Please wait a minute...
金属学报  2024, Vol. 60 Issue (3): 299-310    DOI: 10.11900/0412.1961.2022.00040
  研究论文 本期目录 | 过刊浏览 |
GH3535合金焊缝高温氦离子辐照效应
白菊菊1,2, 李健健1,2(), 付崇龙1,2, 陈双建1, 李志军1, 林俊1,2()
1中国科学院上海应用物理研究所 上海 201800
2中国科学院大学 北京 100049
Effect of He Ion Irradiation on the GH3535 Weld Metal at High Temperature
BAI Juju1,2, LI Jianjian1,2(), FU Chonglong1,2, CHEN Shuangjian1, LI Zhijun1, LIN Jun1,2()
1Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
2University of Chinese Academy of Sciences, Beijing 100049, China
引用本文:

白菊菊, 李健健, 付崇龙, 陈双建, 李志军, 林俊. GH3535合金焊缝高温氦离子辐照效应[J]. 金属学报, 2024, 60(3): 299-310.
Juju BAI, Jianjian LI, Chonglong FU, Shuangjian CHEN, Zhijun LI, Jun LIN. Effect of He Ion Irradiation on the GH3535 Weld Metal at High Temperature[J]. Acta Metall Sin, 2024, 60(3): 299-310.

全文: PDF(4017 KB)   HTML
摘要: 

焊缝因其组织及力学性能不均匀性常被视为结构材料的薄弱环节。本工作对焊缝进行高温氦离子辐照效应研究,明确辐照缺陷在焊缝与母材中的演化差异。850℃下,对GH3535合金焊接接头进行2 × 1016 ions/cm2氦离子辐照,利用TEM和纳米压痕仪对焊缝和母材的微观结构及力学性能进行表征,对比分析高温下焊缝中微观缺陷的演化行为及力学性能变化。结果表明,850℃下,焊缝中He泡多分布在位错线和碳化物-基体界面上,碳化物-基体界面上的He泡较位错线上的He泡尺寸更小,密度更高;焊缝中峰值处He泡平均数密度小于母材,尺寸略大于母材,而位错环的数密度和尺寸均小于母材。纳米压痕结果表明,同样辐照条件下,焊缝的辐照硬化程度(36%)约为母材(70%)的一半。经DBH模型计算确认辐照后样品中He泡和位错环是造成辐照硬化的主要因素。分析认为,高温下纳米碳化物和位错线对He原子以及间隙子的捕获是导致焊缝与母材辐照行为差异的关键原因。

关键词 GH3535焊接接头氦离子辐照He泡位错环辐照硬化    
Abstract

GH3535 high-temperature nickel-based alloy was selected as the main structural material for the molten salt reactor because of its high-temperature strength and excellent corrosion resistance to molten salts. In general, the welded joints used to join structural materials are considered as the potentially weakest part because of the inhomogeneity in microstructure caused by repeated thermal cycle treatments. Helium embrittlement at high temperatures is an important issue that affects the safety and structural integrity of the components made of nickel-based alloys working in a reactor environment. In this study, the GH3535-welded joint was irradiated with 500 keV of He ions at 850oC. The microstructure and mechanical properties of the weld and base metal were characterized and compared by TEM and nano-indentation, and the effect of the intrinsic microstructure of the weld on the irradiation effect was investigated. Results show that the helium bubbles in the weld are basically distributed on the dislocation lines and carbide-base metal interface. The helium bubbles on the carbides-base metal interface are smaller, and they have higher density than those on the dislocation lines. The average number density of helium bubbles and dislocation loops in the peak damage region of the weld are smaller than those of the base metal. Therefore, at 850oC, dislocation lines, and the carbides-base metal interface are strong traps for helium and interstitial atoms, which affect the nucleation of helium bubbles and dislocation loops. In addition, the carbides-base metal interface can effectively inhibit the growth of helium bubbles. The results of nano-indentation show that the degree of the irradiation-induced hardening of the weld metal (36%) is about half of that of the base metal (70%) under the same irradiation condition. Therefore, the DBH model confirms that helium bubbles and dislocation loops primarily cause irradiation hardening. The enhanced trapping of helium atoms and interstitials by nano-carbides and dislocation lines at a high temperature is the key factor for the distinct irradiation behavior of welds compared with base metals.

Key wordsGH3535 welded joint    He ion irradiation    helium bubble    dislocation loop    irradiation hardening
收稿日期: 2022-01-27     
ZTFLH:  TL426  
基金资助:国家自然科学基金项目(12175301);国家自然科学基金项目(11605272);中国科学院前沿科学重点项目(QYZDY-SSW-JSC016);中国科学院战略性先导科技专项项目(XDA02030200);上海市自然科学基金项目(22ZR1474800);兰州重离子研究装置支持项目(HIR2021PY007)
通讯作者: 李健健,lijianjian@sinap.ac.cn,主要从事核材料辐照效应研究; 林 俊,linjun@sinap.ac.cn,主要从事先进核能材料与先进核燃料研究
Corresponding author: LI Jianjian, professor, Tel: (021)39194239, E-mail: lijianjian@sinap.ac.cn; LIN Jun, professor, Tel: (021)39194026, E-mail: linjun@sinap.ac.cn
作者简介: 白菊菊,女,1992年生,博士
MaterialMoCrFeMnSiAlCS + P + B + WNi
GH353516.566.964.180.640.480.040.06< 0.1Bal.
ERNiMo-2 (weld metal)16.406.894.120.650.470.020.05< 0.1Bal.
表1  GH3535合金和焊丝的化学成分 (mass fraction / %)
图1  使用SRIM-2013软件模拟的氦离子浓度及离位损伤随入射深度的分布
图2  焊缝和母材的EBSD晶粒图、SEM像以及TEM下位错线和碳化物分布
图3  焊缝中He泡随氦离子辐照深度的分布
图4  母材中He泡随氦离子辐照深度的分布
图5  TEM明场下焊缝、母材峰值区域He泡的分布,及双束条件下焊缝和母材中He泡的分布
图6  焊缝和母材中He泡数的密度及尺寸随辐照深度的分布
图7  焊缝和母材随辐照深度分布的肿胀率曲线
图8  弱束TEM明暗场下焊缝中峰值区域的位错环分布(850℃)
图9  弱束TEM明暗场下母材中的峰值区域位错环的分布(850℃)
图10  辐照前后母材和焊缝的硬度随压入深度变化及H2-1 / h曲线
SampleDefect

Δσ

MPa

Δσtotal

MPa

ΔHcal

GPa

ΔHexp

GPa

GH3535Helium bubble3105801.741.84
Dislocation loop490
Weld metalHelium bubble2403421.021.21
Dislocation loop243
表2  850℃下经2 × 1016 ions/cm2氦离子辐照后焊缝和母材的屈服强度增量与纳米硬度增量
1 Yvon P, Carré F. Structural materials challenges for advanced reactor systems [J]. J. Nucl. Mater., 2009, 385: 217
doi: 10.1016/j.jnucmat.2008.11.026
2 Chen S J, Tsang D K L, Jiang L, et al. Microstructure and local strains in GH3535 alloy heat affected zone and their influence on the mechanical properties [J]. Mater. Sci. Eng., 2017, A699: 48
3 Chen S J, Ye X X, Yu K, et al. Microstructure and mechanical properties of UNS N10003 alloy welded joints [J]. Mater. Sci. Eng., 2017, A682: 168
4 Huang H F, Zhou X L, Li C W, et al. Temperature dependence of nickel ion irradiation damage in GH3535 alloy weld metal [J]. J. Nucl. Mater., 2017, 497: 108
doi: 10.1016/j.jnucmat.2017.06.005
5 Li F G, Lei Y C, Zhang X N, et al. Study on microstructure change and hardening of 316L steel weld seam after helium ion irradiation [J]. Fusion Eng. Des., 2019, 148: 111293
doi: 10.1016/j.fusengdes.2019.111293
6 Was G S. Fundamentals of Radiation Materials Science [M]. Berlin: Springer, 2007: 827
7 Zinkle S J, Busby J T. Structural materials for fission & fusion energy [J]. Mater. Today, 2009, 12: 12
8 Zinkle S J, Was G S. Materials challenges in nuclear energy [J]. Acta Mater., 2013, 61: 735
doi: 10.1016/j.actamat.2012.11.004
9 McCoy H E. An evaluation of the molten-salt reactor experiment Hastelloy N surveillance speciments—Fourth group [R]. Oak Ridge: Oak Ridge National Laboratory, 1971
10 Fu C L, Li J J, Bai J J, et al. Effect of helium bubbles on irradiation hardening of additive manufacturing 316L stainless steel under high temperature He ions irradiation [J]. J. Nucl. Mater., 2021, 550: 152948
doi: 10.1016/j.jnucmat.2021.152948
11 Zhu Z B, Huang H F, Muránsky O, et al. On the irradiation tolerance of nano-grained Ni-Mo-Cr alloy: 1 MeV He+ irradiation experiment [J]. J. Nucl. Mater., 2021, 544: 152694
doi: 10.1016/j.jnucmat.2020.152694
12 Gao J, Huang H F, Liu J Z, et al. Coalescence mechanism of helium bubble during tensile deformation revealed by in situ small-angle X-ray scattering [J]. Scr. Mater., 2019, 158: 121
doi: 10.1016/j.scriptamat.2018.08.050
13 Bai J J, Li J J, Fu C L, et al. Temperature dependence of He bubble evolution in UNS N10003 alloys under He ion irradiation [J]. J. Appl. Phys., 2021, 130: 155901
doi: 10.1063/5.0064975
14 Trinkaus H, Singh B N. Helium accumulation in metals during irradiation-where do we stand? [J]. J. Nucl. Mater., 2003, 323: 229
doi: 10.1016/j.jnucmat.2003.09.001
15 Zhang C H, Chen K Q, Wang Y S, et al. Formation of bubbles in helium implanted 316L stainless steel at temperatures between 25 and 550oC [J]. J. Nucl. Mater., 1997, 245: 210
doi: 10.1016/S0022-3115(97)00007-X
16 Kesternich W. Helium trapping at dislocations, precipitates and grain boundaries [J]. Radiat. Eff., 1983, 78: 261
doi: 10.1080/00337578308207376
17 Lin Y R, Chen W Y, Tan L Z, et al. Bubble formation in helium-implanted nanostructured ferritic alloys at elevated temperatures [J]. Acta Mater., 2021, 217: 117165
doi: 10.1016/j.actamat.2021.117165
18 Edmondson P D, Parish C M, Zhang Y, et al. Helium entrapment in a nanostructured ferritic alloy [J]. Scr. Mater., 2011, 65: 731
doi: 10.1016/j.scriptamat.2011.07.024
19 Li C, Lei G H, Liu J Z, et al. A potential candidate structural material for molten salt reactor: ODS nickel-based alloy [J]. J. Mater. Sci. Technol., 2022, 109: 129
doi: 10.1016/j.jmst.2021.08.071
20 Bai J J, Li J J, Fu C L, et al. Effect of helium bubbles on the irradiation hardening of GH3535 welded joints at 650oC [J]. J. Nucl. Mater., 2021, 557: 153241
doi: 10.1016/j.jnucmat.2021.153241
21 Chen Q, Zhang K, Liu R D, et al. Irradiation damage in GH3535 alloy under He ion irradiation at high temperature [J]. At. Energy Sci. Technol., 2020, 54: 688
21 陈 倩, 张 柯, 刘仁多 等. 高温He离子辐照GH3535合金的损伤效应 [J]. 原子能科学技术, 2020, 54: 688
22 Ziegler J F, Biersack J P. The stopping and range of ions in matter [A]. Treatise on Heavy-Ion Science [M]. New York: Springer, 1985: 93
23 ASTM. Standard practice for neutron radiation damage simulation by charged-particle irradiation [S]. West Conshohocken: ASTM International, 2009
24 Jiang L, Song M, Yang L Q, et al. A comparison study of void swelling in additively manufactured and cold-worked 316L stainless steels under ion irradiation [J]. J. Nucl. Mater., 2021, 551: 152946
doi: 10.1016/j.jnucmat.2021.152946
25 Edwards D J, Simonen E P, Bruemmer S M. Evolution of fine-scale defects in stainless steels neutron-irradiated at 275oC [J]. J. Nucl. Mater., 2003, 317: 13
doi: 10.1016/S0022-3115(03)00002-3
26 Nix W D, Gao H J. Indentation size effects in crystalline materials: A law for strain gradient plasticity [J]. J. Mech. Phys. Solids, 1998, 46: 411
doi: 10.1016/S0022-5096(97)00086-0
27 Kasada R, Takayama Y, Yabuuchi K, et al. A new approach to evaluate irradiation hardening of ion-irradiated ferritic alloys by nano-indentation techniques [J]. Fusion Eng. Des., 2011, 86: 2658
doi: 10.1016/j.fusengdes.2011.03.073
28 Ding J H, Sun D, Yang Y C, et al. First-principles investigations of intrinsic point defects and helium impurities in vanadium monocarbide [J]. Nucl. Instrum. Methods Phys. Res., 2020, 479B: 163
29 Wright R N, Van Siclen C D. In-situ TEM observations of helium bubble interactions with dislocations [J]. J. Nucl. Mater., 1993, 206: 87
doi: 10.1016/0022-3115(93)90237-S
30 Li Y P, Ran G, Guo Y J, et al. The evolution of dislocation loop and its interaction with pre-existing dislocation in He+-irradiated molybdenum: In-situ TEM observation and molecular dynamics simulation [J]. Acta Mater., 2020, 201: 462
doi: 10.1016/j.actamat.2020.10.022
31 Liu P P, Zhao M Z, Zhu Y M, et al. Effects of carbide precipitate on the mechanical properties and irradiation behavior of the low activation martensitic steel [J]. J. Alloys Compd., 2013, 579: 599
doi: 10.1016/j.jallcom.2013.07.085
32 Lucas G E. The evolution of mechanical property change in irradiated austenitic stainless steels [J]. J. Nucl. Mater., 1993, 206: 287
doi: 10.1016/0022-3115(93)90129-M
33 Foreman A J E, Makin M J. Dislocation movement through random arrays of obstacles [J]. Can. J. Phys., 1967, 45: 511
doi: 10.1139/p67-044
34 Gan J, Was G S. Microstructure evolution in austenitic Fe-Cr-Ni alloys irradiated with rotons: Comparison with neutron-irradiated microstructures [J]. J. Nucl. Mater., 2001, 297: 161
doi: 10.1016/S0022-3115(01)00615-8
35 Katoh Y, Ando M, Kohyama A. Radiation and helium effects on microstructures, nano-indentation properties and deformation behavior in ferrous alloys [J]. J. Nucl. Mater., 2003, 323: 251
doi: 10.1016/j.jnucmat.2003.08.007
[1] 梁晋洁, 高宁, 李玉红. 体心立方Fe中微裂纹与间隙型位错环相互作用的分子动力学模拟[J]. 金属学报, 2020, 56(9): 1286-1294.
[2] 刘继召, 黄鹤飞, 朱振博, 刘阿文, 李燕. 氙离子辐照后Hastelloy N合金的纳米硬度及其数值模拟[J]. 金属学报, 2020, 56(5): 753-759.
[3] 邓平, 彭群家, 韩恩厚, 柯伟, 孙晨, 夏海鸿, 焦治杰. 国产核用不锈钢辐照损伤研究[J]. 金属学报, 2017, 53(12): 1588-1602.
[4] 黄鹤飞, 李健健, 刘仁多, 陈怀灿, 闫隆. 316奥氏体不锈钢离子辐照损伤中的温度效应研究[J]. 金属学报, 2014, 50(10): 1189-1194.
[5] 万强茂 束国刚 王荣山 丁辉 彭啸 张琪. A508-3钢质子辐照条件下微结构演变研究[J]. 金属学报, 2012, 48(8): 929-934.
[6] 佟振峰 戴勇 杨文 杨启法. 辐照与He协同作用对低活度铁素体/马氏体钢F82H微观结构的影响[J]. 金属学报, 2011, 47(7): 965-970.
[7] 陈淼 陆光达 张桂凯 张延志 王小英 任大鹏. Pd粉及Pd91.31Y8.50Ru0.19合金膜的氚老化效应[J]. 金属学报, 2009, 45(10): 1277-1280.
[8] 刘小明; 由小川; 柳占立; 庄茁 . 纳米尺度摩擦过程的分子动力学模拟[J]. 金属学报, 2008, 44(9): 1025-1030 .
[9] 刘毅;郦定强;林栋梁;陈世朴;赵晓宁;洪建明. 高温变形FeAl金属间化合物中的位错特征[J]. 金属学报, 1995, 31(1): 24-28.
[10] 张镭;王佩璇;陶蓉;马如璋;张国光. 注入氦不锈钢中氦泡热形核及长大研究[J]. 金属学报, 1992, 28(12): 9-14.
[11] 万发荣;肖纪美;袁逸. 利用电子束辐照方法测定空位迁移能[J]. 金属学报, 1990, 26(2): 74-78.