Please wait a minute...
金属学报  2024, Vol. 60 Issue (7): 857-868    DOI: 10.11900/0412.1961.2023.00440
  研究论文 本期目录 | 过刊浏览 |
AlSi10Mg多孔结构在不同加载应变率下的损伤模式及响应机制
蔡宣明1(), 张伟2, 范志强1, 高玉波1, 王俊元3(), 张柱军4
1 中北大学 航空宇航学院 太原 030051
2 哈尔滨工业大学 航天学院 哈尔滨 150080
3 中北大学 机械工程学院 太原 030051
4 65589部队91分队 大庆 163411
Damage Modes and Response Mechanisms of AlSi10Mg Porous Structures Under Different Loading Strain Rates
CAI Xuanming1(), ZHANG Wei2, FAN Zhiqiang1, GAO Yubo1, WANG Junyuan3(), ZHANG Zhujun4
1 School of Aerospace Engineering, North University of China, Taiyuan 030051, China
2 School of Astronautics, Harbin Institute of Technology, Harbin 150080, China
3 School of Mechanical Engineering, North University of China, Taiyuan 030051, China
4 65589 Unit 91 Detachment, Daqing 163411, China
引用本文:

蔡宣明, 张伟, 范志强, 高玉波, 王俊元, 张柱军. AlSi10Mg多孔结构在不同加载应变率下的损伤模式及响应机制[J]. 金属学报, 2024, 60(7): 857-868.
Xuanming CAI, Wei ZHANG, Zhiqiang FAN, Yubo GAO, Junyuan WANG, Zhujun ZHANG. Damage Modes and Response Mechanisms of AlSi10Mg Porous Structures Under Different Loading Strain Rates[J]. Acta Metall Sin, 2024, 60(7): 857-868.

全文: PDF(4456 KB)   HTML
摘要: 

为探明AlSi10Mg多孔结构在不同加载应变率条件下的承载能力、破坏模式及破坏机理,展开了一系列实验研究、理论分析和数值模拟。通过实验研究明确了该AlSi10Mg多孔结构的损伤破坏模式主要表现为损伤断裂和剪切破坏,且其力学行为对加载应变率不敏感。结合结构损伤分析和高精度数值模拟研究,发现AlSi10Mg多孔结构在轴向压缩载荷作用下沿斜截面相对错动而发生剪切破坏,这一失效模式是导致其结构发生断裂破坏的最直接原因。结合实验研究和理论分析表明,当AlSi10Mg多孔结构应变小于10%时,其在低应变率和中应变率下的吸能特性十分接近;当结构应变大于10%时,其在中应变率下的吸能特性略高于低应变率加载时。在不同高应变率(378~1639 s-1)加载条件下,该AlSi10Mg多孔结构吸能特性十分接近。

关键词 多孔结构选区激光熔化力学行为能量吸收剪切失效    
Abstract

AlSi10Mg is a frequently utilized aluminum alloy known for its low density, high specific strength, strong energy absorption capability, and good impact resistance. It holds significant appeal in the aviation, automotive, and machinery sectors and is particularly used as protective structures for critical aerospace components. In particular, in complex application scenarios, these protective structures are often subjected to impacts from foreign objects at different loading rates. This leads to diverse forms of damage and unpredictable damage patterns, ultimately jeopardizing key components and disrupting the normal operation of associated parts. Herein, through extensive research into the preparation, properties, and factors influencing AlSi10Mg porous structures, an understanding of the intrinsic relationship between the porous metal structure and its properties is revealed. This is important for improving material properties, expanding application possibilities, and promoting scientific and technological advancement. Exploring the application potential of AlSi10Mg porous structures across various fields offers theoretical support and technical guidance for its practical utilization. Moreover, this will provide new insights and methodologies for the future development of aluminum alloys with porous structures. By conducting a series of experimental studies, theoretical analyses, and numerical simulations, the load-bearing capacity, damage modes, and damage mechanisms of the optimized AlSi10Mg porous structures under different loading strain rates were examined. The rusults showed that the predominant damage modes in AlSi10Mg porous structures are fracture and shear damages, and the mechanical behavior is unaffected by the loading strain rates. The combination of structural damage analysis and high-precision numerical simulations revealed that under axial compressive loading, the AlSi10Mg porous structures experiences shear damage caused by relative misalignment along the diagonal cross section. This failure mode is the direct cause of the fracture damage of the structure. Furthermore, combined experimental and theoretical analyses indicated that the energy absorption properties of the AlSi10Mg porous structures are maintained at low and medium strain rates when the strain of the structures is less than 10%. When the strain exceeds 10%, the energy absorption properties at medium strain rates slightly improve compared to those at low strain rates. The energy absorption properties of the AlSi10Mg porous structures remain almost unchanged under different strain rates ranging from 378 to 1639 s-1.

Key wordsporous structure    selective laser melting    mechanical behavior    energy absorption    shear failure
收稿日期: 2023-11-07     
ZTFLH:  TG111.3  
基金资助:动态测试技术国家重点实验室基金项目(2022-SYSJJ-03)
通讯作者: 蔡宣明,caixm@nuc.edu.cn,主要从事多孔金属结构轻量化设计及优化调控研究;
王俊元,wangjy@nuc.edu.cn,主要从事金属结构设计研究
Corresponding author: CAI Xuanming, associate professor, Tel: (0351)3922272, E-mail: caixm@nuc.edu.cn;
作者简介: 蔡宣明,男,1981年生,副教授,博士
图1  AlSi10Mg多孔结构优化及设计的主要成形模式示意图
图2  中应变率加载实验装置示意图
图3  改进的分离式Hopkinson压杆(SHPB)实验装置示意图
ParameterSymbolValueUnit
Yield strength parameterM331.17MPa
Model parameterB576.65MPa
Strain rate sensitive parameterC0.032
Hardening indexn0.99
Temperature softening parameterm0.945
Reference strain rateε˙01s-1
Reference temperatureTr298K
Melting point temperatureTm843K
Material model parameterD10.04704
D21.155
D3-0.841
D4-0.042
D50
Material densityρ2700kg·m-3
Elastic modulusE75GPa
Poisson's ratioν0.3
表1  Johnson-Cook本构模型和断裂准则相关参数
图4  AlSi10Mg合金粉末形貌及粒度分布
图5  AlSi10Mg多孔结构在不同加载应变率下的应力-应变曲线
图6  AlSi10Mg多孔结构在低应变率(0.009 s-1)下的变形破坏模式及破坏位置示意图
图7  AlSi10Mg多孔结构在中应变率(50 s-1)加载条件下的变形破坏模式及破坏位置示意图
图8  高速相机拍摄到的AlSi10Mg多孔结构在1137 s-1高应变率加载条件下的变形及破坏模式
图9  AlSi10Mg多孔结构在低应变率(0.009 s-1)加载条件下,应变约为2%时的承载状态数值模拟结果
图10  AlSi10Mg多孔结构在低应变率(0.009 s-1)加载条件下,应变约为7.7%时的破坏模式数值模拟结果
图11  AlSi10Mg多孔结构在中应变率(50 s-1)加载条件下的承载状态及变形破坏模式数值模拟结果
图12  AlSi10Mg多孔结构在高应变率(1137 s-1)加载条件下的变形及破坏模式数值模拟结果
图13  AlSi10Mg多孔结构在不同加载应变率下的能量吸收特性
图14  AlSi10Mg多孔结构在不同加载应变率下的能量吸收效率
1 Tiwari J K, Mandal A, Sathish N, et al. Investigation of porosity, microstructure and mechanical properties of additively manufactured graphene reinforced AlSi10Mg composite [J]. Addit. Manuf., 2020, 33: 101095
2 Li Z H, Nie Y F, Liu B, et al. Mechanical properties of AlSi10Mg lattice structures fabricated by selective laser melting [J]. Mater. Des., 2020, 192: 108709
3 Yang T, Liu T T, Liao W H, et al. Laser powder bed fusion of AlSi10Mg: Influence of energy intensities on spatter and porosity evolution, microstructure and mechanical properties [J]. J. Alloys Compd., 2020, 849: 156300
4 Schuch M, Hahn T, Bleckmann M. The mechanical behavior and microstructure of additively manufactured AlSi10Mg for different material states and loading conditions [J]. Mater. Sci. Eng., 2021, A813: 141134
5 Zhang Y F, Majeed A, Muzamil M, et al. Investigation for macro mechanical behavior explicitly for thin-walled parts of AlSi10Mg alloy using selective laser melting technique [J]. J. Manuf. Process., 2021, 66: 269
6 Li X F, Yi D H, Wu X Y, et al. Effect of construction angles on microstructure and mechanical properties of AlSi10Mg alloy fabricated by selective laser melting [J]. J. Alloys Compd., 2021, 881: 160459
7 AlQaydi H A, Krishnan K, Oyebanji J, et al. Hybridisation of AlSi10Mg lattice structures for engineered mechanical performance [J]. Addit. Manuf., 2022, 57: 102935
8 Butler C, Babu S, Lundy R, et al. Effects of processing parameters and heat treatment on thermal conductivity of additively manufactured AlSi10Mg by selective laser melting [J]. Mater. Charact., 2021, 173: 110945
9 Sun Q D, Sun J, Guo K, et al. Investigation on mechanical properties and energy absorption capabilities of AlSi10Mg triply periodic minimal surface sheet structures fabricated via selective laser melting [J]. J. Mater. Eng. Perform., 2022, 31: 9110
10 Johnson Q C, Laursen C M, Spear A D, et al. Analysis of the interdependent relationship between porosity, deformation, and crack growth during compression loading of LPBF AlSi10Mg [J]. Mater. Sci. Eng., 2022, A852: 143640
11 Chen Y, Ren Y M, Li K, et al. Laser powder bed fusion of oxidized microscale SiC-particle-reinforced AlSi10Mg matrix composites: Microstructure, porosity, and mechanical properties [J]. Mater. Sci. Eng., 2023, A870: 144860
12 Maleki E, Bagherifard S, Unal O, et al. Effects of different mechanical and chemical surface post-treatments on mechanical and surface properties of as-built laser powder bed fusion AlSi10Mg [J]. Surf. Coat. Technol., 2022, 439: 128391
13 Hirata T, Kimura T, Nakamoto T. Effect of internal pores on fatigue properties in selective laser melted AlSi10Mg alloy [J]. Mater. Trans., 2022, 63: 1013
14 Kolev M, Drenchev L, Simeonova T, et al. Data on mechanical pro-perties of open-cell AlSi10Mg materials and open-cell AlSi10Mg-SiC composites with different pore sizes and strain rates [J]. Data Brief, 2023, 49: 109461
15 Pezzato L, Dabalà M, Gross S, et al. Effect of microstructure and porosity of AlSi10Mg alloy produced by selective laser melting on the corrosion properties of plasma electrolytic oxidation coatings [J]. Surf. Coat. Technol., 2020, 404: 126477
16 Yue D Y, Li D M, Zhang X, et al. Tensile behavior of AlSi10Mg overhanging structures fabricated by laser powder bed fusion: Effects of support structures and build orientation [J]. Mater. Sci. Eng., 2023, A880: 145375
17 Dynin N V, Antipov V V, Khasikov D V, et al. Structure and mechani-cal properties of an advanced aluminium alloy AlSi10MgCu(Ce, Zr) produced by selective laser melting [J]. Mater. Lett., 2021, 284: 128898
18 Nezhadfar P D, Thompson S, Saharan A, et al. Structural integrity of additively manufactured aluminum alloys: Effects of build orientation on microstructure, porosity, and fatigue behavior [J]. Addit. Manuf., 2021, 47: 102292
19 Wang P S, Salandari-Rabori A, Dong Q S, et al. Effect of input powder attributes on optimized processing and as-built tensile properties in laser powder bed fusion of AlSi10Mg alloy [J]. J. Manuf. Process., 2021, 64: 633
20 Schukraft J, Roßdeutscher J, Siegmund F, et al. Thermal expansion behavior and elevated temperature elastic properties of an interpenetrating metal/ceramic composite [J]. Thermochim. Acta, 2022, 715: 179298
21 Yaokawa J, Oh-Ishi K, Dong S X, et al. Dimensional changes of selectively laser-melted AlSi10Mg alloy induced by heat treatment [J]. Mater. Trans., 2023, 64: 697
22 Yusuf S M, Mazlan N, Musa N H, et al. Microstructures and hardening mechanisms of a 316L stainless steel/Inconel 718 interface additively manufactured by multi-material selective laser melting [J]. Metals, 2023, 13: 400
23 Du D F, Wang L, Dong A P, et al. Promoting the densification and grain refinement with assistance of static magnetic field in laser powder bed fusion [J]. Int. J. Mach. Tools Manuf., 2022, 183: 103965
24 Tang H, Geng Y X, Luo J J, et al. Mechanical properties of high Mg-content Al-Mg-Sc-Zr alloy fabricated by selective laser melting [J]. Met. Mater. Int., 2021, 27: 2592
25 Parsons E M, Shaik S Z. Additive manufacturing of aluminum metal matrix composites: Mechanical alloying of composite powders and single track consolidation with laser powder bed fusion [J]. Addit. Manuf., 2022, 50: 102450
26 Fathi-Hafshejani P, Soltani-Tehrani A, Shamsaei N, et al. Laser incidence angle influence on energy density variations, surface roughness, and porosity of additively manufactured parts [J]. Addit. Manuf., 2022, 50: 102572
27 Muhammad W, Brahme A P, Ibragimova O, et al. A machine learning framework to predict local strain distribution and the evolution of plastic anisotropy & fracture in additively manufactured alloys [J]. Int. J. Plast., 2021, 136: 102867
28 Miao K, Zhou H, Gao Y P, et al. Laser powder-bed-fusion of Si3N4 reinforced AlSi10Mg composites: Processing, mechanical properties and strengthening mechanisms [J]. Mater. Sci. Eng., 2021, A825: 141874
29 Xing X D, Duan X M, Sun X J, et al. Modification of residual stresses in laser additive manufactured AlSi10Mg specimens using an ultrasonic peening technique [J]. Materials, 2019, 12: 455
30 Nurel B, Nahmany M, Frage N, et al. Split Hopkinson pressure bar tests for investigating dynamic properties of additively manufactured AlSi10Mg alloy by selective laser melting [J]. Adv. Manuf., 2018, 22: 823
31 Zaretsky E, Stern A, Frage N. Dynamic response of AlSi10Mg alloy fabricated by selective laser melting [J]. Mater. Sci. Eng., 2017, A688: 364
32 Baxter C, Cyr E, Odeshi A, et al. Constitutive models for the dynamic behaviour of direct metal laser sintered AlSi10Mg_200C under high strain rate shock loading [J]. Mater. Sci. Eng., 2018, A731: 296
33 Hadadzadeh A, Amirkhiz B S, Odeshi A, et al. Dynamic loading of direct metal laser sintered AlSi10Mg alloy: Strengthening behavior in different building directions [J]. Mater. Des., 2018, 159: 201
34 Zhang Y W, Liu T, Ren H, et al. Dynamic compressive response of additively manufactured AlSi10Mg alloy hierarchical honeycomb structures [J]. Compos. Struct., 2018, 195: 45
35 Aktürk M, Boy M, Gupta M K, et al. Numerical and experimental investigations of built orientation dependent Johnson-Cook model for selective laser melting manufactured AlSi10Mg [J]. J. Mater. Res. Technol., 2021, 15: 6244
36 Feng Z, Wang X M, Tan H, et al. Effect of heat treatment patterns on porosity, microstructure, and mechanical properties of selective laser melted TiB2/Al-Si-Mg composite [J]. Mater. Sci. Eng., 2022, A855: 143932
37 Zhang Y W, Lin Y L, Li Y, et al. 3D printed self-similar AlSi10Mg alloy hierarchical honeycomb architectures under in-plane large deformation [J]. Thin-Wall. Struct., 2021, 164: 107795
38 Amir B, Kochavi E, Gruntman S, et al. Experimental investigation on shear strength of laser powder bed fusion AlSi10Mg under quasi-static and dynamic loads [J]. Addit. Manuf., 2021, 46: 102150
39 Roth C C, Tancogne-Dejean T, Mohr D. Plasticity and fracture of cast and SLM AlSi10Mg: High-throughput testing and modeling [J]. Addit. Manuf., 2021, 43: 101998
40 Sharma S K, Grewal H S, Saxena K K, et al. Advancements in the additive manufacturing of magnesium and aluminum alloys through laser-based approach [J]. Materials, 2022, 15: 8122
41 Matus K, Matula G, Pawlyta M, et al. TEM study of the microstructure of an alumina/Al composite prepared by gas-pressure infiltration [J]. Materials, 2022, 15: 6112
42 Li Y N, Zhan J, Song C H, et al. Design and performance of a novel neutron shielding composite materials based on AlSi10Mg porous structure fabricated by laser powder bed fusion [J]. J. Alloys Compd., 2023, 968: 172180
43 Maskery I, Aboulkhair N T, Aremu A O, et al. Compressive failure modes and energy absorption in additively manufactured double gyroid lattices [J]. Addit. Manuf., 2017, 16: 24
44 Di Egidio G, Ceschini L, Morri A, et al. A novel T6 rapid heat treatment for AlSi10Mg alloy produced by laser-based powder bed fusion: Comparison with T5 and conventional T6 heat treatments [J]. Metall. Mater. Trans., 2022, 53B: 284
45 Li D M, Zhang X, Qin R X, et al. Influence of processing parameters on AlSi10Mg lattice structure during selective laser melting: Manufacturing defects, thermal behavior and compression properties [J]. Opt. Laser Technol., 2023, 161: 109182
46 Gao C, Wang Z, Xiao Z, et al. Selective laser melting of TiN nanoparticle-reinforced AlSi10Mg composite: Microstructural, interfacial, and mechanical properties [J]. J. Mater. Process. Technol., 2020, 281: 116618
47 Smith B A, Laursen C M, Bartanus J, et al. The interplay of geometric defects and porosity on the mechanical behavior of additively manufactured components [J]. Exp. Mech., 2021, 61: 685
48 Xiao H F, Zhang C C, Zhu H H. Effect of direct aging and annealing on the microstructure and mechanical properties of AlSi10Mg fabricated by selective laser melting [J]. Rapid Prototyping J., 2023, 29: 118
49 Wang X, Qin R X, Chen B Z. Laser-based additively manufactured bio-inspired crashworthy structure: Energy absorption and collapse behaviour under static and dynamic loadings [J]. Mater. Des., 2021, 211: 110128
50 Qiu J Q, Chen C J, Zhang M. Effects of graphene on the mechanical properties of AlSi10Mg melted by SLM [J]. Mater. Sci. Technol., 2022, 38: 804
[1] 张楠, 张海武, 王淼辉. 微米级选区激光熔化316L不锈钢的拉伸力学性能[J]. 金属学报, 2024, 60(2): 211-219.
[2] 陈玉勇, 时国浩, 杜之明, 张宇, 常帅. 增材制造TiAl合金的研究进展[J]. 金属学报, 2024, 60(1): 1-15.
[3] 王寒玉, 李彩, 赵璨, 曾涛, 王祖敏, 黄远. 基于纳米活性结构的不互溶W-Cu体系直接合金化及其热力学机制[J]. 金属学报, 2023, 59(5): 679-692.
[4] 侯娟, 代斌斌, 闵师领, 刘慧, 蒋梦蕾, 杨帆. 尺寸设计对选区激光熔化304L不锈钢显微组织与性能的影响[J]. 金属学报, 2023, 59(5): 623-635.
[5] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[6] 王凯, 晋玺, 焦志明, 乔珺威. CrFeNi中熵合金在宽温域拉伸条件下的力学行为与变形本构方程[J]. 金属学报, 2023, 59(2): 277-288.
[7] 唐伟能, 莫宁, 侯娟. 增材制造镁合金技术现状与研究进展[J]. 金属学报, 2023, 59(2): 205-225.
[8] 戚钊, 王斌, 张鹏, 刘睿, 张振军, 张哲峰. 应力比对含缺陷选区激光熔化TC4合金稳态疲劳裂纹扩展速率的影响[J]. 金属学报, 2023, 59(10): 1411-1418.
[9] 卢海飞, 吕继铭, 罗开玉, 鲁金忠. 激光热力交互增材制造Ti6Al4V合金的组织及力学性能[J]. 金属学报, 2023, 59(1): 125-135.
[10] 祝国梁, 孔德成, 周文哲, 贺戬, 董安平, 疏达, 孙宝德. 选区激光熔化 γ' 相强化镍基高温合金裂纹形成机理与抗裂纹设计研究进展[J]. 金属学报, 2023, 59(1): 16-30.
[11] 王孟, 杨永强, Trofimov Vyacheslav, 宋长辉, 周瀚翔, 王迪. 粉末粒径对AlSi10Mg合金选区激光熔化成形的影响[J]. 金属学报, 2023, 59(1): 147-156.
[12] 彭立明, 邓庆琛, 吴玉娟, 付彭怀, 刘子翼, 武千业, 陈凯, 丁文江. 镁合金选区激光熔化增材制造技术研究现状与展望[J]. 金属学报, 2023, 59(1): 31-54.
[13] 杨超, 卢海洲, 马宏伟, 蔡潍锶. 选区激光熔化NiTi形状记忆合金研究进展[J]. 金属学报, 2023, 59(1): 55-74.
[14] 杨天野, 崔丽, 贺定勇, 黄晖. 选区激光熔化AlSi10Mg-Er-Zr合金微观组织及力学性能强化[J]. 金属学报, 2022, 58(9): 1108-1117.
[15] 耿遥祥, 唐浩, 许俊华, 张志杰, 喻利花, 鞠洪博, 江乐, 简江林. 选区激光熔化高强Al-(Mn, Mg)-(Sc, Zr)合金成形性及力学性能[J]. 金属学报, 2022, 58(8): 1044-1054.