|
|
微米级选区激光熔化316L不锈钢的拉伸力学性能 |
张楠1,2, 张海武2, 王淼辉1,2( ) |
1 中机新材料研究院(郑州)有限公司 郑州 450001 2 中国机械科学研究总院集团有限公司 北京 100044 |
|
Tensile Mechanical Properties of Micro-Selective Laser Melted 316L Stainless Steel |
ZHANG Nan1,2, ZHANG Haiwu2, WANG Miaohui1,2( ) |
1 China Machinery Institute of Advanced Materials Co. Ltd., Zhengzhou 450001, China 2 China Academy of Mechanical Science and Technology Group Co. Ltd., Beijing 100044, China |
引用本文:
张楠, 张海武, 王淼辉. 微米级选区激光熔化316L不锈钢的拉伸力学性能[J]. 金属学报, 2024, 60(2): 211-219.
Nan ZHANG,
Haiwu ZHANG,
Miaohui WANG.
Tensile Mechanical Properties of Micro-Selective Laser Melted 316L Stainless Steel[J]. Acta Metall Sin, 2024, 60(2): 211-219.
1 |
Lan H B, Li D C, Lu B H. Micro- and nanoscale 3D printing [J]. Sci. Sin. Technol., 2015, 45: 919
doi: 10.1360/N092014-00397
|
1 |
兰红波, 李涤尘, 卢秉恒. 微纳尺度3D打印 [J]. 中国科学: 技术科学, 2015, 45: 919
|
2 |
Liu G, Zhang X F, Chen X L, et al. Additive manufacturing of structural materials [J]. Mater. Sci. Eng., 2021, R145: 100596
|
3 |
Gunasekaran J, Sevvel P, Solomon I J. Metallic materials fabrication by selective laser melting: A review [J]. Mater. Today Proc., 2020, 37: 252
|
4 |
Jin X Y, Lan L, He B, et al. A review on surface roughness of metals parts fabricated by selective laser melting [J]. Mater. Rep., 2021, 35: 3168
|
4 |
金鑫源, 兰 亮, 何 博 等. 选区激光熔化成形金属零件表面粗糙度研究进展 [J]. 材料导报, 2021, 35: 3168
|
5 |
Zhang X Z, Chen L, Zhou J, et al. Simulation and experimental studies on process parameters, microstructure and mechanical properties of selective laser melting of stainless steel 316L [J]. J. Braz. Soc. Mech. Sci. Eng., 2020, 42: 402
doi: 10.1007/s40430-020-02491-3
|
6 |
Greco S, Gutzeit K, Hotz H, et al. Selective laser melting (SLM) of AISI 316L——Impact of laser power, layer thickness, and hatch spacing on roughness, density, and microhardness at constant input energy density [J]. Int. J. Adv. Manuf. Technol., 2020, 108: 1551
doi: 10.1007/s00170-020-05510-8
|
7 |
Stoll P, Spierings A, Wegener K. Impact of a process interruption on tensile properties of SS 316L parts and hybrid parts produced with selective laser melting [J]. Int. J. Adv. Manuf. Technol., 2019, 103: 367
doi: 10.1007/s00170-019-03560-1
|
8 |
Tascioglu E, Karabulut Y, Kaynak Y. Influence of heat treatment temperature on the microstructural, mechanical, and wear behavior of 316L stainless steel fabricated by laser powder bed additive manufacturing [J]. Int. J. Adv. Manuf. Technol., 2020, 107: 1947
doi: 10.1007/s00170-020-04972-0
|
9 |
Yang X Q, Liu Y, Ye J W, et al. Enhanced mechanical properties and formability of 316L stainless steel materials 3D-printed using selective laser melting [J]. Int. J. Miner. Metall. Mater., 2019, 26: 1396
doi: 10.1007/s12613-019-1837-2
|
10 |
Yang D C, Kan X F, Gao P F, et al. Influence of porosity on mechanical and corrosion properties of SLM 316L stainless steel [J]. Appl. Phys., 2022, 128A: 51
|
11 |
Yang X, Ma W J, Ren Y J, et al. Subgrain microstructures and tensile properties of 316L stainless steel manufactured by selective laser melting [J]. J. Iron Steel Res. Int., 2021, 28: 1159
doi: 10.1007/s42243-021-00561-x
|
12 |
Shin W S, Son B, Song W S, et al. Heat treatment effect on the microstructure, mechanical properties, and wear behaviors of stainless steel 316L prepared via selective laser melting [J]. Mater. Sci. Eng., 2021, A806: 140805
|
13 |
Wang Y M, Voisin T, McKeown J T, et al. Additively manufactured hierarchical stainless steels with high strength and ductility [J]. Nat. Mater., 2018, 17: 63
doi: 10.1038/nmat5021
pmid: 29115290
|
14 |
Shamsujjoha M, Agnew S R, Fitz-Gerald J M, et al. High strength and ductility of additively manufactured 316L stainless steel explained [J]. Metall. Mater. Trans., 2018, 49A: 3011
|
15 |
Kong D C, Dong C F, Wei S L, et al. About metastable cellular structure in additively manufactured austenitic stainless steels [J]. Addit. Manuf., 2021, 38: 101804
|
16 |
Nagarajan B, Hu Z H, Song X, et al. Development of micro selective laser melting: The state of the art and future perspectives [J]. Engineering, 2019, 5: 702
doi: 10.1016/j.eng.2019.07.002
|
17 |
Bertoli U S, Wolfer A J, Matthews M J, et al. On the limitations of volumetric energy density as a design parameter for selective laser melting [J]. Mater. Des., 2017, 113: 331
doi: 10.1016/j.matdes.2016.10.037
|
18 |
Brandon D G. The structure of high-angle grain boundaries [J]. Acta Metall., 1966, 14: 1479
doi: 10.1016/0001-6160(66)90168-4
|
19 |
Elmer J W, Allen S M, Eagar T W. Microstructural development during solidification of stainless steel alloys [J]. Metall. Trans., 1989, 20A: 2117
|
20 |
Zong X W, Gao Q, Zhou H Z, et al. Effects of bulk laser energy density on anisotropy of selective laser sintered 316L stainless steel [J]. Chin. J. Lasers, 2019, 46: 0502003
|
20 |
宗学文, 高 倩, 周宏志 等. 体激光能量密度对选区激光熔化316L不锈钢各向异性的影响 [J]. 中国激光, 2019, 46: 0502003
|
21 |
Lu L, Li Z B, Bi Z Y, et al. Relationship between tension toughness and fracture toughness of low carbon low alloy steel [J]. J. Iron Steel Res., 2014, 26(6): 67
|
21 |
芦 琳, 李周波, 毕宗岳 等. 低碳低合金钢的静力韧度与断裂韧度 [J]. 钢铁研究学报, 2014, 26(6): 67
|
22 |
Gu D D, Chen H Y. Selective laser melting of high strength and toughness stainless steel parts: The roles of laser hatch style and part placement strategy [J]. Mater. Sci. Eng., 2018, A725: 419
|
23 |
Gu D D, Shi X Y, Poprawe R, et al. Material-structure-performance integrated laser-metal additive manufacturing [J]. Science, 2021, 372: eabg1487
doi: 10.1126/science.abg1487
|
24 |
Qi B, Liu Y D, Shi W T, et al. Study on overlap ratio of pulse laser selective melting forming [J]. Laser Technol., 2018, 42: 311
|
24 |
祁 斌, 刘玉德, 石文天 等. 脉冲式激光选区熔化成形搭接率的研究 [J]. 激光技术, 2018, 42: 311
|
25 |
Ma Y Y, Liu Y D, Shi W T, et al. Effect of scanning speed on forming defects and properties of selective laser melted 316L stainless steel powder [J]. Laser Optoelectr. Progr., 2019, 56: 101403
doi: 10.3788/LOP
|
25 |
马英怡, 刘玉德, 石文天 等. 扫描速度对选区激光熔化316L不锈钢粉末成形缺陷及性能的影响 [J]. 激光与光电子学进展, 2019, 56: 101403
|
26 |
Shi W T, Wang P, Liu Y D, et al. Experimental study on surface quality and process of selective laser melting forming 316L [J]. Surface Technol., 2019, 48: 257
|
26 |
石文天, 王 朋, 刘玉德 等. 选区激光熔化成形316L表面质量及工艺试验研究 [J]. 表面技术, 2019, 48: 257
|
27 |
Afkhami S, Dabiri M, Piili H, et al. Effects of manufacturing parameters and mechanical post-processing on stainless steel 316L processed by laser powder bed fusion [J]. Mater. Sci. Eng., 2021, A802: 140660
|
28 |
Kumar P, Jayaraj R, Suryawanshi J, et al. Fatigue strength of additively manufactured 316L austenitic stainless steel [J]. Acta Mater., 2020, 199: 225
doi: 10.1016/j.actamat.2020.08.033
|
29 |
Wu D J, Yu C S, Wang Q Y, et al. Synchronous-hammer-forging-assisted laser directed energy deposition additive manufacturing of high-performance 316L samples [J]. J. Mater. Process. Technol., 2022, 307: 117695
doi: 10.1016/j.jmatprotec.2022.117695
|
30 |
Matthews M J, Guss G, Khairallah S A, et al. Denudation of metal powder layers in laser powder bed fusion processes [J]. Acta Mater., 2016, 114: 33
doi: 10.1016/j.actamat.2016.05.017
|
31 |
Yu C F, Zhao C C, Zhang Z F, et al. Tensile properties of selective laser melted 316L stainless steel [J]. Acta Metall. Sin., 2020, 56: 683
doi: 10.11900/0412.1961.2019.00278
|
31 |
余晨帆, 赵聪聪, 张哲峰 等. 选区激光熔化316L不锈钢的拉伸性能 [J]. 金属学报, 2020, 56: 683
doi: 10.11900/0412.1961.2019.00278
|
32 |
Gutierrez-Urrutia I, Zaefferer S, Raabe D. The effect of grain size and grain orientation on deformation twinning in a Fe-22wt.%Mn-0.6wt.%C TWIP steel [J]. Mater. Sci. Eng., 2010, A527: 3552
|
33 |
Sun S J, Tian Y Z, Lin H R, et al. Transition of twinning behavior in CoCrFeMnNi high entropy alloy with grain refinement [J]. Mater. Sci. Eng., 2018, A712: 603
|
34 |
de Campos M F, Loureiro S A, Rodrigues D, et al. Estimative of the stacking fault energy for a FeNi(50/50) alloy and a 316L stainless steel [J]. Mater. Sci. Forum, 2008, 591-593: 3
doi: 10.4028/www.scientific.net/MSF.591-593
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|