|
|
GH3535合金焊缝高温氦离子辐照效应 |
白菊菊1,2, 李健健1,2( ), 付崇龙1,2, 陈双建1, 李志军1, 林俊1,2( ) |
1中国科学院上海应用物理研究所 上海 201800 2中国科学院大学 北京 100049 |
|
Effect of He Ion Irradiation on the GH3535 Weld Metal at High Temperature |
BAI Juju1,2, LI Jianjian1,2( ), FU Chonglong1,2, CHEN Shuangjian1, LI Zhijun1, LIN Jun1,2( ) |
1Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China 2University of Chinese Academy of Sciences, Beijing 100049, China |
引用本文:
白菊菊, 李健健, 付崇龙, 陈双建, 李志军, 林俊. GH3535合金焊缝高温氦离子辐照效应[J]. 金属学报, 2024, 60(3): 299-310.
Juju BAI,
Jianjian LI,
Chonglong FU,
Shuangjian CHEN,
Zhijun LI,
Jun LIN.
Effect of He Ion Irradiation on the GH3535 Weld Metal at High Temperature[J]. Acta Metall Sin, 2024, 60(3): 299-310.
1 |
Yvon P, Carré F. Structural materials challenges for advanced reactor systems [J]. J. Nucl. Mater., 2009, 385: 217
doi: 10.1016/j.jnucmat.2008.11.026
|
2 |
Chen S J, Tsang D K L, Jiang L, et al. Microstructure and local strains in GH3535 alloy heat affected zone and their influence on the mechanical properties [J]. Mater. Sci. Eng., 2017, A699: 48
|
3 |
Chen S J, Ye X X, Yu K, et al. Microstructure and mechanical properties of UNS N10003 alloy welded joints [J]. Mater. Sci. Eng., 2017, A682: 168
|
4 |
Huang H F, Zhou X L, Li C W, et al. Temperature dependence of nickel ion irradiation damage in GH3535 alloy weld metal [J]. J. Nucl. Mater., 2017, 497: 108
doi: 10.1016/j.jnucmat.2017.06.005
|
5 |
Li F G, Lei Y C, Zhang X N, et al. Study on microstructure change and hardening of 316L steel weld seam after helium ion irradiation [J]. Fusion Eng. Des., 2019, 148: 111293
doi: 10.1016/j.fusengdes.2019.111293
|
6 |
Was G S. Fundamentals of Radiation Materials Science [M]. Berlin: Springer, 2007: 827
|
7 |
Zinkle S J, Busby J T. Structural materials for fission & fusion energy [J]. Mater. Today, 2009, 12: 12
|
8 |
Zinkle S J, Was G S. Materials challenges in nuclear energy [J]. Acta Mater., 2013, 61: 735
doi: 10.1016/j.actamat.2012.11.004
|
9 |
McCoy H E. An evaluation of the molten-salt reactor experiment Hastelloy N surveillance speciments—Fourth group [R]. Oak Ridge: Oak Ridge National Laboratory, 1971
|
10 |
Fu C L, Li J J, Bai J J, et al. Effect of helium bubbles on irradiation hardening of additive manufacturing 316L stainless steel under high temperature He ions irradiation [J]. J. Nucl. Mater., 2021, 550: 152948
doi: 10.1016/j.jnucmat.2021.152948
|
11 |
Zhu Z B, Huang H F, Muránsky O, et al. On the irradiation tolerance of nano-grained Ni-Mo-Cr alloy: 1 MeV He+ irradiation experiment [J]. J. Nucl. Mater., 2021, 544: 152694
doi: 10.1016/j.jnucmat.2020.152694
|
12 |
Gao J, Huang H F, Liu J Z, et al. Coalescence mechanism of helium bubble during tensile deformation revealed by in situ small-angle X-ray scattering [J]. Scr. Mater., 2019, 158: 121
doi: 10.1016/j.scriptamat.2018.08.050
|
13 |
Bai J J, Li J J, Fu C L, et al. Temperature dependence of He bubble evolution in UNS N10003 alloys under He ion irradiation [J]. J. Appl. Phys., 2021, 130: 155901
doi: 10.1063/5.0064975
|
14 |
Trinkaus H, Singh B N. Helium accumulation in metals during irradiation-where do we stand? [J]. J. Nucl. Mater., 2003, 323: 229
doi: 10.1016/j.jnucmat.2003.09.001
|
15 |
Zhang C H, Chen K Q, Wang Y S, et al. Formation of bubbles in helium implanted 316L stainless steel at temperatures between 25 and 550oC [J]. J. Nucl. Mater., 1997, 245: 210
doi: 10.1016/S0022-3115(97)00007-X
|
16 |
Kesternich W. Helium trapping at dislocations, precipitates and grain boundaries [J]. Radiat. Eff., 1983, 78: 261
doi: 10.1080/00337578308207376
|
17 |
Lin Y R, Chen W Y, Tan L Z, et al. Bubble formation in helium-implanted nanostructured ferritic alloys at elevated temperatures [J]. Acta Mater., 2021, 217: 117165
doi: 10.1016/j.actamat.2021.117165
|
18 |
Edmondson P D, Parish C M, Zhang Y, et al. Helium entrapment in a nanostructured ferritic alloy [J]. Scr. Mater., 2011, 65: 731
doi: 10.1016/j.scriptamat.2011.07.024
|
19 |
Li C, Lei G H, Liu J Z, et al. A potential candidate structural material for molten salt reactor: ODS nickel-based alloy [J]. J. Mater. Sci. Technol., 2022, 109: 129
doi: 10.1016/j.jmst.2021.08.071
|
20 |
Bai J J, Li J J, Fu C L, et al. Effect of helium bubbles on the irradiation hardening of GH3535 welded joints at 650oC [J]. J. Nucl. Mater., 2021, 557: 153241
doi: 10.1016/j.jnucmat.2021.153241
|
21 |
Chen Q, Zhang K, Liu R D, et al. Irradiation damage in GH3535 alloy under He ion irradiation at high temperature [J]. At. Energy Sci. Technol., 2020, 54: 688
|
21 |
陈 倩, 张 柯, 刘仁多 等. 高温He离子辐照GH3535合金的损伤效应 [J]. 原子能科学技术, 2020, 54: 688
|
22 |
Ziegler J F, Biersack J P. The stopping and range of ions in matter [A]. Treatise on Heavy-Ion Science [M]. New York: Springer, 1985: 93
|
23 |
ASTM. Standard practice for neutron radiation damage simulation by charged-particle irradiation [S]. West Conshohocken: ASTM International, 2009
|
24 |
Jiang L, Song M, Yang L Q, et al. A comparison study of void swelling in additively manufactured and cold-worked 316L stainless steels under ion irradiation [J]. J. Nucl. Mater., 2021, 551: 152946
doi: 10.1016/j.jnucmat.2021.152946
|
25 |
Edwards D J, Simonen E P, Bruemmer S M. Evolution of fine-scale defects in stainless steels neutron-irradiated at 275oC [J]. J. Nucl. Mater., 2003, 317: 13
doi: 10.1016/S0022-3115(03)00002-3
|
26 |
Nix W D, Gao H J. Indentation size effects in crystalline materials: A law for strain gradient plasticity [J]. J. Mech. Phys. Solids, 1998, 46: 411
doi: 10.1016/S0022-5096(97)00086-0
|
27 |
Kasada R, Takayama Y, Yabuuchi K, et al. A new approach to evaluate irradiation hardening of ion-irradiated ferritic alloys by nano-indentation techniques [J]. Fusion Eng. Des., 2011, 86: 2658
doi: 10.1016/j.fusengdes.2011.03.073
|
28 |
Ding J H, Sun D, Yang Y C, et al. First-principles investigations of intrinsic point defects and helium impurities in vanadium monocarbide [J]. Nucl. Instrum. Methods Phys. Res., 2020, 479B: 163
|
29 |
Wright R N, Van Siclen C D. In-situ TEM observations of helium bubble interactions with dislocations [J]. J. Nucl. Mater., 1993, 206: 87
doi: 10.1016/0022-3115(93)90237-S
|
30 |
Li Y P, Ran G, Guo Y J, et al. The evolution of dislocation loop and its interaction with pre-existing dislocation in He+-irradiated molybdenum: In-situ TEM observation and molecular dynamics simulation [J]. Acta Mater., 2020, 201: 462
doi: 10.1016/j.actamat.2020.10.022
|
31 |
Liu P P, Zhao M Z, Zhu Y M, et al. Effects of carbide precipitate on the mechanical properties and irradiation behavior of the low activation martensitic steel [J]. J. Alloys Compd., 2013, 579: 599
doi: 10.1016/j.jallcom.2013.07.085
|
32 |
Lucas G E. The evolution of mechanical property change in irradiated austenitic stainless steels [J]. J. Nucl. Mater., 1993, 206: 287
doi: 10.1016/0022-3115(93)90129-M
|
33 |
Foreman A J E, Makin M J. Dislocation movement through random arrays of obstacles [J]. Can. J. Phys., 1967, 45: 511
doi: 10.1139/p67-044
|
34 |
Gan J, Was G S. Microstructure evolution in austenitic Fe-Cr-Ni alloys irradiated with rotons: Comparison with neutron-irradiated microstructures [J]. J. Nucl. Mater., 2001, 297: 161
doi: 10.1016/S0022-3115(01)00615-8
|
35 |
Katoh Y, Ando M, Kohyama A. Radiation and helium effects on microstructures, nano-indentation properties and deformation behavior in ferrous alloys [J]. J. Nucl. Mater., 2003, 323: 251
doi: 10.1016/j.jnucmat.2003.08.007
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|