|
|
增材制造TiAl合金的研究进展 |
陈玉勇1,2( ), 时国浩1,2, 杜之明2, 张宇1,2, 常帅1 |
1 哈尔滨工业大学 先进焊接与连接国家重点实验室 哈尔滨 150001 2 哈尔滨工业大学 金属精密热加工国家级重点实验室 哈尔滨 150001 |
|
Research Progress on Additive Manufacturing TiAl Alloy |
CHEN Yuyong1,2( ), SHI Guohao1,2, DU Zhiming2, ZHANG Yu1,2, CHANG Shuai1 |
1 State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001, China 2 National Key Laboratory for Precision Hot Processing of Metals, Harbin Institute of Technology, Harbin 150001, China |
引用本文:
陈玉勇, 时国浩, 杜之明, 张宇, 常帅. 增材制造TiAl合金的研究进展[J]. 金属学报, 2024, 60(1): 1-15.
Yuyong CHEN,
Guohao SHI,
Zhiming DU,
Yu ZHANG,
Shuai CHANG.
Research Progress on Additive Manufacturing TiAl Alloy[J]. Acta Metall Sin, 2024, 60(1): 1-15.
1 |
Clemens H, Smarsly W, Güther V, et al. Advanced intermetallic titanium aluminides [A]. Proceedings of the 13th World Conference on Titanium [C]. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2016: 1189
|
2 |
Lin J P, Zhang L Q, Song X P, et al. Status of research and development of light-weight γ-TiAl intermetallic based compounds [J]. Mater. China, 2010, 29(2): 1
|
2 |
林均品, 张来启, 宋西平 等. 轻质γ-TiAl金属间化合物的研究进展 [J]. 中国材料进展, 2010, 29(2): 1
|
3 |
Bewlay B P, Nag S, Suzuki A, et al. TiAl alloys in commercial aircraft engines [J]. Mater. High Temp., 2016, 33: 549
doi: 10.1080/09603409.2016.1183068
|
4 |
Chen W, Li Z Q. Additive manufacturing of titanium aluminides [A]. Additive Manufacturing for the Aerospace Industry [M]. Amsterdam: Elsevier, 2019: 235
|
5 |
Yang R. Advances and challenges of TiAl base alloys [J]. Acta Metall. Sin., 2015, 51: 129
doi: 10.11900/0412.1961.2014.00396
|
5 |
杨 锐. 钛铝金属间化合物的进展与挑战 [J]. 金属学报, 2015, 51: 129
|
6 |
Lu B H. Additive manufacturing—Current situation and future [J]. China Mech. Eng., 2020, 31: 19
|
6 |
卢秉恒. 增材制造技术—现状与未来 [J]. 中国机械工程, 2020, 31: 19
|
7 |
Lu B H, Li D C. Development of the additive manufacturing (3D printing) technology [J]. Mach. Build. Automat., 2013, 42(4): 1
|
7 |
卢秉恒, 李涤尘. 增材制造(3D打印)技术发展 [J]. 机械制造与自动化, 2013, 42(4): 1
|
8 |
Debroy T, Wei H L, Zuback J S, et al. Additive manufacturing of metallic components—Process, structure and properties [J]. Prog. Mater. Sci., 2018, 92: 112
doi: 10.1016/j.pmatsci.2017.10.001
|
9 |
Dutta B, Froes F H. The additive manufacturing (AM) of titanium alloys [J]. Met. Powder Rep., 2017, 72: 96
doi: 10.1016/j.mprp.2016.12.062
|
10 |
Barroqueiro B, Andrade-Campos A, Valente R A F, et al. Metal additive manufacturing cycle in aerospace industry: A comprehensive review [J]. J. Manuf. Mater. Process., 2019, 3: 52
|
11 |
Gibson I, Rosen D, Stucker B, et al. Additive Manufacturing Technologies [M]. 3rd Ed., Switzerland: Springer, 2021: 125
|
12 |
Moll J H, Whitney E, Yolton C F, et al. Laser forming of gamma titanium aluminide [A]. Gamma Titanium Aluminides 1999 [C]. San Diego: The Minerals, Metals & Materials Society, 1999: 255
|
13 |
Zhang X D, Brice C, Mahaffey D W, et al. Characterization of laser-deposited TiAl alloys [J]. Scr. Mater., 2001, 44: 2419
doi: 10.1016/S1359-6462(01)00915-0
|
14 |
Thomas M, Malot T, Aubry P. Laser metal deposition of the intermetallic TiAl alloy [J]. Metall. Mater. Trans., 2017, 48A: 3143
|
15 |
Srivastava D, Chang I T H, Loretto M H. The effect of process parameters and heat treatment on the microstructure of direct laser fabricated TiAl alloy samples [J]. Intermetallics, 2001, 9: 1003
doi: 10.1016/S0966-9795(01)00063-2
|
16 |
Srivastava D, Chang I T H, Loretto M H. The optimisation of processing parameters and characterisation of microstructure of direct laser fabricated TiAl alloy components [J]. Mater. Des., 2000, 21: 425
doi: 10.1016/S0261-3069(99)00091-6
|
17 |
Qu H P, Wang H M. Microstructure and mechanical properties of laser melting deposited γ-TiAl intermetallic alloys [J]. Mater. Sci. Eng., 2007, A466: 187
|
18 |
Wu Y, Zhang S Q, Cheng X, et al. Investigation on solid-state phase transformation in a Ti-47Al-2Cr-2V alloy due to thermal cycling during laser additive manufacturing process [J]. J. Alloys Compd., 2019, 799: 325
doi: 10.1016/j.jallcom.2019.05.337
|
19 |
Wang J W, Luo Q, Wang H M, et al. Microstructure characteristics and failure mechanisms of Ti-48Al-2Nb-2Cr titanium aluminide intermetallic alloy fabricated by directed energy deposition technique [J]. Addit. Manuf., 2020, 32: 101007
|
20 |
Zhang J S, Wu Y, Cheng X, et al. Study of microstructure evolution and preference growth direction in a fully laminated directional micro-columnar TiAl fabricated using laser additive manufacturing technique [J]. Mater. Lett., 2019, 243: 62
doi: 10.1016/j.matlet.2019.01.137
|
21 |
Thomas M. Progress in the understanding of the microstructure evolution of direct laser fabricated TiAl [J]. Mater. Sci. Forum, 2016, 879: 1939
doi: 10.4028/www.scientific.net/MSF.879
|
22 |
Rittinghaus S K, Weisheit A, Mathes M, et al. Laser metal deposition of titanium aluminides—A future repair technology for jet engine blades? [A]. Proceedings of the 13th World Conference on Titanium [C]. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2016: 1205
|
23 |
Srivastava D, Hu D, Chang I T H, et al. The influence of thermal processing route on the microstructure of some TiAl-based alloys [J]. Intermetallics, 1999, 7: 1107
doi: 10.1016/S0966-9795(99)00029-1
|
24 |
Rittinghaus S K, Hecht U, Werner V, et al. Heat treatment of laser metal deposited TiAl TNM alloy [J]. Intermetallics, 2018, 95: 94
doi: 10.1016/j.intermet.2018.02.002
|
25 |
Rittinghaus S K, Schmelzer J, Rackel M W, et al. Direct energy deposition of TiAl for hybrid manufacturing and repair of turbine blades [J]. Materials (Basel), 2020, 13: 4392
doi: 10.3390/ma13194392
|
26 |
Jacob J. Microstructures of TiAl additively manufactured by EBM and LMD [D]. Melbourne: The University of Melbourne, 2020
|
27 |
Liu Z Q, Ma R X, Xu G J, et al. Effects of annealing on microstructure and mechanical properties of γ-TiAl alloy fabricated via laser melting deposition [J]. Trans. Nonferrous Met. Soc. China, 2020, 30: 917
doi: 10.1016/S1003-6326(20)65265-7
|
28 |
Qu H P, Li P, Zhang S Q, et al. The effects of heat treatment on the microstructure and mechanical property of laser melting deposition γ-TiAl intermetallic alloys [J]. Mater. Des., 2010, 31: 2201
doi: 10.1016/j.matdes.2009.10.045
|
29 |
Wu Y, Wang H M, Ma X J, et al. Fabrication of TiAl alloy with no multiple heat-affected bands using continuous direct energy deposition [J]. Mater. Lett., 2020, 281: 128581
doi: 10.1016/j.matlet.2020.128581
|
30 |
Cheng F, Wang H M, Wu Y, et al. Microstructure evolution and tensile property of TiAl alloy using continuous direct energy deposition technique [J]. J. Alloys Compd., 2022, 906: 164309
doi: 10.1016/j.jallcom.2022.164309
|
31 |
Zhang X Y, Li C W, Zheng M Y, et al. Anisotropic tensile behavior of Ti-47Al-2Cr-2Nb alloy fabricated by direct laser deposition [J]. Addit. Manuf., 2020, 32: 101087
|
32 |
Almangour B, Grzesiak D, Yang J M. Selective laser melting of TiB2/316L stainless steel composites: The roles of powder preparation and hot isostatic pressing post-treatment [J]. Powder Technol., 2017, 309: 37
doi: 10.1016/j.powtec.2016.12.073
|
33 |
Zhao Z Y, Wang S W, Du W B, et al. Interfacial structures and strengthening mechanisms of in situ synthesized TiC reinforced Ti6Al4V composites by selective laser melting [J]. Ceram. Int., 2021, 47: 34127
doi: 10.1016/j.ceramint.2021.08.323
|
34 |
Bai P K, Huo P C, Zhao Z Y, et al. Microstructure evolution and corrosion mechanism of in situ synthesized TiC/TC4 alloy nanocomposites fabricated by laser powder bed fusion [J]. Ceram. Int., 2023, 49: 2752
doi: 10.1016/j.ceramint.2022.09.257
|
35 |
Li S, Wei Q S, Shi Y S, et al. Microstructure characteristics of inconel 625 superalloy manufactured by selective laser melting [J]. J. Mater. Sci. Technol., 2015, 31: 946
doi: 10.1016/j.jmst.2014.09.020
|
36 |
Caprio L, Demir A G, Chiari G, et al. Defect-free laser powder bed fusion of Ti-48Al-2Cr-2Nb with a high temperature inductive preheating system [J]. J. Phys.: Photonics, 2020, 2: 024001
|
37 |
Doubenskaia M, Domashenkov A, Smurov I, et al. Study of selective laser melting of intermetallic TiAl powder using integral analysis [J]. Int. J. Mach. Tools Manuf., 2018, 129: 1
doi: 10.1016/j.ijmachtools.2018.02.003
|
38 |
Löber L, Biamino S, Ackelid U, et al. Comparison of selective laser and electron beam melted titanium aluminides [A]. 2011 International Solid Freeform Fabrication Symposium [C]. Austin: University of Texas, 2011: 547
|
39 |
Thomas M, Malot T, Aubry P, et al. The prospects for additive manufacturing of bulk TiAl alloy [J]. Mater. High Temp., 2016, 33: 571
doi: 10.1080/09603409.2016.1171510
|
40 |
Shi X Z, Wang H X, Feng W W, et al. The crack and pore formation mechanism of Ti-47Al-2Cr-2Nb alloy fabricated by selective laser melting [J]. Int. J. Refract. Met. Hard Mater., 2020, 91: 105247
doi: 10.1016/j.ijrmhm.2020.105247
|
41 |
Wang M S, Liu E W, Du Y L, et al. Cracking mechanism and a novel strategy to eliminate cracks in TiAl alloy additively manufactured by selective laser melting [J]. Scr. Mater., 2021, 204: 114151
doi: 10.1016/j.scriptamat.2021.114151
|
42 |
Polozov I, Kantyukov A, Popovich V, et al. Microstructure and mechanical properties of TiAl-based alloy produced by selective laser melting [A]. Proceedings of the 29th International Conference on Metallurgy and Materials (METAL 2020) [C]. Brno: TANGER Ltd., 2020: 1037
|
43 |
Polozov I, Kantyukov A, Popovich A, et al. Tailoring microstructure of selective laser melted TiAl-alloy with in-situ heat treatment via multiple laser exposure [A]. TMS 2021 150th Annual Meeting & Exhibition Supplemental Proceedings [C]. Pittsburgh: Springer, 2021: 197
|
44 |
Mizuta K, Hijikata Y, Fujii T, et al. Characterization of Ti-48Al-2Cr-2Nb built by selective laser melting [J]. Scr. Mater., 2021, 203: 114107
doi: 10.1016/j.scriptamat.2021.114107
|
45 |
Yang X, Zhao Z Y, Bai P K, et al. EBSD investigation on the microstructure of Ti48Al2Cr2Nb alloy hot isostatic pressing formed by selective laser melting (SLM) [J]. Mater. Lett., 2022, 309: 131334
doi: 10.1016/j.matlet.2021.131334
|
46 |
Ismaeel A, Wang C S, Xu D S. The effects of electromagnetic stirring on microstructure and properties of γ-TiAl based alloys fabricated by selective laser melting technique [J]. Int. J. Aerosp. Mech. Eng., 2020, 14: 131
|
47 |
Gussone J, Hagedorn Y C, Gherekhloo H, et al. Microstructure of γ-titanium aluminide processed by selective laser melting at elevated temperatures [J]. Intermetallics, 2015, 66: 133
doi: 10.1016/j.intermet.2015.07.005
|
48 |
Zhang S Z. Hot deformation and microstructure and mechanical properties of high Nb containing TiAl based alloy [D]. Harbin: Harbin Institute of Technology, 2013
|
48 |
张树志. 高Nb-TiAl合金高温变形及组织性能研究 [D]. 哈尔滨: 哈尔滨工业大学, 2013
|
49 |
Li M A. Effect of boron or carbon on the high temperature deformation microstructure and mechanical properties of TiAl alloy [D]. Harbin: Harbin Institute of Technology, 2019
|
49 |
李明骜. B和C元素对TiAl合金高温变形组织及性能影响研究 [D]. 哈尔滨工业大学, 2019
|
50 |
Li W, Liu J, Zhou Y, et al. Effect of laser scanning speed on a Ti-45Al-2Cr-5Nb alloy processed by selective laser melting: Microstructure, phase and mechanical properties [J]. J. Alloys Compd., 2016, 688: 626
doi: 10.1016/j.jallcom.2016.07.206
|
51 |
Gao P, Huang W P, Yang H H, et al. Cracking behavior and control of β-solidifying Ti-40Al-9V-0.5Y alloy produced by selective laser melting [J]. J. Mater. Sci. Technol., 2020, 39: 144
doi: 10.1016/j.jmst.2019.08.026
|
52 |
Löber L, Schimansky F P, Kühn U, et al. Selective laser melting of a beta-solidifying TNM-B1 titanium aluminide alloy [J]. J. Mater. Process. Technol., 2014, 214: 1852
doi: 10.1016/j.jmatprotec.2014.04.002
|
53 |
Vogelpoth A, Schleifenbaum J H, Rittinghaus S. Laser additive manufacturing of titanium aluminides for turbomachinery applications [A]. ASME Turbo Expo 2019: Turbomachinery Technical Conference and Exposition [C]. Phoenix: American Society of Mechanical Engineers, 2019
|
54 |
Gussone J, Garces G, Haubrich J, et al. Microstructure stability of γ-TiAl produced by selective laser melting [J]. Scr. Mater., 2017, 130: 110
doi: 10.1016/j.scriptamat.2016.11.028
|
55 |
Liu S Y, Shin Y C. Additive manufacturing of Ti6Al4V alloy: A review [J]. Mater. Des., 2019, 164: 107552
doi: 10.1016/j.matdes.2018.107552
|
56 |
Murr L E, Gaytan S M, Ceylan A, et al. Characterization of titanium aluminide alloy components fabricated by additive manufacturing using electron beam melting [J]. Acta Mater., 2010, 58: 1887
doi: 10.1016/j.actamat.2009.11.032
|
57 |
Biamino S, Penna A, Ackelid U, et al. Electron beam melting of Ti-48Al-2Cr-2Nb alloy: Microstructure and mechanical properties investigation [J]. Intermetallics, 2011, 19: 776
doi: 10.1016/j.intermet.2010.11.017
|
58 |
Baudana G, Biamino S, Klöden B, et al. Electron beam melting of Ti-48Al-2Nb-0.7Cr-0.3Si: Feasibility investigation [J]. Intermetallics, 2016, 73: 43
doi: 10.1016/j.intermet.2016.03.001
|
59 |
Schwerdtfeger J, Körner C. Selective electron beam melting of Ti-48Al-2Nb-2Cr: Microstructure and aluminium loss [J]. Intermetallics, 2014, 49: 29
doi: 10.1016/j.intermet.2014.01.004
|
60 |
Mohammad A, Al-Ahmari A M, Balla V K, et al. In vitro wear, corrosion and biocompatibility of electron beam melted γ-TiAl [J]. Mater. Des., 2017, 133: 186
doi: 10.1016/j.matdes.2017.07.065
|
61 |
Cormier D, Harrysson O, Mahale T, et al. Freeform fabrication of titanium aluminide via electron beam melting using prealloyed and blended powders [J]. Res. Lett. Mater. Sci., 2007, 2007: 034737
|
62 |
Ge W J, Guo C, Lin F. Effect of process parameters on microstructure of TiAl alloy produced by electron beam selective melting [J]. Procedia Eng., 2014, 81: 1192
doi: 10.1016/j.proeng.2014.10.096
|
63 |
Klassen A, Forster V E, Juechter V, et al. Numerical simulation of multi-component evaporation during selective electron beam melting of TiAl [J]. J. Mater. Process. Technol., 2017, 247: 280
doi: 10.1016/j.jmatprotec.2017.04.016
|
64 |
Kim Y K, Youn S J, Kim S W, et al. High-temperature creep behavior of gamma Ti-48Al-2Cr-2Nb alloy additively manufactured by electron beam melting [J]. Mater. Sci. Eng., 2019, A763: 138138
|
65 |
Terner M, Biamino S, Epicoco P, et al. Electron beam melting of high niobium containing TiAl alloy: Feasibility investigation [J]. Steel Res. Int., 2012, 83: 943
doi: 10.1002/srin.v83.10
|
66 |
Mohammad A, Alahmari A M, Mohammed M K, et al. Effect of energy input on microstructure and mechanical properties of titanium aluminide alloy fabricated by the additive manufacturing process of electron beam melting [J]. Materials (Basel), 2017, 10: 211
doi: 10.3390/ma10020211
|
67 |
Seifi M, Salem A A, Satko D P, et al. Effects of HIP on microstructural heterogeneity, defect distribution and mechanical properties of additively manufactured EBM Ti-48Al-2Cr-2Nb [J]. J. Alloys Compd., 2017, 729: 1118
doi: 10.1016/j.jallcom.2017.09.163
|
68 |
Todai M, Nakano T, Liu T Q, et al. Effect of building direction on the microstructure and tensile properties of Ti-48Al-2Cr-2Nb alloy additively manufactured by electron beam melting [J]. Addit. Manuf., 2017, 13: 61
|
69 |
Cho K, Kobayashi R, Oh J Y, et al. Influence of unique layered microstructure on fatigue properties of Ti-48Al-2Cr-2Nb alloys fabricated by electron beam melting [J]. Intermetallics, 2018, 95: 1
doi: 10.1016/j.intermet.2018.01.009
|
70 |
Cakmak E, Nandwana P, Shin D, et al. A comprehensive study on the fabrication and characterization of Ti-48Al-2Cr-2Nb preforms manufactured using electron beam melting [J]. Materialia, 2019, 6: 100284
doi: 10.1016/j.mtla.2019.100284
|
71 |
Wartbichler R, Clemens H, Mayer S, et al. On the formation mechanism of banded microstructures in electron beam melted Ti-48Al-2Cr-2Nb and the design of heat treatments as remedial action [J]. Adv. Eng. Mater., 2021, 23: 2101199
doi: 10.1002/adem.v23.12
|
72 |
Biamino S, Klöden B, Weiβgärber T, et al. Titanium aluminides for automotive applications processed by electron beam melting [A]. Proceeding of the 2014 World Congress on Powder Metallurgy and Particulate Materials [C]. Orlando, FL, 2014
|
73 |
Lin B C, Chen W. Mechanical properties of TiAl fabricated by electron beam melting—A review [J]. China Foundry, 2021, 18: 307
doi: 10.1007/s41230-021-1093-8
|
74 |
Wartbichler R, Clemens H, Mayer S. Electron beam melting of a β-solidifying intermetallic titanium aluminide alloy [J]. Adv. Eng. Mater., 2019, 21: 1900800
doi: 10.1002/adem.v21.12
|
75 |
Yue H Y, Chen Y Y, Wang X P, et al. Microstructure, texture and tensile properties of Ti-47Al-2Cr-2Nb alloy produced by selective electron beam melting [J]. J. Alloys Compd., 2018, 766: 450
doi: 10.1016/j.jallcom.2018.07.025
|
76 |
Chen Y Y, Yue H Y, Wang X P. Microstructure, texture and tensile property as a function of scanning speed of Ti-47Al-2Cr-2Nb alloy fabricated by selective electron beam melting [J]. Mater. Sci. Eng., 2018, A713: 195
|
77 |
Yue H Y, Chen Y Y, Wang X P, et al. Effect of beam current on microstructure, phase, grain characteristic and mechanical properties of Ti-47Al-2Cr-2Nb alloy fabricated by selective electron beam melting [J]. J. Alloys Compd., 2018, 750: 617
doi: 10.1016/j.jallcom.2018.03.343
|
78 |
Chen Y Y, Yue H Y, Wang X P, et al. Selective electron beam melting of TiAl alloy: Microstructure evolution, phase transformation and microhardness [J]. Mater. Charact., 2018, 142: 584
doi: 10.1016/j.matchar.2018.06.027
|
79 |
Kan W, Chen B, Jin C, et al. Microstructure and mechanical properties of a high Nb-TiAl alloy fabricated by electron beam melting [J]. Mater. Des., 2018, 160: 611
doi: 10.1016/j.matdes.2018.09.044
|
80 |
Kan W B, Liang Y F, Peng H, et al. Microstructural degradation of Ti-45Al-8Nb alloy during the fabrication process by electron beam melting [J]. JOM, 2017, 69: 2596
doi: 10.1007/s11837-017-2592-3
|
81 |
Juechter V, Körner C. Creep properties of Ti-48Al-2Cr-2Nb produced by selective electron beam melting [J]. Key Eng. Mater., 2016, 704: 190
doi: 10.4028/www.scientific.net/KEM.704
|
82 |
Lin B C, Chen W, Yang Y, et al. Anisotropy of microstructure and tensile properties of Ti-48Al-2Cr-2Nb fabricated by electron beam melting [J]. J. Alloys Compd., 2020, 830: 154684
doi: 10.1016/j.jallcom.2020.154684
|
83 |
Yue H Y. Study on the microstructure and mechanical property of Ti-47Al-2Cr-2Nb alloy fabricated by selective electron beam melting [D]. Harbin: Harbin Institute of Technology, 2019
|
83 |
岳航宇. 电子束选区熔化成形Ti-47Al-2Cr-2Nb合金的组织及力学性能研究 [D]. 哈尔滨: 哈尔滨工业大学, 2019
|
84 |
Chen W, Yang Y, Liu L L, et al. Microstructure control and tensile properties of EBM γ-TiAl [J]. Aeronaut. Manuf. Technol., 2017, (1-2): 37
|
84 |
陈 玮, 杨 洋, 刘亮亮 等. 电子束增材制造γ-TiAl显微组织调控与拉伸性能研究 [J]. 航空制造技术, 2017, (1-2): 37
|
85 |
Kim Y K, Hong J K, Lee K A. Enhancing the creep resistance of electron beam melted gamma Ti-48Al-2Cr-2Nb alloy by using two-step heat treatment [J]. Intermetallics, 2020, 121: 106771
doi: 10.1016/j.intermet.2020.106771
|
86 |
Reith M, Franke M, Schloffer M, et al. Processing 4th generation titanium aluminides via electron beam based additive manufacturing—Characterization of microstructure and mechanical properties [J]. Materialia, 2020, 14: 100902
doi: 10.1016/j.mtla.2020.100902
|
87 |
Rittinghaus S K, Molina Ramirez V R, Vogelpoth A, et al. Laser based manufacturing of titanium aluminides [J]. MATEC Web Conf., 2020, 321: 08001
|
88 |
Kimme T, Seifert M. Laser surface cladding of titanium aluminides [J]. Laser Technik J., 2017, 14: 18
doi: 10.1002/latj.v14.5
|
89 |
Mallikarjuna B, Reutzel E W. Reclamation of intermetallic titanium aluminide aero-engine components using directed energy deposition technology [J]. Manufacturing Rev., 2022, 9: 27
doi: 10.1051/mfreview/2022024
|
90 |
Sinha A, Swain B, Behera A, et al. A review on the processing of aero-turbine blade using 3D print techniques [J]. J. Manuf. Mater. Process., 2022, 6: 16
|
91 |
Kellner T. Avio Aero, a General Electric (GE) Aviation EBM Turbine Blade [EB/OL]. (2021-11-15).
|
92 |
Seidel A, Straubel A, Finaske T, et al. Added value by hybrid additive manufacturing and advanced manufacturing approaches [J]. J. Laser Appl., 2018, 30: 032301
|
93 |
Kan W B. Processing technology and microstructure control of high Nb-TiAl alloy fabricated by electron beam melting [D]. Beijing: University of Science and Technology Beijing, 2019
|
93 |
阚文斌. 电子束选区熔化技术制备高Nb-TiAl合金的成形工艺和组织调控研究 [D]. 北京: 北京科技大学, 2019
|
94 |
Clemens H, Design Mayer S., processing, microstructure, properties, and applications of advanced intermetallic TiAl alloys [J]. Adv. Eng. Mater., 2013, 15: 191
doi: 10.1002/adem.v15.4
|
95 |
Wu X H. Review of alloy and process development of TiAl alloys [J]. Intermetallics, 2006, 14: 1114
doi: 10.1016/j.intermet.2005.10.019
|
96 |
Appel F, Paul J D H, Oehring M. Gamma Titanium Aluminide Alloys: Science and Technology [M]. Weinheim: John Wiley & Sons, 2011: 465
|
97 |
Baumers M, Tuck C, Wildman R, et al. Shape complexity and process energy consumption in electron beam melting: A case of something for nothing in additive manufacturing? [J]. J. Ind. Ecol., 2017, 21(S1): S157
|
98 |
Rittinghaus S K, Molina Ramirez V R, Zielinski J, et al. Oxygen gain and aluminum loss during laser metal deposition of intermetallic TiAl [J]. J. Laser Appl., 2019, 31: 042005
|
99 |
Rittinghaus S K, Zielinski J. Influence of process conditions on the local solidification and microstructure during laser metal deposition of an intermetallic TiAl alloy (GE4822) [J]. Metall. Mater. Trans., 2021, 52A: 1106
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|