Please wait a minute...
金属学报  2024, Vol. 60 Issue (3): 405-416    DOI: 10.11900/0412.1961.2022.00180
  研究论文 本期目录 | 过刊浏览 |
低温轧制对高强高导Cu-1Cr-0.2Zr-0.25Nb合金性能及析出行为的影响
李龙健1, 李仁庚2, 张家郡1, 曹兴豪1, 康慧君1(), 王同敏1
1大连理工大学 材料科学与工程学院 辽宁省凝固控制与数字化制备技术重点实验室 大连 116024
2南京工业大学 先进轻质高性能材料研究中心 南京 210009
Effects of Cryorolling on Properties and Precipitation Behavior of a High-Strength and High-Conductivity Cu-1Cr-0.2Zr-0.25Nb Alloy
LI Longjian1, LI Rengeng2, ZHANG Jiajun1, CAO Xinghao1, KANG Huijun1(), WANG Tongmin1
1Key Laboratory of Solidification Control and Digital Preparation Technology (Liaoning Province), School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, China
2Key Laboratory for Light-Weight Materials, Nanjing Tech University, Nanjing 210009, China
引用本文:

李龙健, 李仁庚, 张家郡, 曹兴豪, 康慧君, 王同敏. 低温轧制对高强高导Cu-1Cr-0.2Zr-0.25Nb合金性能及析出行为的影响[J]. 金属学报, 2024, 60(3): 405-416.
Longjian LI, Rengeng LI, Jiajun ZHANG, Xinghao CAO, Huijun KANG, Tongmin WANG. Effects of Cryorolling on Properties and Precipitation Behavior of a High-Strength and High-Conductivity Cu-1Cr-0.2Zr-0.25Nb Alloy[J]. Acta Metall Sin, 2024, 60(3): 405-416.

全文: PDF(4278 KB)   HTML
摘要: 

随着现代工业中交通、电气、航空航天、电子等领域的快速发展,对铜合金的性能要求越来越高。强度和导电率是相互矛盾的性质,实现铜合金兼具高强度和高导电率是现代铜工业发展的重要课题。采用真空熔炼、低温轧制、时效处理等工艺制备了Cu-1Cr-0.2Zr-0.25Nb (质量分数,%)合金,研究了低温轧制对Cu-1Cr-0.2Zr-0.25Nb合金显微组织、力学性能和导电性能的影响,分析了时效工艺对析出相种类、形貌和分布的影响。结果表明,Cu-1Cr-0.2Zr-0.25Nb合金主要由Cr相、富Zr相、Cr2Nb相及Cu基体相组成。450℃短时(30 min)时效后Cu-1Cr-0.2Zr-0.25Nb合金即可析出纳米级fcc结构的Cr析出相,在长时间(300 min)时效后,会形成bcc结构的Cr析出相。Cu-1Cr-0.2Zr-0.25Nb合金经过低温轧制和时效处理后,在Cu基体中形成了纳米析出相、纳米变形孪晶和位错等混合组织并获得了优异的综合性能。低温轧制Cu-1Cr-0.2Zr-0.25Nb合金450℃时效30 min后,抗拉强度为700 MPa,导电率为73.29%IACS;450℃时效300 min后,导电率可达79.81%IACS,此时,抗拉强度、屈服强度和硬度分别为646 MPa、606 MPa和212 HV。结合实验结果和对强度贡献计算表明,位错强化和析出强化是Cu-1Cr-0.2Zr-0.25Nb合金的主要强化机制。

关键词 Cu-1Cr-0.2Zr-0.25Nb合金低温轧制析出相强度导电率    
Abstract

The performance requirements for copper alloys are increasing with the rapid development of transportation, electrical, aerospace, and electronics in modern industry. Cu-Cr-Zr alloy has exceptional strength and electrical conductivity as typical precipitation strengthening copper alloy. Strength and conductivity are mutually exclusive properties. The goal of realizing the high strength and conductivity of copper is a crucial subject in modern copper industry development. In this study, the effects of cryorolling on the microstructure, mechanical properties, and electrical conductivity of Cu-1Cr-0.2Zr-0.25Nb alloy were examined and the effects of numerous aging processes on the type, morphology, and distribution of precipitates were investigated. The findings depict that the Cu-1Cr-0.2Zr-0.25Nb alloy primarily comprised the Cr phase, Zr-rich phase, Cr2Nb phase, and Cu matrix phase. The fcc Cr nanoprecipitates can be precipitated in Cu-1Cr-0.2Zr-0.25Nb alloy after aging at 450oC for 30 min. The bcc Cr nanoprecipitates can be formed after aging at 450oC for 300 min. After cryorolling and aging treatment, the mixed structures, such as nanoprecipitation phase, nanodeformation twins, and dislocations in the Cu-1Cr-0.2Zr-0.25Nb alloy are produced and this alloy demonstrates remarkable comprehensive properties. The tensile strength of 700 MPa and electrical conductivity of 73.29%IACS were attained for the cryorolled Cu-1Cr-0.2Zr-0.25Nb alloy after aging at 450oC for 30 min; after aging at 450oC for 300 min, the conductivity can reach 79.81%IACS, and the corresponding tensile strength, yield strength, and hardness are 646 MPa, 606 MPa, and 212 HV, respectively. Combining the experimental findings with the computations of contribution to strengthening, it can reasonably be inferred that dislocation and precipitation strengthening were the primary strengthening mechanisms of Cu-1Cr-0.2Zr-0.25Nb alloy.

Key wordsCu-1Cr-0.2Zr-0.25Nb alloy    cryorolling    precipitate    strength    electrical conductivity
收稿日期: 2022-04-17     
ZTFLH:  TG146.11  
基金资助:国家自然科学基金项目(51971052);国家自然科学基金项目(51927801);国家自然科学基金项目(51690163);国家自然科学基金项目(52001161);辽宁省“兴辽英才”计划项目(XLYC2007183);大连市科技创新基金项目(2020JJ25CY002);大连市科技创新基金项目(2020JJ26GX045)
通讯作者: 康慧君,kanghuijun@dlut.edu.cn,主要从事高性能结构功能一体化材料制备与加工研究
Corresponding author: KANG Huijun, professor, Tel: (0411)84709500, E-mail: kanghuijun@dlut.edu.cn
作者简介: 李龙健,男,1996年生,硕士生
SampleProcess
RⅡAs-solution-treated sample→60%RTR→intermediate aging (400oC, 120 min)→30%RTR
CRⅡAs-solution-treated sample→60%CR→intermediate aging (400oC, 120 min)→30%CR
RⅡ-FA30As-solution-treated sample→60%RTR→intermediate aging (400oC, 120 min)→30%RTR→FA (450oC, 30 min)
CRⅡ-FA30As-solution-treated sample→60%CR→intermediate aging (400oC, 120 min)→30%CR→FA (450oC, 30 min)
RⅡ-FA300As-solution-treated sample→60%RTR→intermediate aging (400oC, 120 min)→30%RTR→FA (450oC, 300 min)
CRⅡ-FA300As-solution-treated sample→60%CR→intermediate aging (400oC, 120 min)→30%CR→FA (450oC, 300 min)
表1  Cu-1Cr-0.2Zr-0.25Nb样品的工艺流程
图1  铸态Cu-1Cr-0.2Zr-0.25Nb和CRⅡ-FA300样品的EPMA背散射电子像
图2  CRⅡ-FA300样品中Cr2Nb相的EPMA面扫分析
图3  CRⅡ-FA300样品中Cr与Zr颗粒的EPMA面扫分析
图4  CRⅡ-FA30样品中析出相的TEM分析
图5  CRⅡ-FA300样品中析出相的TEM分析
图6  CRⅡ-FA300样品中Cr2Nb相的TEM像及元素分析
图7  CRⅡ-FA300样品的TEM像
图8  RⅡ-FA300样品的TEM像
图9  Cu-1Cr-0.2Zr-0.25Nb样品的工程应力-应变曲线
Sample

σs

MPa

σb

MPa

C

%IACS

ρ

1014 m-2

δ

%

RⅡ650 ± 6694 ± 358.23 ± 0.0828.96.3
CRⅡ694 ± 4740 ± 158.15 ± 0.0635.94.9
RⅡ-FA30631 ± 13669 ± 873.67 ± 0.2320.18.4
CRⅡ-FA30654 ± 6700 ± 273.29 ± 0.1522.46.7
RⅡ-FA300584 ± 8621 ± 280.27 ± 0.0916.88.8
CRⅡ-FA300606 ± 9646 ± 179.81 ± 0.1018.18.9
表2  Cu-1Cr-0.2Zr-0.25Nb样品的强度、伸长率、导电率及位错密度
图10  CRⅡ-FA300样品的XRD谱拟合曲线
ParameterSymbolUnitValueRef.
Shear modulus of Cu alloyGGPa44[35]
Taylor factorM3.06[36]
Burgers vector modulusbnm0.2556[35]
Poisson's ratioν0.33[37]
Maximum volume fraction of precipitatesVCr-Max%0.9This work
Minimum value of conductivityC0%IACS29.30This work
Maximum value of conductivityCMax%IACS83.46This work
Transformation fraction of precipitation for CRⅡ-FA300 sampleXCRII-FA300%93.26This work
Volume fraction of the precipitates for CRⅡ-FA300 samplefCRII-FA300%0.839This work
Mean radius of the precipitates for CRⅡ-FA300 samplerCRII-FA300nm6.1This work
表3  屈服强度计算所用的参数
1 Li Z Y, Yang L J, Xu C, et al. Effect of aging temperature on hard phase evolution of nickel aluminum bronze [J]. Chin. J. Nonferrous Met., 2016, 26: 766
1 李振亚, 杨丽景, 许 赪 等. 时效温度对镍铝青铜合金的硬质相演变的影响 [J]. 中国有色金属学报, 2016, 26: 766
2 Wang Q J, Zhou X, Liang B, et al. High temperature tensile properties and fracture mechanism of ultra-fine grain Cu-Cr-Zr alloy [J]. Acta Metall. Sin., 2016, 52: 1477
doi: 10.11900/0412.1961.2016.00073
2 王庆娟, 周 晓, 梁 博 等. 超细晶Cu-Cr-Zr合金的高温拉伸性能及断裂机制 [J]. 金属学报, 2016, 52: 1477
doi: 10.11900/0412.1961.2016.00073
3 Chen J S, Wang J F, Xiao X P, et al. Contribution of Zr to strength and grain refinement in Cu-Cr-Zr alloy [J]. Mater. Sci. Eng., 2019, A756: 464
4 Song L N, Liu J B, Huang L Y, et al. Effect of heavily drawing on the microstructure and properties of Cu-Cr Alloys [J]. Acta Metall. Sin., 2012, 48: 1459
doi: 10.3724/SP.J.1037.2012.00263
4 宋鲁男, 刘嘉斌, 黄六一 等. 强变形对Cu-Cr合金组织性能的影响 [J]. 金属学报, 2012, 48: 1459
doi: 10.3724/SP.J.1037.2012.00263
5 Li Z, Xiao Z, Jiang Y B, et al. Composition design, phase transition and fabrication of copper alloys with high strength and electrical conductivity [J]. Chin. J. Nonferrous Met., 2019, 29: 2009
5 李 周, 肖 柱, 姜雁斌 等. 高强导电铜合金的成分设计、相变与制备 [J]. 中国有色金属学报, 2019, 29: 2009
6 Feng P, Chen W G, Yan F L, et al. Research progress of Cu-Cr-Zr copper alloys with high strength and high conductivity [J]. Electr. Eng. Mater., 2019, (2): 11
6 冯 培, 陈文革, 闫芳龙 等. 高强高导Cu-Cr-Zr系合金的研究进展 [J]. 电工材料, 2019, (2): 11
7 Wang M P, Jia Y L, Li Z, et al. Advanced Copper Alloy with High Strength and Conductivity [M]. Changsha: Central South University Press, 2015: 1
7 汪明朴, 贾延琳, 李 周 等. 先进高强导电铜合金 [M]. 长沙: 中南大学出版社, 2015: 1
8 Sun Y Q, Peng L J, Huang G J, et al. Effects of Mg addition on the microstructure and softening resistance of Cu-Cr alloys [J]. Mater. Sci. Eng., 2020, A776: 139009
9 Sarkar A, Prasad M J N V, Murty S V S N. Effect of initial grain size on hot deformation behaviour of Cu-Cr-Zr-Ti alloy [J]. Mater. Charact., 2020, 160: 110112
doi: 10.1016/j.matchar.2019.110112
10 Wu X, Wang R C, Peng C Q, et al. Low-temperature annealing behavior and tensile properties of the rapidly solidified Cu3Ag0.5-Zr0.4Cr0.35Nb alloy reinforced by cold rolling [J]. J. Alloys Compd., 2020, 828: 154371
doi: 10.1016/j.jallcom.2020.154371
11 Xie H F, Mi X J, Huang G J, et al. Effect of thermomechanical treatment on microstructure and properties of Cu-Cr-Zr-Ag alloy [J]. Rare Met., 2011, 30: 650
doi: 10.1007/s12598-011-0444-9
12 Shen D P, Xu N, Gong M Y, et al. Improved tensile strength and electrical conductivity in Cu-Cr-Zr alloys by controlling the precipitation behavior through severe warm rolling [J]. J. Mater. Sci., 2020, 55: 12499
doi: 10.1007/s10853-020-04849-3
13 Purcek G, Yanar H, Demirtas M, et al. Microstructural, mechanical and tribological properties of ultrafine-grained Cu-Cr-Zr alloy processed by high pressure torsion [J]. J. Alloys Compd., 2020, 816: 152675
doi: 10.1016/j.jallcom.2019.152675
14 Huang A H, Wang Y F, Wang M S, et al. Optimizing the strength, ductility and electrical conductivity of a Cu-Cr-Zr alloy by rotary swaging and aging treatment [J]. Mater. Sci. Eng., 2019, A746: 211
15 Wang Y P, Fu R D, Li Y J, et al. A high strength and high electrical conductivity Cu-Cr-Zr alloy fabricated by cryogenic friction stir processing and subsequent annealing treatment [J]. Mater. Sci. Eng., 2019, A755: 166
16 Hou J P, Sun P F, Wang Q, et al. Breaking the trade-off relation between strength and electrical conductivity: Heterogeneous grain design [J]. Acta Metall Sin, 2022, 58: 1467
doi: 10.11900/0412.1961.2022.00222
16 侯嘉鹏, 孙朋飞, 王 强 等. 突破强度-导电率制约关系:晶粒异构设计 [J]. 金属学报, 2022, 58: 1467
doi: 10.11900/0412.1961.2022.00222
17 Guo X L, Xiao Z, Qiu W T, et al. Microstructure and properties of Cu-Cr-Nb alloy with high strength, high electrical conductivity and good softening resistance performance at elevated temperature [J]. Mater. Sci. Eng., 2019, A749: 281
18 Anderson K R, Groza J R, Dreshfield R L, et al. High-performance dispersion-strengthened Cu-8Cr-4Nb alloy [J]. Metall. Mater. Trans., 1995, 26A: 2197
19 Liu X J, Jiang Z P, Wang C P, et al. Experimental determination and thermodynamic calculation of the phase equilibria in the Cu-Cr-Nb and Cu-Cr-Co systems [J]. J. Alloys Compd., 2009, 478: 287
doi: 10.1016/j.jallcom.2008.11.162
20 Thoma D J, Perepezko J H. An experimental evaluation of the phase relationships and solubilities in the Nb-Cr system [J]. Mater. Sci. Eng., 1992, A156: 97
21 Wen B, Tian Y J. Mechanical behaviors of nanotwinned metals and nanotwinned covalent materials [J]. Acta Metall. Sin., 2021, 57: 1380
doi: 10.11900/0412.1961.2021.00291
21 温 斌, 田永君. 纳米孪晶金属和纳米孪晶共价材料的力学行为 [J]. 金属学报, 2021, 57: 1380
22 Zhang Z Y, Sun L X, Tao N R. Raising thermal stability of nanograins in a CuCrZr alloy by precipitates on grain boundaries [J]. J. Alloys Compd., 2021, 867: 159016
doi: 10.1016/j.jallcom.2021.159016
23 Li R G, Guo E Y, Chen Z N, et al. Optimization of the balance between high strength and high electrical conductivity in CuCrZr alloys through two-step cryorolling and aging [J]. J. Alloys Compd., 2019, 771: 1044
doi: 10.1016/j.jallcom.2018.09.040
24 Li R G, Zhang S R, Zou C L, et al. The roles of Hf element in optimizing strength, ductility and electrical conductivity of copper alloys [J]. Mater. Sci. Eng., 2019, A758: 130
25 Purcek G, Yanar H, Shangina D V, et al. Influence of high pressure torsion-induced grain refinement and subsequent aging on tribological properties of Cu-Cr-Zr alloy [J]. J. Alloys Compd., 2018, 742: 325
doi: 10.1016/j.jallcom.2018.01.303
26 Zhang Z Y, Sun L X, Tao N R. Nanostructures and nanoprecipitates induce high strength and high electrical conductivity in a CuCrZr alloy [J]. J. Mater. Sci. Technol., 2020, 48: 18
doi: 10.1016/j.jmst.2019.12.022
27 Ding Z Y, Jia S G, Ning X M, et al. Aging properties of high-strength and high-conductivity Cu-Cr-Zr alloy [J]. Chin. J. Nonferrous Met., 2017, 27: 2420
27 丁宗业, 贾淑果, 宁向梅 等. 高强高导Cu-Cr-Zr合金时效性能 [J]. 中国有色金属学报, 2017, 27: 2420
28 Shen B, Cheng J Y, Li H Y. Dynamics of phase transformation of Cu-Cr-Zr-Mg alloy [J]. Trans. Mater. Heat Treat., 2014, 35(9): 121
28 沈 斌, 程建奕, 李海英. Cu-Cr-Zr-Mg合金的相变动力学 [J]. 材料热处理学报, 2014, 35(9): 121
29 Peng L J, Xie H F, Huang G J, et al. The phase transformation and strengthening of a Cu-0.71 wt% Cr alloy [J]. J. Alloys Compd., 2017, 708: 1096
doi: 10.1016/j.jallcom.2017.03.069
30 Yang Y, Wang L, Snead L, et al. Development of novel Cu-Cr-Nb-Zr alloys with the aid of computational thermodynamics [J]. Mater. Des., 2018, 156: 370
doi: 10.1016/j.matdes.2018.07.003
31 Zhang Y, Guo J M, Chen J H, et al. On the stacking fault energy related deformation mechanism of nanocrystalline Cu and Cu alloys: A first-principles and TEM study [J]. J. Alloys Compd., 2019, 776: 807
doi: 10.1016/j.jallcom.2018.10.275
32 Sun X L, Jie J C, Wang T M, et al. Effect of two-step cryorolling and aging on mechanical and electrical properties of a Cu-Cr-Ni-Si alloy for lead frames applications [J]. Mater. Sci. Eng., 2021, A809: 140521
33 Zhang S R, Kang H J, Li R G, et al. Microstructure evolution, electrical conductivity and mechanical properties of dual-scale Cu5Zr/ZrB2 particulate reinforced copper matrix composites [J]. Mater. Sci. Eng., 2019, A762: 138108
34 Gamin Y V, Muñoz Bolaños J A, Aleschenko A S, et al. Influence of the radial-shear rolling (RSR) process on the microstructure, electrical conductivity and mechanical properties of a Cu-Ni-Cr-Si alloy [J]. Mater. Sci. Eng., 2021, A822: 141676
35 Zhang S R, Kang H J, Wang Z C, et al. Microstructure and properties of dual-scale particulate reinforced copper matrix composites with superior comprehensive properties [J]. J. Alloys Compd., 2021, 860: 157888
doi: 10.1016/j.jallcom.2020.157888
36 Wu Y K, Li Y, Lu J Y, et al. Correlations between microstructures and properties of Cu-Ni-Si-Cr alloy [J]. Mater. Sci. Eng., 2018, A731: 403
37 Sun X L, Jie J C, Wang P F, et al. Effects of Co and Si additions and cryogenic rolling on structure and properties of Cu-Cr alloys [J]. Mater. Sci. Eng., 2019, A740-741: 165
38 Wu Y K, Li Y, Lu J Y, et al. Effects of pre-deformation on precipitation behaviors and properties in Cu-Ni-Si-Cr alloy [J]. Mater. Sci. Eng., 2019, A742: 501
39 Wang W, Guo E Y, Chen Z N, et al. Correlation between microstructures and mechanical properties of cryorolled CuNiSi alloys with Cr and Zr alloying [J]. Mater. Charact., 2018, 144: 532
doi: 10.1016/j.matchar.2018.08.003
[1] 彭祥阳, 张乐, 李聪聪, 侯硕, 刘迪, 周建明, 路广遥, 蒋虽合. AlCr协同作用提高核用高强钢耐水蒸气氧化性能[J]. 金属学报, 2024, 60(3): 357-366.
[2] 梁恩溥, 徐乐, 王毛球, 时捷. NiAlCu40CrNi3MoV钢中的析出行为及其对力学性能的影响[J]. 金属学报, 2024, 60(2): 201-210.
[3] 程磊, 张旭航, 韩盈, 程志诚, 余伟. 中间层材料FeNb对高强钛-钢复合管界面及剪切强度的影响[J]. 金属学报, 2024, 60(1): 117-128.
[4] 刘畅, 吴戈, 吕坚. 纳米结构多主元合金的力学行为及强塑化机制[J]. 金属学报, 2024, 60(1): 16-29.
[5] 郑雄, 赖玉香, 向雪梅, 陈江华. 稀土元素LaAlMgSi合金性能和微结构的影响[J]. 金属学报, 2024, 60(1): 107-116.
[6] 梁凯, 姚志浩, 谢锡善, 姚凯俊, 董建新. 新型耐热合金SP2215组织与性能的关联性[J]. 金属学报, 2023, 59(6): 797-811.
[7] 张哲峰, 李克强, 蔡拓, 李鹏, 张振军, 刘睿, 杨金波, 张鹏. 层错能对面心立方金属形变机制与力学性能的影响[J]. 金属学报, 2023, 59(4): 467-477.
[8] 芮祥, 李艳芬, 张家榕, 王旗涛, 严伟, 单以银. 新型纳米复合强化9Cr-ODS钢的设计、组织与力学性能[J]. 金属学报, 2023, 59(12): 1590-1602.
[9] 张开元, 董文超, 赵栋, 李世键, 陆善平. 固态相变对Fe-Co-Ni超高强度钢长臂梁构件焊接-淬火过程应力和变形的影响[J]. 金属学报, 2023, 59(12): 1633-1643.
[10] 陈凯旋, 李宗烜, 王自东, Demange Gilles, 陈晓华, 张佳伟, 吴雪华, Zapolsky Helena. Cu-2.0Fe合金等温处理过程中富Fe析出相的形态演变[J]. 金属学报, 2023, 59(12): 1665-1674.
[11] 马国楠, 朱士泽, 王东, 肖伯律, 马宗义. SiC颗粒增强Al-Zn-Mg-Cu复合材料的时效行为和力学性能[J]. 金属学报, 2023, 59(12): 1655-1664.
[12] 李小琳, 刘林锡, 李雅婷, 杨佳伟, 邓想涛, 王海丰. 单一 MX 型析出相强化马氏体耐热钢力学性能及蠕变行为[J]. 金属学报, 2022, 58(9): 1199-1207.
[13] 郑士建, 闫哲, 孔祥飞, 张瑞丰. 纳米金属层状材料强塑性的界面调控[J]. 金属学报, 2022, 58(6): 709-725.
[14] 沈国慧, 胡斌, 杨占兵, 罗海文. 回火温度对含 δ 铁素体高铝中锰钢力学性能和显微组织的影响[J]. 金属学报, 2022, 58(2): 165-174.
[15] 王韬, 龙弟均, 余黎明, 刘永长, 李会军, 王祖敏. 超高压烧结制备14Cr-ODS钢及微观组织与力学性能[J]. 金属学报, 2022, 58(2): 184-192.