|
|
α-Fe单晶拉伸变形热-动力学的分子动力学模拟 |
柏智文1, 丁志刚1, 周爱龙1, 侯怀宇1( ), 刘伟1, 刘峰2,3( ) |
1 南京理工大学 材料科学与工程学院 南京 210094 2 西北工业大学 凝固技术国家重点实验室 西安 710072 3 西北工业大学 分析与测试中心 西安 710072 |
|
Molecular Dynamics Simulation of Thermo-Kinetics of Tensile Deformation of α-Fe Single Crystal |
BAI Zhiwen1, DING Zhigang1, ZHOU Ailong1, HOU Huaiyu1( ), LIU Wei1, LIU Feng2,3( ) |
1 Department of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China 2 State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi 'an 710072, China 3 Analytical & Testing Center, Northwestern Polytechnical University, Xi 'an 710072, China |
引用本文:
柏智文, 丁志刚, 周爱龙, 侯怀宇, 刘伟, 刘峰. α-Fe单晶拉伸变形热-动力学的分子动力学模拟[J]. 金属学报, 2024, 60(6): 848-856.
Zhiwen BAI,
Zhigang DING,
Ailong ZHOU,
Huaiyu HOU,
Wei LIU,
Feng LIU.
Molecular Dynamics Simulation of Thermo-Kinetics of Tensile Deformation of α-Fe Single Crystal[J]. Acta Metall Sin, 2024, 60(6): 848-856.
1 |
Dever D J. Temperature dependence of the elastic constants in α-iron single crystals: Relationship to spin order and diffusion an-omalies [J]. J. Appl. Phys., 1972, 43: 3293
|
2 |
Benito J A, Jorba J, Manero J M, et al. Change of Young's modulus of cold-deformed pure iron in a tensile test [J]. Metall. Mater. Trans.., 2005, 36A: 3317
|
3 |
Zhang X Y, Chen J, Hu W Y, et al. Interactions of plasticity and phase transformation under shock in iron bicrystals [J]. J. Appl. Phys., 2019, 126: 045901
|
4 |
Ma T, Xie H X. Formation mechanism of face-centered cubic phase in impact process of single crystal iron along [101] direction [J]. Acta Phys. Sin., 2020, 69: 130202
|
4 |
马 通, 谢红献. 单晶铁沿[101]晶向冲击过程中面心立方相的形成机制 [J]. 物理学报, 2020, 69: 130202
|
5 |
Sainath G, Choudhary B K. Deformation behaviour of body centered cubic iron nanopillars containing coherent twin boundaries [J]. Philos. Mag., 2016, 96: 3502
|
6 |
Dutta A. Compressive deformation of Fe nanopillar at high strain rate: Modalities of dislocation dynamics [J]. Acta Mater., 2017, 125: 219
|
7 |
Rawat S, Chaturvedi S. Effect of temperature on the evolution dynamics of voids in dynamic fracture of single crystal iron: A molecular dynamics study [J]. Philos. Mag., 2021, 101: 657
|
8 |
Zhang Z S, Xu K, Lin Y W, et al. Simultaneous stiffening and strengthening of nanodiamond by fivefold twins [J]. MRS Bull., 2022, 47: 219
|
9 |
Wu J Y, Nagao S, He J Y, et al. Role of five-fold twin boundary on the enhanced mechanical properties of fcc Fe nanowires [J]. Nano Lett., 2011, 11: 5264
doi: 10.1021/nl202714n
pmid: 22050778
|
10 |
Zolnikov K P, Korchuganov A V, Kryzhevich D S. Anisotropy of plasticity and structural transformations under uniaxial tension of iron crystallites [J]. Comput. Mater. Sci., 2018, 155: 312
|
11 |
Kocks U F, Argon A S, Ashby M F. Thermodynamics and kinetics of slip [M]. Oxford: Pergamon Presss, 1975: 1
|
12 |
Liu F, Wang H F, Song S J, et al. Competitions correlated with nucleation and growth in non-equilibrium solidification and solid-state transformation [J]. Prog. Phys., 2012, 32: 57
|
12 |
刘 峰, 王海丰, 宋韶杰 等. 非平衡凝固与固态相变中有关形核和长大的竞争研究 [J]. 物理学进展, 2012, 32: 57
|
13 |
Peng H R, Huang L K, Liu F. A thermo-kinetic correlation for grain growth in nanocrystalline alloys [J]. Mater. Lett., 2018, 219: 276
|
14 |
Liu F, Wang T L. Precipitation modeling via the synergy of thermo-dynamics and kinetics [J]. Acta Metall. Sin., 2021, 57: 55
|
14 |
刘 峰, 王天乐. 基于热力学和动力学协同的析出相模拟 [J]. 金属学报, 2021, 57: 55
|
15 |
Chen Z, Liu F, Yang X Q, et al. A thermokinetic description of nanoscale grain growth: Analysis of the activation energy effect [J]. Acta Mater., 2012, 60: 4833
|
16 |
Peng H R, Liu B S, Liu F. A strategy for designing stable nanocrystalline alloys by thermo-kinetic synergy [J]. J. Mater. Sci. Technol., 2020, 43: 21
doi: 10.1016/j.jmst.2019.11.006
|
17 |
Huang L K, Lin W T, Zhang Y B, et al. Generalized stability criterion for exploiting optimized mechanical properties by a general correlation between phase transformations and plastic deformations [J]. Acta Mater., 2020, 201: 167
|
18 |
He Y Q, Song S J, Du J L, et al. Thermo-kinetic connectivity by integrating thermo-kinetic correlation and generalized stability [J]. J. Mater. Sci. Technol., 2022, 127: 225
doi: 10.1016/j.jmst.2022.04.008
|
19 |
Hirel P. Atomsk: A tool for manipulating and converting atomic data files [J]. Comput. Phys. Commun., 2015, 197: 212
|
20 |
Plimpton S. Fast parallel algorithms for short-range molecular dynamics [J]. J. Comput. Phys., 1995, 117: 1
|
21 |
Mendelev M I, Han S, Srolovitz D J, et al. Development of new interatomic potentials appropriate for crystalline and liquid iron [J]. Philos. Mag., 2003, 83: 3977
|
22 |
Jeon J B, Lee B J, Chang Y W. Molecular dynamics simulation study of the effect of grain size on the deformation behavior of nanocrystalline body-centered cubic iron [J]. Scr. Mater., 2011, 64: 494
|
23 |
Yuan F P. Atomistic simulation study of tensile deformation in bulk nanocrystalline bcc iron [J]. Sci. China Phys. Mech. Astron., 2012, 55: 1657
|
24 |
Zhao X, Lu C, Tieu A K, et al. Deformation mechanisms and slip-twin interactions in nanotwinned body-centered cubic iron by molecular dynamics simulations [J]. Comput. Mater. Sci., 2018, 147: 34
|
25 |
Stukowski A. Visualization and analysis of atomistic simulation data with OVITO—The open visualization tool [J]. Modell. Simul. Mater. Sci. Eng., 2010, 18: 015012
|
26 |
Stukowski A, Bulatov V V, Arsenlis A. Automated identification and indexing of dislocations in crystal interfaces [J]. Modell. Simul. Mater. Sci. Eng., 2012, 20: 085007
|
27 |
Stukowski A. Structure identification methods for atomistic simulations of crystalline materials [J]. Modell. Simul. Mater. Sci. Eng., 2012, 20: 045021
|
28 |
Ma B, Rao Q H, He Y H. Effect of crystal orientation on tensile mechanical properties of single-crystal tungsten nanowire [J]. Trans. Nonferrous Met. Soc. China, 2014, 24: 2904
|
29 |
Sandoval L, Urbassek H M. Transformation pathways in the solid-solid phase transitions of iron nanowires [J]. Appl. Phys. Lett., 2009, 95: 191909
|
30 |
Wen P, Tao G, Ren B X., et al. Molecular dynamics simulation on the uniaxial tension property of metal Fe interacting with C [J] Chin. J. Appl. Mech., 2015, 32: 915
|
30 |
闻 鹏, 陶 钢, 任保祥 等. C原子对Fe-C合金拉伸性能影响的分子动力学分析 [J]. 应用力学学报, 2015, 32: 915
|
31 |
Sandoval L, Urbassek H M. Finite-size effects in Fe-nanowire solid-solid phase transitions: A molecular dynamics approach [J]. Nano Lett., 2009, 9: 2290
doi: 10.1021/nl9004767
pmid: 19438190
|
32 |
Sandoval L, Urbassek H M. Solid-solid phase transitions in Fe nanowires induced by axial strain [J]. Nanotechnology, 2009, 20: 5704
|
33 |
Huang D, Zhang Q, Guo Y M. Molecular dynamics simulation for axial tension process of α-Fe and Ni nano wires [J]. Ordnance Mater. Sci. Eng., 2006, 29: 12
|
33 |
黄 丹, 章 青, 郭乙木. α-Fe和Ni纳米丝单向拉伸过程的分子动力学模拟 [J]. 兵器材料科学与工程, 2006, 29: 12
|
34 |
Wu Q, Wang Y, Han T, et al. Molecular dynamics simulations of the effect of temperature and strain rate on the plastic deformation of body-centered cubic iron nanowires [J]. J. Eng. Mater. Technol., 2021, 143: 031007
|
35 |
Zepeda-Ruiz L A, Stukowski A, Oppelstrup T, et al. Probing the limits of metal plasticity with molecular dynamics simulations [J], Nature, 2017, 550: 492
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|