Please wait a minute...
金属学报  2025, Vol. 61 Issue (4): 653-664    DOI: 10.11900/0412.1961.2023.00053
  研究论文 本期目录 | 过刊浏览 |
中碳Nb合金化钢液析碳化物的析出行为
梁炫1,2, 侯廷平1,2(), 张东1,2, 谭昕暘1,2, 吴开明1,2()
1 武汉科技大学 省部共建耐火材料与冶金国家重点实验室 武汉 430081
2 武汉科技大学 高性能钢铁材料及其应用省部共建协同创新中心 武汉 430081
Precipitation Behavior of Primary Carbides in Medium Carbon Nb-Alloyed Steel
LIANG Xuan1,2, HOU Tingping1,2(), ZHANG Dong1,2, TAN Xinyang1,2, WU Kaiming1,2()
1 State Key Laboratory of Refractories and Metallury, Wuhan University of Science and Technology, Wuhan 430081, China
2 Hubei Collaborative Innovation Center for Advanced Steels, Wuhan University of Science and Technology, Wuhan 430081, China
引用本文:

梁炫, 侯廷平, 张东, 谭昕暘, 吴开明. 中碳Nb合金化钢液析碳化物的析出行为[J]. 金属学报, 2025, 61(4): 653-664.
Xuan LIANG, Tingping HOU, Dong ZHANG, Xinyang TAN, Kaiming WU. Precipitation Behavior of Primary Carbides in Medium Carbon Nb-Alloyed Steel[J]. Acta Metall Sin, 2025, 61(4): 653-664.

全文: PDF(3223 KB)   HTML
摘要: 

液析碳化物严重影响钢的力学性能。本工作利用SEM、TEM等手段表征和分析了液析碳化物的形貌及元素分布,研究Nb含量对中碳Nb合金化钢液析碳化物的影响。基于密度泛函理论的第一性原理与准谐Debye模型相结合的方法,分析了不同温度下NbC与晶格振动、电子相关的热力学参数演变规律。建立了耦合凝固相变的微观偏析模型,定量分析了凝固相变和Nb含量对溶质元素偏析的影响。结果表明,随着Nb含量的增加,液析碳化物的形貌由球形向多面体转变,带状分布趋势加强。不同温度下NbC中电子导致的自由能改变量增加被晶格振动导致的自由能改变量减小所补偿,总Gibbs自由能改变量为负,证实了NbC的热力学稳定性。凝固过程中L + δ向L + γ转变,降低了溶质元素C的偏析程度,增加了Nb元素的偏析程度。Nb含量的增加促使NbC在更低的固相分数时开始析出。

关键词 铌合金钢液析碳化物热力学机制第一性原理微观偏析凝固相变    
Abstract

High-performance steels containing niobium have widespread use in high-end manufacturing sectors such as aerospace, automotive, energy, and construction engineering. Due to its capacity as a strong carbide-forming element, Nb favors the formation of NbC. These carbides, dispersed within the matrix, significantly contribute to precipitation strengthening, precipitation hardening, and grain refinement. In addition, Nb serves as a positive segregation element. When steel solidifies from its molten state, Nb segregates in the liquid phase and forms primary NbC carbides. These carbides significantly affect the mechanical properties of steel. Herein, to investigate the effect of Nb content on primary carbides in medium-carbon Nb-alloyed steel, the microstructure including the morphology, size, and distribution of niobium and carbon was characterized through SEM and TEM. To further understand the role of lattice vibrations and electrons at different temperatures, the first principle calculations with quasi-harmonic Debye model were combined to study the evolution of thermodynamic parameters. Primary carbides form because of solute segregation at the solid-liquid interface. For a more detailed investigation, a solute microsegregation model coupled with solidification phase transition was developed. This model was adopted to quantitatively analyze the effects of solidification phase transition and Nb content on solute microsegregation. The experiments yielded the following results: with increasing Nb content, the morphology of primary carbides shifted from spherical to polyhedral geometry. Furthermore, a distinct zonal distribution of primary carbides was observed. The laws of thermodynamics indicate that the increase in free energy change due to electrons at different temperatures is compensated by the decrease in free energy change arising from lattice vibrations, indicating the key role of lattice vibrations in maintaining the stability of NbC. The Gibbs free energy change at different temperatures was negative, indicating the thermostatic stability of NbC. Furthermore, the absence of imaginary frequency in the phonon spectrum indicates the dynamic stability of NbC. From a microsegregation viewpoint, the mass fraction of solute carbon decreases while that of the solute Nb increases at the solidification front during the phase transition from L + δ to L + γ. As the Nb content increases, the solid fraction of the solidification phase transition increases. Increased Nb content promotes the precipitation of primary carbides at low solid fractions.

Key wordsNb-alloyed steel    primary carbide    thermodynamic mechanism    first principle calculation    microsegregation    solidification phase transition
收稿日期: 2023-02-13     
ZTFLH:  O614.51  
基金资助:国家自然科学基金项目(12174296, U1532268, U20A20279);湖北省重点研发计划项目(2021BAA057);湖北省高等学校优秀中青年科技创新团队项目(T201903);浙江省领军型创新创业团队项目(2021R01020)
通讯作者: 侯廷平,houtingping@wust.edu.cn,主要从事金属材料相变研究;
吴开明,wukaiming@wust.edu.cn,主要从事高性能钢铁材料相变及应用性能的研究
Corresponding author: HOU Tingping, professor, Tel: 18140522212, E-mail: houtingping@wust.edu.cn;
WU Kaiming, professor, Tel: 13100610041, E-mail: wukaiming@wust.edu.cn
作者简介: 梁 炫,女,1978年生,博士
SampleCMnNbPSFe
0.1Nb0.22.00.1< 0.005< 0.005Bal.
0.6Nb0.22.00.6< 0.005< 0.005Bal.
1.1Nb0.22.01.1< 0.005< 0.005Bal.
1.6Nb0.22.01.6< 0.005< 0.005Bal.
表1  实验用钢的化学成分 (mass fraction / %)
图1  NbC、Nb和C的晶体结构
ElementD0δQδD0γQγkδ/Lkγ/L
C0.012781370.800.0761134557.440.190.340
Nb50.2000251960.480.8300266478.960.400.220
Mn0.7600224429.760.0550249366.400.760.780
表2  溶质元素的扩散常数、扩散激活能和平衡分配系数[33]
图2  不同Nb含量钢的SEM像
图3  碳化物的TEM明场像及Nb、C元素分布图
SpeciesLattice constantCell angle / (o)

Formation energy

kJ·mol-1

10-1 nmαβγ
NbCa = b = c = 4.505909090-101.12
4.47[35], 4.471[36], 4.45[37]-104.3[14], -121.58[38]
Nba = b = c = 3.322909090-
Ca = 2.466, b = 2.466, c = 8.2619090120-
表3  NbC、Nb和C在0 K、0 Pa结构优化后的晶格常数、晶胞角度和形成能
图4  NbC的声子谱及声子态密度
图5  NbC的电子总态密度和分态密度,及Nb、C的总态密度
图6  NbC的振动自由能和电子自由能随温度的变化
图7  晶格振动和电子引起的自由能改变量及NbC总Gibbs自由能改变量随温度的变化
图8  凝固过程Thermo-Calc热力学计算Nb含量对相变的影响
SampleΔTL + δ + γTstart
0.1Nb0.6-
0.6Nb31724.6
1.1Nb51725.5
1.6Nb71724.7
表4  不同Nb含量中碳钢的三相共存温度区间(ΔTL + δ + γ )和碳化物析出温度(Tstart) (K)
图9  1.6Nb钢的溶质平衡分配系数随温度的变化
图10  L + δ→L + γ相变对0.1Nb钢溶质偏析的影响
图11  Nb含量对溶质元素偏析比的影响
图12  4种实验用钢凝固前沿实际浓度积和平衡浓度积
fsw(C)L, fsw(Nb)L, fs
0.1Nb0.6Nb1.1Nb1.6Nb0.1Nb0.6Nb1.1Nb1.6Nb
0.3800.2890.2890.2890.2890.1300.7801.4322.084
0.5160.3440.3440.3440.3440.1460.8791.612-
0.6890.3690.3690.4530.4530.2401.440--
0.9480.5470.5460.5480.5490.684---
表5  当fs=fsNbC时溶质元素C和Nb在凝固前沿液相中的质量分数 (%)
图13  NbC析出对0.1Nb钢溶质浓度的影响
1 Yang Y. All-optical photodetector based on photothermal effect of MXene Nb2CT x [D]. Tianjin: Tianjin University of Technology, 2022
1 杨 洋. 基于碳化铌光热效应的全光探测器的研究 [D]. 天津: 天津理工大学, 2022
2 Chu S J, Mao B, Hu G K. Microstructure control and strengthening mechanism of high strength cold rolled dual phase steels for automobile applications [J]. Acta Metall. Sin., 2022, 58: 551
doi: 10.11900/0412.1961.2022.00061
2 储双杰, 毛 博, 胡广魁. 汽车用先进高强度冷轧双相钢的显微组织调控和强韧化机理 [J]. 金属学报, 2022, 58: 551
doi: 10.11900/0412.1961.2022.00061
3 Li Z Y, Li C R, Zeng Z Y, et al. Thermodynamic study of carbide and nitride precipitation of niobium in 500 MPa high-strength anti-seismic rebars [J]. J. Iron Steel Res., 2020, 32: 727
3 黎志英, 李长荣, 曾泽芸 等. 高强抗震钢筋中铌的碳、氮化物析出热力学研究 [J]. 钢铁研究学报, 2020, 32: 727
doi: 10.13228/j.boyuan.issn1001-0963.20190238
4 Zhou J, Hu C Y, Hu F, et al. Insight into the effect of Nb microalloying on the microstructure-property relationship of a novel wire rod [J]. J. Mater. Res. Technol., 2022, 16: 276
doi: 10.1016/j.jmrt.2021.11.144
5 Su X, Wang H X, Zhu M, et al. In-situ observation for effect of niobium on pearlite transformation in high-carbon steels [J]. Iron Steel, 2022, 57(4): 88
5 苏 雪, 王厚昕, 朱 敏 等. 原位观察铌对高碳钢珠光体相变的影响 [J]. 钢铁, 2022, 57(4): 88
6 Tian J Y, Wang H X, Zhu M, et al. Improving mechanical properties in high-carbon pearlitic steels by replacing partial V with Nb [J]. Mater. Sci. Eng., 2022, A834: 142622
7 Zhang Y, Li X X, Wei K, et al. Element segregation in GH4169 superalloy large-scale ingot and billet manufactured by triple-melting [J]. Acta Metall. Sin., 2020, 56: 1123
doi: 10.11900/0412.1961.2020.00101
7 张 勇, 李鑫旭, 韦 康 等. 三联熔炼GH4169合金大规格铸锭与棒材元素偏析行为 [J]. 金属学报, 2020, 56: 1123
8 Xie Y, Cheng G G, Chen L, et al. Characteristics and generating mechanism of large precipitates in Nb-Ti-microalloyed H13 tool steel [J]. ISIJ Int., 2016, 56: 995
9 Jiang Q C, Sui H L, Guan Q F. Thermal fatigue behavior of new type high-Cr cast hot work die steel [J]. ISIJ Int., 2004, 44: 1103
10 Tchuindjang J T, Lecomte-Beckers J. Fractography survey on high cycle fatigue failure: Crack origin characterisation and correlations between mechanical tests and microstructure in Fe-C-Cr-Mo-X alloys [J]. Int. J. Fatigue, 2007, 29: 713
11 Jang J H, Lee C H, Heo Y U, et al. Stability of (Ti, M)C (M = Nb, V, Mo and W) carbide in steels using first-principles calculations [J]. Acta Mater., 2012, 60: 208
12 Fang C M, van Huis M A, Zandbergen H W. Structural, electronic, and magnetic properties of iron carbide Fe7C3 phases from first-principles theory [J]. Phys. Rev., 2009, 80B: 224108
13 Zhang D, Zheng H, Hou T P, et al. Hardness increases due to (Fe, Cr)2C carbide precipitated during natural aging in high chromium cast iron [J]. Vacuum, 2023, 209: 111766
14 Klymko T, Sluiter M H F. Computing solubility products using ab initio methods precipitation of NbC in low alloyed steel [J]. J. Mater. Sci., 2012, 47: 7601
15 Arroyave R, Shin D, Liu Z K. Ab initio thermodynamic properties of stoichiometric phases in the Ni-Al system [J]. Acta Mater., 2005, 53: 1809
16 Shang S L, Wang Y, Kim D, et al. First-principles thermodynamics from phonon and Debye model: Application to Ni and Ni3Al [J]. Comput. Mater. Sci., 2010, 47: 1040
17 Voller V R. Modeling micro scale phenomena for application in solidification process simulations [A]. Proceedings of the Second International Conference on Processing Materials for Properties [C]. San Francisco: TMS, 2000: 1011
18 Scheil E. Bemerkungen zur Schichtkristallbildung [J]. Int. J. Mater. Res., 1942, 34(3): 70
19 Brody H D, Flemings M C. Solute redistribution in dendritic solidification [J]. Trans. Met. Soc. AJIME, 1966, 236: 615
20 Ohnaka I. Mathematical analysis of solute redistribution during solidification with diffusion in solid phase [J]. Trans. ISIJ, 1986, 26: 1045
21 Clyne T W, Kurz W. Solute redistribution during solidification with rapid solid state diffusion [J]. Metall. Trans., 1981, 12A: 965
22 Voller V R, Beckermann C. Approximate models of microsegregation with coarsening [J]. Metall. Mater. Trans., 1999, 30A: 3016
23 Voller V R, Beckermann C. A unified model of microsegregation and coarsening [J]. Metall. Mater. Trans., 1999, 30A: 2183
24 Liang X, Hou T P, Zhang D, et al. New evaluation of the thermodynamics stability for bcc-Fe [J]. J. Phys.: Condens. Matter., 2022, 34: 455801
25 Otero-de-la-Roza A, Luaña V. GIBBS2: A new version of the quasi-harmonic model code. I. Robust treatment of the static data [J]. Comput. Phys. Commun., 2011, 182: 1708
26 Otero-de-la-Roza A, Abbasi-Pérez D, Luaña V. GIBBS2: A new version of the quasiharmonic model code. II. Models for solid-state thermodynamics, features and implementation [J]. Comput. Phys. Commun., 2011, 182: 2232
27 Wolverton C, Zunger A. First-principles theory of short-range order, electronic excitations, and spin polarization in Ni-V and Pd-V alloys [J]. Phys. Rev., 1995, 52B: 8813
28 Kresse G, Furthmüller J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set [J]. Comput. Mater. Sci., 1996, 6: 15
29 Blöchl P E. Projector augmented-wave method [J]. Phys. Rev., 1994, 50B: 17953
30 Togo A, Tanaka I. First principles phonon calculation in materials science [J]. Scr. Mater., 2015, 108: 1
31 Guo W, Long M J, Wu J L, et al. Effect of solute partition coefficient and TiN precipitation on micro-segregation of 22MnB5 steel [J]. Iron Steel, 2022, 57(3): 44
31 郭 伟, 龙木军, 吴家璐 等. 22MnB5钢溶质分配系数及TiN析出对微观偏析的影响 [J]. 钢铁, 2022, 57(3): 44
32 Won Y M, Thomas B G. Simple model of microsegregation during solidification of steels [J]. Metall. Mater. Trans., 2001, 32A: 1755
33 Fu Y X, Zhu L G, Sun L G, et al. Calculation of high temperature solidification characteristics and high temperature physical properties of high strength steel containing niobium [J]. Steelmaking, 2020, 36(2): 34
33 付雨潇, 朱立光, 孙立根 等. 含Nb高强钢高温凝固特性与物性参数的计算 [J]. 炼钢, 2020, 36(2): 34
34 Chen M W, Wang Z D. The evolution and morphological stability of a particle in a binary alloy melt [J]. J. Cryst. Growth, 2023, 607: 127113
35 Villars P, Calvet L D. Pearson's Handbook of Crystallographic Data for Intermetallic Phases [M]. Metals Park: American Society for Metals, 1985: 1
36 Nartowski A M, Parkin I P, MacKenzie M, et al. Solid state metathesis routes to transition metal carbides [J]. J. Mater. Chem., 1999, 9: 1275
37 Singh D J, Klein B M. Electronic structure, lattice stability, and superconductivity of CrC [J]. Phys. Rev., 1992, 46B: 14969
38 Zhao C C, Xing X L, Guo J, et al. Micro-properties of (Nb, M)C carbide (M = V, Mo, W and Cr) and precipitation behavior of (Nb, V)C in carbide reinforced coating [J]. J. Alloys Compd., 2019, 788: 852
39 Wang R, Wang S F, Wu X Z. Ab initio study of the thermodynamic properties of rare-earth-magnesium intermetallics MgRE (RE = Y, Dy, Pr, Tb) [J]. Phys. Scr., 2011, 83: 065707
40 Gui L T, Long M J, Huang Y W, et al. Effects of inclusion precipitation, partition coefficient, and phase transition on microsegregation for high-sulfur steel solidification [J]. Metall. Mater. Trans., 2018, 49B: 3280
41 Zhang X W, Zhang L F, Yang W, et al. Thermodynamics and dynamics of MnS inclusions precipitation during solidification process in heavy rail steels [J]. Iron Steel, 2016, 51(9): 30
41 张学伟, 张立峰, 杨 文 等. 重轨钢中MnS析出热力学和动力学分析 [J]. 钢铁, 2016, 51(9): 30
doi: 10.13228/j.boyuan.issn0449-749x.20160079
42 Chen J X. Data Manual of Common Steelmaking Charts [M]. Beijing: Metallurgical Industry Press, 1984: 565
42 陈家祥. 炼钢常用图表数据手册 [M]. 北京: 冶金工业出版社, 1984: 565
43 Liu Z Z, Wei J, Cai K K. A coupled mathematical model of microsegregation and inclusion precipitation during solidification of silicon steel [J]. ISIJ Int., 2002, 42: 958
[1] 王京京, 姚志浩, 张鹏, 赵杰, 张迈, 王蕾, 董建新, 陈迎. 镍基高温合金中S元素对基体与热障涂层界面稳定性的影响[J]. 金属学报, 2024, 60(9): 1250-1264.
[2] 白如圣, 谭毅, 崔弘阳, 宁莉丹, 崔传勇, 王云鹏, 李鹏廷. 电子束熔炼功率对GH4068合金微观组织、偏析和 γ相析出行为的影响[J]. 金属学报, 2024, 60(9): 1189-1199.
[3] 高新亮, 巴文月, 张正, 席仕平, 徐东, 杨志南, 张福成. 贝氏体轨道钢连铸凝固过程中溶质微观偏析模型及分析[J]. 金属学报, 2024, 60(7): 990-1000.
[4] 周彦余, 李江旭, 刘晨, 赖俊文, 高强, 马会, 孙岩, 陈星秋. 金属间化合物Pt7Sb投影Berry相位与析氢催化关联的第一性原理计算[J]. 金属学报, 2024, 60(6): 837-847.
[5] 程坤, 陈树明, 曹烁, 刘建荣, 马英杰, 范群波, 程兴旺, 杨锐, 胡青苗. 第一性原理研究钛合金中的沉淀强化[J]. 金属学报, 2024, 60(4): 537-547.
[6] 杨谨菡, 闫海乐, 刘昊轩, 赵莹, 杨一俏, 赵骧, 左良. A2BTi型磁性功能合金相稳定性、磁性与力学性能的第一性原理计算和实验研究[J]. 金属学报, 2024, 60(12): 1701-1709.
[7] 刘翔, 王英豪, 张小新, 陈超越, 孟杰, 余建波, 王江, 任忠鸣. 纵向静磁场对DD98M合金定向凝固微观组织与偏析的影响[J]. 金属学报, 2024, 60(12): 1595-1606.
[8] 赵晋彬, 王建韬, 何东昌, 李俊林, 孙岩, 陈星秋, 刘培涛. 氢化物超导体临界转变温度的机器学习模型[J]. 金属学报, 2024, 60(10): 1418-1428.
[9] 沈雪阳, 褚瑞轩, 蒋宜辉, 张伟. 相变存储器材料设计与多尺度模拟的研究进展[J]. 金属学报, 2024, 60(10): 1362-1378.
[10] 王福容, 张永梅, 柏国宁, 郭庆伟, 赵宇宏. Al掺杂Mg/Mg2Sn合金界面的第一性原理计算[J]. 金属学报, 2023, 59(6): 812-820.
[11] 李昕, 江河, 姚志浩, 董建新. O原子对高温合金基体NiCoNiCr晶界作用的理论计算分析[J]. 金属学报, 2023, 59(2): 309-318.
[12] 李闪闪, 陈云, 巩桐兆, 陈星秋, 傅排先, 李殿中. 冷速对高碳铬轴承钢液析碳化物凝固析出机制的影响[J]. 金属学报, 2022, 58(8): 1024-1034.
[13] 任师浩, 刘永利, 孟凡顺, 祁阳. 应变工程中Bi(111)薄膜的半导体-半金属转变及其机理[J]. 金属学报, 2022, 58(7): 911-920.
[14] 李亚敏, 张瑶瑶, 赵旺, 周生睿, 刘洪军. CuInconel 718合金Nb偏析影响机理的第一性原理研究[J]. 金属学报, 2022, 58(2): 241-249.
[15] 王硕, 王俊升. Al-Li合金中 δ′/θ′/δ复合沉淀相结构演化及稳定性的第一性原理探究[J]. 金属学报, 2022, 58(10): 1325-1333.