Please wait a minute...
金属学报  2020, Vol. 56 Issue (2): 249-256    DOI: 10.11900/0412.1961.2019.00203
  研究论文 本期目录 | 过刊浏览 |
金属Nb级联碰撞的分子动力学模拟
马小强1,2,杨坤杰3,徐喻琼1,2(),杜晓超1,2,周建军1,2,肖仁政1,2
1. 三峡大学机械与动力学院 宜昌 443002
2. 三峡大学水电机械设备设计与维护湖北省重点实验室 宜昌 443002
3. 烟台大学核装备与核工程学院 烟台 264005
Molecular Dynamics Simulation of DisplacementCascades in Nb
MA Xiaoqiang1,2,YANG Kunjie3,XU Yuqiong1,2(),DU Xiaochao1,2,ZHOU Jianjun1,2,XIAO Renzheng1,2
1. College of Mechanical and Power Engineering, China Three Gorges University, Yichang 443002, China
2. Hubei Key Laboratory of Hydroelectric Machinery Design & Maintenance, China Three Gorges University, Yichang 443002, China
3. College of Nuclear Equipment and Nuclear Engineering, Yantai University, Yantai 264005, China
全文: PDF(6060 KB)   HTML
摘要: 

运用分子动力学方法研究了bcc结构Nb在辐照损伤初期因辐照诱发位移损伤形成和演化的微观过程以及原子机制。选取初级离位原子(primary knock-on atom,PKA)能量5~50 keV,模拟温度300 K,研究了Nb中级联碰撞产生的缺陷数量及其分布随模拟时间的演化,PKA能量对稳定Frenkel缺陷数目的影响,缺陷团簇的分布等。研究结果显示,级联碰撞会在体系中产生辐照缺陷,Frenkel 缺陷对数目和不同的PKA能量区间(5~30 keV和30~50 keV)之间满足不同的幂函数关系,所形成的缺陷大多数以点缺陷的形式存在,空位团簇成团率17%~35%,间隙原子团簇成团率23%~40%,PKA能量越高,空位越容易形成较大的团簇;级联碰撞产生的间隙原子形成了大量的沿<110>方向的哑铃型结构;当PKA能量高于30 keV时,级联碰撞将产生1/2<111>间隙型位错环和<100>空位型位错环。

关键词 Nb分子动力学位移级联Frenkel缺陷缺陷团簇    
Abstract

Refractory metal Nb and its alloys are considered as promising materials in fusion reactor, where they are required to withstand a high neutron irradiation, because their excellent high temperature properties such as high temperature strength, good thermal conductivity and compatibility with most liquid metal coolants. The defects are created in atomic displacement cascade from the primary state of damage and subsequent evolution gives rise to important change in their microstructures and engineering properties. However, the evolution and aggregation of induced radiation defects in atomic level cannot be observed by experiment so far. In this work, molecular dynamics (MD) method is used to explore the microstructural formation and evolution of defects from the atomic displacement cascades in bcc-Nb. In the simulation, the energy range of primary knock-on atom (PKA) is chosen 5~50 keV and the simulation temperature 300 K. It is observed that the most of defects in bcc Nb are point defects at different PKA energies. The vacancy cluster rate varies from 17% to 35% and self-interstitial cluster rate varies from 23% to 40%. As the PKA energy increasing, vacancies usually tend to form larger clusters. The self-interstitial atoms form a dumbbell structure along the direction <110>. The 1/2<111> intermittent dislocation loop and <100> vacancy dislocation loop are produced when the PKA energy greater than 30 keV. The quantitative relationship between energy of PKA (EPKA) and number of survivals Frenkel pairs (NFP) is fitted by a power function with different parameters at low-energies (5~30 keV) and the high-energies (30~50 keV).

Key wordsNb    molecular dynamics (MD)    displacement cascade    Frenkel pair    defect cluster
收稿日期: 2019-06-20     
ZTFLH:  TG132  
基金资助:三峡大学人才专项经费项目(2016KJX03);水电机械设备设计与维护湖北省重点实验室开放基金项目(2019KJX08)
通讯作者: 徐喻琼     E-mail: yuqiongxu@ctgu.edu.cn
Corresponding author: Yuqiong XU     E-mail: yuqiongxu@ctgu.edu.cn
作者简介: 马小强,男,1976年生,讲师,博士

引用本文:

马小强,杨坤杰,徐喻琼,杜晓超,周建军,肖仁政. 金属Nb级联碰撞的分子动力学模拟[J]. 金属学报, 2020, 56(2): 249-256.
Xiaoqiang MA, Kunjie YANG, Yuqiong XU, Xiaochao DU, Jianjun ZHOU, Renzheng XIAO. Molecular Dynamics Simulation of DisplacementCascades in Nb. Acta Metall Sin, 2020, 56(2): 249-256.

链接本文:

https://www.ams.org.cn/CN/10.11900/0412.1961.2019.00203      或      https://www.ams.org.cn/CN/Y2020/V56/I2/249

EPKA / keVCell sizeNumber of atomSimulation time / ps
520a×20a×20a1600020
1020a×20a×20a1600020
2030a×30a×30a5400025
3040a×40a×40a12800025
4060a×60a×60a43200030
5080a×80a×80a102400040
表1  不同PKA能量级联碰撞模拟盒子尺寸和原子数
图1  能量30 keV沿方向[235]的初级离位原子(PKA)产生的Frenkel缺陷对随时间的演化
图 2  能量30 keV、沿方向[235]运动的PKA级联碰撞过程产生的缺陷随时间演化过程可视化截图
图3  不同能量PKA级联碰撞过程中产生的缺陷数目随时间的演化
图4  存活Frenkel对数目和级联碰撞效率随PKA能量的变化
图 5  间隙原子和空位的成团率随EPKA的变化
图6  不同能量PKA间隙原子团簇和空位团簇的尺寸和数量分布
[1] Demkowicz M J, Misra A, Caro A. The role of interface structure in controlling high helium concentrations [J]. Curr. Opin.Solid State Mater. Sci., 2012, 16(3): 101
[2] Demkowicz M J, Hoagland R G, Hirth J P. Interface structure and radiation damage resistance in Cu-Nb multilayer nanocomposites [J]. Phys. Rev. Lett., 2008, 100: 136102
[3] Hattar K, Demkowicz M J, Misra A, et al. Arrest of He bubble growth in Cu-Nb multilayer nanocomposites [J]. Scr. Mater., 2008, 58: 541
[4] Allen T R, Stoller R E, Yamanaka S. Comprehensive Nuclear Materials [M]. Vol.4, Amsterdam: Elsevier Ltd., 2012: 182
[5] Buckman R W Jr. Nuclear space power systems materials requirements [A]. AIP Conference Proceedings [C]. Am. Inst. Phys., 2004, 699: 815
[6] Tavassoli A A F. Present limits and improvements of structural materials for fusion reactors—A review [J]. J. Nucl. Mater., 2002, 302(2-3): 73
[7] Goldberg D C, Dicker G, Worcester S A. Niobium and niobium alloys in nuclear power [J]. Nucl. Eng. Des., 1972, 22: 124
[8] Was G S. Fundamentals of Radiation Materials Science: Metals and Alloys [M]. 2nd Ed., New York: Springer, 2017: 167
[9] Ma X Q, Yuan D Q, Xia H H, et al. Molecular dynamics simulation of evolution of defect and temperature effect in irradiated 3C-SiC [J]. Atomic Energy Sci. Technol., 2016, 50: 219
[9] (马小强,袁大庆,夏海鸿,等. 3C-SiC辐照诱发缺陷演化及温度效应分子动力学模拟 [J]. 原子能科学技术, 2016, 50: 219)
[10] Ma-Thai C C, Bacon D J. Relaxed vacancy formation and surface energies in b.c.c transition metals [J]. Philos. Mag., 1985, 52A: 1
[11] Ackland G J, Thetford R. An improved N-body semi-empirical model for body-centred cubic transition metals [J]. Philos. Mag., 1987, 56A: 15
[12] Lee B J, Baskes M I, Kim H, et al. Second nearest-neighbor modified embedded atom method potentials for bcc transition metals [J]. Phys. Rev., 2001, 64B: 184102
[13] Plimpton S. Fast parallel algorithms for short-range molecular dynamics [J]. J. Comput. Phys., 1995, 117: 1
[14] Stukowski A. Visualization and analysis of atomistic simulation data with OVITO—The open visualization tool [J]. Model. Simul. Mater. Sci. Eng., 2010, 18: 015012
[15] Tikhonchev M, Svetukhin V, Kapustin P. Primary radiation damage of Zr-0.5%Nb binary alloy: Atomistic simulation by molecular dynamics method [J]. Model. Simul. Mater. Sci. Eng., 2017, 25: 065017
[16] Lin D Y, Wang S S, Peng D L, et al. An n-body potential for a Zr-Nb system based on the embedded-atom method [J]. J. Phys: Condens. Matter, 2013, 25: 105404
[17] Ziegler J F, Biersack J P, Ziegler M D. SRIM—The Stopping and Range of Ions in Matter [M]. Chester: SRIM Co., 2008: 2
[18] Mendelev M I, Ackland G J. Development of an interatomic potential for the simulation of phase transformations in zirconium [J]. Philos. Mag. Lett., 2007, 87: 349
[19] Was G S. Fundamentals of Radiation Materials Science: Metals and Alloys [M]. 2nd Ed., New York: Springer, 2016: 127
[20] Cai J, Lu D G, Ma Y, et al.Structure evolution of defects in bcc iron by dislacement cascade: Molecular dynamics simulation [J]. Chin. J. Comput. Phys., 2011, 28: 915
[20] (蔡 军,陆道纲,马 雁等. 分子动力学模拟bcc铁中级联碰撞产生的缺陷结构及其演变 [J]. 计算物理, 2011, 28: 915)
[21] Chen W J, Lei J H. The molecular dynamics based research on the displacement cascades in zirconium [J]. J. Southwest Univ. Sci. Technol., 2017, 32(1): 101
[21] (陈文杰,雷洁红. 金属锆中离位级联碰撞的分子动力学模拟 [J]. 西南科技大学学报, 2017, 32(1): 101)
[22] Cao H, He X F, Wang D J, et al. Molecular dynamics simulation of displacement cascades in α-iron at different temperatures [J]. Atomic Energy Sci. Technol., 2019, 53: 487
[22] (曹 晗, 贺新福, 王东杰等. 不同温度下α-Fe中级联碰撞分子动力学模拟研究 [J]. 原子能科学技术, 2019, 53: 487)
[23] Yao M, Cui W, Wang X D, et al. Molecular dynamics simulation of initial radiation damage in tungsten [J]. Acta Metall., 2015, 51: 724
[23] (姚 曼, 崔 薇, 王旭东等. W辐照损伤初期的分子动力学研究 [J]. 金属学报, 2015, 51: 724)
[24] Bj?rkas C, Nordlund K, Dudarev S. Modelling radiation effects using the ab-initio based tungsten and vanadium potentials [J]. Nucl. Instrum. Methods Phys. Res., 2009, 267B: 3204
[25] Soneda N, Ishino S, de la Rubia T. Vacancy loop formation by ''cascade collapse'' in α-Fe: A molecular dynamics study of 50 keV cascades [J]. Philos. Mag. Lett., 2001, 81: 649
[26] Averback R S, de la Rubia T D, Benedek R. Dynamics and structure of energetic displacement cascades [J]. Nucl. Instrum.Methods Phys. Res., 1988, 33B: 693
[27] Norgett M J, Robinson M T, Torrens I M. A proposed method of calculating displacement dose rates [J]. Nucl. Eng. Des., 1975, 33: 50
[28] Li X Y, Xu Y C, Duan G H, et al. On the possibility of universal interstitial emission induced annihilation in metallic nanostructures [J]. J. Nucl. Mater., 2018, 500: 199
[29] Duan G H, Li X Y, Sun J J, et al. Surface-structure dependence of healing radiation-damage mechanism in nanoporous tungsten [J]. J. Nucl. Mater., 2018, 498: 362
[30] Bacon D J, Calder A F, Gao F, et al. Computer simulation of defect production by displacement cascades in metals [J]. Nucl. Instrum.Methods Phys. Res., 1995, 102B: 37
[31] Allen T R, Stoller R E, Yamanaka S. Comprehensive Nuclear Materials [M]. Vol.1, Amsterdam: Elsevier Ltd., 2012: 312
[32] Voskoboinikov R E, Osetsky Y N, Bacon D J. Computer simulation of primary damage creation in displacement cascades in copper. I. Defect creation and cluster statistics [J]. J. Nucl. Mater., 2008, 377: 385
[33] Gao F, Bacon D J, Howe L M, et al. Temperature-dependence of defect creation and clustering by displacement cascades in α-zirconium [J]. J. Nucl. Mater., 2001, 294: 288
[34] Selby A P, Xu D H, Juslin N, et al. Primary defect production by high energy displacement cascades in molybdenum [J]. J. Nucl. Mater., 2013, 437: 19
[35] Cerdeira M A, Palacios S L, González C, et al. Ab initio simulations of the structure, energetics and mobility of radiation-induced point defects in bcc Nb [J]. J. Nucl. Mater., 2016, 478: 185
[1] 李美霖, 李赛毅. 金属Mg二阶锥面<c+a>刃位错运动特性的分子动力学模拟[J]. 金属学报, 2020, 56(5): 795-800.
[2] 李源才, 江五贵, 周宇. 温度对碳纳米管增强纳米蜂窝镍力学性能的影响[J]. 金属学报, 2020, 56(5): 785-794.
[3] 李源才, 江五贵, 周宇. 纳米孔洞对单晶/多晶Ni复合体拉伸性能的影响[J]. 金属学报, 2020, 56(5): 776-784.
[4] 钱月,孙蓉蓉,张文怀,姚美意,张金龙,周邦新,仇云龙,杨健,成国光,董建新. NbFe22Cr5Al3Mo合金显微组织和耐腐蚀性能的影响[J]. 金属学报, 2020, 56(3): 321-332.
[5] 周霞,刘霄霞. 石墨烯纳米片增强镁基复合材料力学性能及增强机制[J]. 金属学报, 2020, 56(2): 240-248.
[6] 李玲,姚生莲,赵晓丽,杨佳佳,王野熹,王鲁宁. 阳极氧化法制备Zr-17Nb合金表面氧化物纳米管阵列及其性能研究[J]. 金属学报, 2019, 55(8): 1008-1018.
[7] 史俊勤,孙琨,方亮,许少锋. 含水条件下单晶Cu的应力松弛及弹性恢复[J]. 金属学报, 2019, 55(8): 1034-1040.
[8] 张清东,李硕,张勃洋,谢璐,李瑞. 金属轧制复合过程微观变形行为的分子动力学建模及研究[J]. 金属学报, 2019, 55(7): 919-927.
[9] 卢正冠,吴杰,徐磊,崔潇潇,杨锐. Ti2AlNb异形粉末环件的轧制成形与性能研究[J]. 金属学报, 2019, 55(6): 729-740.
[10] 蓝春波,梁家能,劳远侠,谭登峰,黄春艳,莫羡忠,庞锦英. 冷轧态Ti-35Nb-2Zr-0.3O合金的异常热膨胀行为[J]. 金属学报, 2019, 55(6): 701-708.
[11] 王瑾, 余黎明, 李冲, 黄远, 李会军, 刘永长. 不同温度对含与不含位错α-Fe中He原子行为的影响[J]. 金属学报, 2019, 55(2): 274-280.
[12] 涂爱东, 滕春禹, 王皞, 徐东生, 傅耘, 任占勇, 杨锐. Ti-Al合金γ/α2界面结构及拉伸变形行为的分子动力学模拟[J]. 金属学报, 2019, 55(2): 291-298.
[13] 张海峰, 闫海乐, 贾楠, 金剑锋, 赵骧. Cu/Ti纳米层状复合体塑性变形机制的分子动力学模拟研究[J]. 金属学报, 2018, 54(9): 1333-1342.
[14] 赵鹏越, 郭永博, 白清顺, 张飞虎. 基于微观结构的多晶Cu纳米压痕表面缺陷研究[J]. 金属学报, 2018, 54(7): 1051-1058.
[15] 樊丹丹, 许军锋, 钟亚男, 坚增运. 过热温度和冷却速率对过冷Ti熔体凝固过程的影响[J]. 金属学报, 2018, 54(6): 844-850.