33: 1182
|
6 |
Deng Y H. Research progress and development trend in Mg-RE alloys [J]. Chin. Rare Earths, 2009, 30(1): 76
|
6 |
邓永和. 稀土镁合金研究现状与发展趋势 [J]. 稀土, 2009, 30(1): 76
|
7 |
Xu D K, Han E H, Xu Y B. Effect of long-period stacking ordered phase on microstructure, mechanical property and corrosion resistance of Mg alloys: A review [J]. Prog. Nat. Sci. Mater. Int., 2016, 26: 117
|
8 |
Chen Z Y, Li Q A, Chen X Y, et al. Research status and application of Zn-containing magnesium alloys and influence of LPSO on alloy properties [J]. J. Chin. Soc. Rare Earths, 2021, 39: 860
|
8 |
陈籽佚, 李全安, 陈晓亚 等. 含锌镁合金的研究现状与应用及其LPSO相对合金性能的影响 [J]. 中国稀土学报, 2021, 39: 860
|
9 |
Xing Q Y, Meng L G, Yang S J, et al. Research progress of new magnesium-rare earth alloy [J]. Foundry, 2018, 67: 317
|
9 |
邢清源, 孟令刚, 杨守杰 等. 新型稀土镁合金的研究进展 [J]. 铸造, 2018, 67: 317
|
10 |
Ullmann M, Kittner K, Prahl U. Hot deformation and dynamic recrystallisation behaviour of twin-roll cast Mg-6.8Y-2.5Zn-0.4Zr magnesium alloy [J]. Materials, 2021, 14: 307
|
11 |
Esmaeilpour H, Zarei-Hanzaki A, Eftekhari N, et al. Strain induced transformation, dynamic recrystallization and texture evolution during hot compression of an extruded Mg-Gd-Y-Zn-Zr alloy [J]. Mater. Sci. Eng., 2020, A778: 139021
|
12 |
Bao C L, Zhou T, Shi L X, et al. Hot deformation behavior and constitutive analysis of as-extruded Mg-6Zn-5Ca-3Ce alloy fabricated by rapid solidification [J]. Metals, 2021, 11: 480
|
13 |
Nie Y J F, Zheng J, Han R, et al. Hot deformation behaviour and constitutive equation of Mg-9Gd-4Y-2Zn-0.5Zr alloy [J]. Materials, 2022, 15: 1779
|
14 |
Zhang L, Wu X Y, Zhang X F, et al. Constitutive model and recrystallization mechanism of Mg-8.7Gd-4.18Y-0.42Zr magnesium alloy during hot deformation [J]. Materials, 2022, 15: 3914
|
15 |
Xia X S, Chen Q, Li J P, et al. Characterization of hot deformation behavior of as-extruded Mg-Gd-Y-Zn-Zr alloy [J]. J. Alloys Compd., 2014, 610: 203
|
16 |
Chen B, Zhou W M, Li S, et al. Hot compression deformation behavior and processing maps of Mg-Gd-Y-Zr alloy [J]. J. Mater. Eng. Perform., 2013, 22: 2458
|
17 |
Xu W C, Jin X Z, Shan D B, et al. Study on the effect of solution treatment on hot deformation behavior and workability of Mg-7Gd-5Y-0.6Zn-0.8Zr magnesium alloy [J]. J. Alloys Compd., 2017, 720: 309
|
18 |
Xue T X, Yu J B, Wang Z, et al. Investigation on hot workability of Fe-6.5Si-2Cr-12Ni high-silicon steel based on processing map and microstructural evolution [J]. Metall. Mater. Trans., 2023, 54A: 2227
|
19 |
Li B, Teng B G, Xu W C. Hot deformation characterization of homogenized Mg-Gd-Y-Zn-Zr alloy during isothermal compression [J]. JOM, 2019, 71: 4059
|
20 |
Liu H N, Li Y J, Zhang K, et al. Microstructure, hot deformation behavior, and textural evolution of Mg-3wt%Zn-1wt%Ca-0.5wt% Sr alloy [J]. J. Mater. Sci., 2020, 55: 12434
|
21 |
Hu L, Lang M A, Shi L X, et al. Study on hot deformation behavior of homogenized Mg-8.5Gd-4.5Y-0.8Zn-0.4Zr alloy using a combination of strain-compensated Arrhenius constitutive model and finite element simulation method [J]. J. Magnes. Alloy., 2023, 11: 1016
|
22 |
Li K, Chen Z Y, Chen T, et al. Hot deformation and dynamic recrystallization behaviors of Mg-Gd-Zn alloy with LPSO phases [J]. J. Alloys Compd., 2019, 792: 894
|
23 |
Jeong H T, Kim W J. The hot compressive deformation behavior of cast Mg-Gd-Y-Zn-Zr alloys with and without LPSO phase in their initial microstructures [J]. J. Magnes. Alloy., 2022, 10: 2901
|
24 |
Murty S V S N, Rao B N. On the development of instability criteria during hotworking with reference to IN 718 [J]. Mater. Sci. Eng., 1998, A254: 76
|
25 |
Prasad Y V R K, Gegel H L, Doraivelu S M, et al. Modeling of dynamic material behavior in hot deformation: forging of Ti-6242 [J]. Metall. Trans., 1984, 15A: 1883
|
26 |
Prasad Y V R K, Seshacharyulu T. Processing maps for hot working of titanium alloys [J]. Mater. Sci. Eng., 1998, A243: 82
|
27 |
Srinivasan N, Prasad Y V R K, Rao P R. Hot deformation behaviour of Mg-3Al alloy—A study using processing map [J]. Mater. Sci. Eng., 2008, A476: 146
|
28 |
Wang L, Sabisch J, Lilleodden E T. Kink formation and concomitant twin nucleation in Mg-Y [J]. Scr. Mater., 2016, 111: 68
|
29 |
Liu C, Yang X H, Peng J C, et al. In-situ and ex-situ investigation of deformation behaviors of a dual-phase Mg-Ni-Y alloy [J]. Scr. Mater., 2023, 226: 115264
|
30 |
Zhou Y C, Luo Q, Jiang B, et al. Strength-ductility synergy in Mg98.3Y1.3Ni0.4 alloy processed by high temperature homogenization and rolling [J]. Scr. Mater., 2022, 208: 114345
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|