|
|
低温轧制对高强高导Cu-1Cr-0.2Zr-0.25Nb合金性能及析出行为的影响 |
李龙健1, 李仁庚2, 张家郡1, 曹兴豪1, 康慧君1( ), 王同敏1 |
1大连理工大学 材料科学与工程学院 辽宁省凝固控制与数字化制备技术重点实验室 大连 116024 2南京工业大学 先进轻质高性能材料研究中心 南京 210009 |
|
Effects of Cryorolling on Properties and Precipitation Behavior of a High-Strength and High-Conductivity Cu-1Cr-0.2Zr-0.25Nb Alloy |
LI Longjian1, LI Rengeng2, ZHANG Jiajun1, CAO Xinghao1, KANG Huijun1( ), WANG Tongmin1 |
1Key Laboratory of Solidification Control and Digital Preparation Technology (Liaoning Province), School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, China 2Key Laboratory for Light-Weight Materials, Nanjing Tech University, Nanjing 210009, China |
引用本文:
李龙健, 李仁庚, 张家郡, 曹兴豪, 康慧君, 王同敏. 低温轧制对高强高导Cu-1Cr-0.2Zr-0.25Nb合金性能及析出行为的影响[J]. 金属学报, 2024, 60(3): 405-416.
Longjian LI,
Rengeng LI,
Jiajun ZHANG,
Xinghao CAO,
Huijun KANG,
Tongmin WANG.
Effects of Cryorolling on Properties and Precipitation Behavior of a High-Strength and High-Conductivity Cu-1Cr-0.2Zr-0.25Nb Alloy[J]. Acta Metall Sin, 2024, 60(3): 405-416.
1 |
Li Z Y, Yang L J, Xu C, et al. Effect of aging temperature on hard phase evolution of nickel aluminum bronze [J]. Chin. J. Nonferrous Met., 2016, 26: 766
|
1 |
李振亚, 杨丽景, 许 赪 等. 时效温度对镍铝青铜合金的硬质相演变的影响 [J]. 中国有色金属学报, 2016, 26: 766
|
2 |
Wang Q J, Zhou X, Liang B, et al. High temperature tensile properties and fracture mechanism of ultra-fine grain Cu-Cr-Zr alloy [J]. Acta Metall. Sin., 2016, 52: 1477
doi: 10.11900/0412.1961.2016.00073
|
2 |
王庆娟, 周 晓, 梁 博 等. 超细晶Cu-Cr-Zr合金的高温拉伸性能及断裂机制 [J]. 金属学报, 2016, 52: 1477
doi: 10.11900/0412.1961.2016.00073
|
3 |
Chen J S, Wang J F, Xiao X P, et al. Contribution of Zr to strength and grain refinement in Cu-Cr-Zr alloy [J]. Mater. Sci. Eng., 2019, A756: 464
|
4 |
Song L N, Liu J B, Huang L Y, et al. Effect of heavily drawing on the microstructure and properties of Cu-Cr Alloys [J]. Acta Metall. Sin., 2012, 48: 1459
doi: 10.3724/SP.J.1037.2012.00263
|
4 |
宋鲁男, 刘嘉斌, 黄六一 等. 强变形对Cu-Cr合金组织性能的影响 [J]. 金属学报, 2012, 48: 1459
doi: 10.3724/SP.J.1037.2012.00263
|
5 |
Li Z, Xiao Z, Jiang Y B, et al. Composition design, phase transition and fabrication of copper alloys with high strength and electrical conductivity [J]. Chin. J. Nonferrous Met., 2019, 29: 2009
|
5 |
李 周, 肖 柱, 姜雁斌 等. 高强导电铜合金的成分设计、相变与制备 [J]. 中国有色金属学报, 2019, 29: 2009
|
6 |
Feng P, Chen W G, Yan F L, et al. Research progress of Cu-Cr-Zr copper alloys with high strength and high conductivity [J]. Electr. Eng. Mater., 2019, (2): 11
|
6 |
冯 培, 陈文革, 闫芳龙 等. 高强高导Cu-Cr-Zr系合金的研究进展 [J]. 电工材料, 2019, (2): 11
|
7 |
Wang M P, Jia Y L, Li Z, et al. Advanced Copper Alloy with High Strength and Conductivity [M]. Changsha: Central South University Press, 2015: 1
|
7 |
汪明朴, 贾延琳, 李 周 等. 先进高强导电铜合金 [M]. 长沙: 中南大学出版社, 2015: 1
|
8 |
Sun Y Q, Peng L J, Huang G J, et al. Effects of Mg addition on the microstructure and softening resistance of Cu-Cr alloys [J]. Mater. Sci. Eng., 2020, A776: 139009
|
9 |
Sarkar A, Prasad M J N V, Murty S V S N. Effect of initial grain size on hot deformation behaviour of Cu-Cr-Zr-Ti alloy [J]. Mater. Charact., 2020, 160: 110112
doi: 10.1016/j.matchar.2019.110112
|
10 |
Wu X, Wang R C, Peng C Q, et al. Low-temperature annealing behavior and tensile properties of the rapidly solidified Cu3Ag0.5-Zr0.4Cr0.35Nb alloy reinforced by cold rolling [J]. J. Alloys Compd., 2020, 828: 154371
doi: 10.1016/j.jallcom.2020.154371
|
11 |
Xie H F, Mi X J, Huang G J, et al. Effect of thermomechanical treatment on microstructure and properties of Cu-Cr-Zr-Ag alloy [J]. Rare Met., 2011, 30: 650
doi: 10.1007/s12598-011-0444-9
|
12 |
Shen D P, Xu N, Gong M Y, et al. Improved tensile strength and electrical conductivity in Cu-Cr-Zr alloys by controlling the precipitation behavior through severe warm rolling [J]. J. Mater. Sci., 2020, 55: 12499
doi: 10.1007/s10853-020-04849-3
|
13 |
Purcek G, Yanar H, Demirtas M, et al. Microstructural, mechanical and tribological properties of ultrafine-grained Cu-Cr-Zr alloy processed by high pressure torsion [J]. J. Alloys Compd., 2020, 816: 152675
doi: 10.1016/j.jallcom.2019.152675
|
14 |
Huang A H, Wang Y F, Wang M S, et al. Optimizing the strength, ductility and electrical conductivity of a Cu-Cr-Zr alloy by rotary swaging and aging treatment [J]. Mater. Sci. Eng., 2019, A746: 211
|
15 |
Wang Y P, Fu R D, Li Y J, et al. A high strength and high electrical conductivity Cu-Cr-Zr alloy fabricated by cryogenic friction stir processing and subsequent annealing treatment [J]. Mater. Sci. Eng., 2019, A755: 166
|
16 |
Hou J P, Sun P F, Wang Q, et al. Breaking the trade-off relation between strength and electrical conductivity: Heterogeneous grain design [J]. Acta Metall Sin, 2022, 58: 1467
doi: 10.11900/0412.1961.2022.00222
|
16 |
侯嘉鹏, 孙朋飞, 王 强 等. 突破强度-导电率制约关系:晶粒异构设计 [J]. 金属学报, 2022, 58: 1467
doi: 10.11900/0412.1961.2022.00222
|
17 |
Guo X L, Xiao Z, Qiu W T, et al. Microstructure and properties of Cu-Cr-Nb alloy with high strength, high electrical conductivity and good softening resistance performance at elevated temperature [J]. Mater. Sci. Eng., 2019, A749: 281
|
18 |
Anderson K R, Groza J R, Dreshfield R L, et al. High-performance dispersion-strengthened Cu-8Cr-4Nb alloy [J]. Metall. Mater. Trans., 1995, 26A: 2197
|
19 |
Liu X J, Jiang Z P, Wang C P, et al. Experimental determination and thermodynamic calculation of the phase equilibria in the Cu-Cr-Nb and Cu-Cr-Co systems [J]. J. Alloys Compd., 2009, 478: 287
doi: 10.1016/j.jallcom.2008.11.162
|
20 |
Thoma D J, Perepezko J H. An experimental evaluation of the phase relationships and solubilities in the Nb-Cr system [J]. Mater. Sci. Eng., 1992, A156: 97
|
21 |
Wen B, Tian Y J. Mechanical behaviors of nanotwinned metals and nanotwinned covalent materials [J]. Acta Metall. Sin., 2021, 57: 1380
doi: 10.11900/0412.1961.2021.00291
|
21 |
温 斌, 田永君. 纳米孪晶金属和纳米孪晶共价材料的力学行为 [J]. 金属学报, 2021, 57: 1380
|
22 |
Zhang Z Y, Sun L X, Tao N R. Raising thermal stability of nanograins in a CuCrZr alloy by precipitates on grain boundaries [J]. J. Alloys Compd., 2021, 867: 159016
doi: 10.1016/j.jallcom.2021.159016
|
23 |
Li R G, Guo E Y, Chen Z N, et al. Optimization of the balance between high strength and high electrical conductivity in CuCrZr alloys through two-step cryorolling and aging [J]. J. Alloys Compd., 2019, 771: 1044
doi: 10.1016/j.jallcom.2018.09.040
|
24 |
Li R G, Zhang S R, Zou C L, et al. The roles of Hf element in optimizing strength, ductility and electrical conductivity of copper alloys [J]. Mater. Sci. Eng., 2019, A758: 130
|
25 |
Purcek G, Yanar H, Shangina D V, et al. Influence of high pressure torsion-induced grain refinement and subsequent aging on tribological properties of Cu-Cr-Zr alloy [J]. J. Alloys Compd., 2018, 742: 325
doi: 10.1016/j.jallcom.2018.01.303
|
26 |
Zhang Z Y, Sun L X, Tao N R. Nanostructures and nanoprecipitates induce high strength and high electrical conductivity in a CuCrZr alloy [J]. J. Mater. Sci. Technol., 2020, 48: 18
doi: 10.1016/j.jmst.2019.12.022
|
27 |
Ding Z Y, Jia S G, Ning X M, et al. Aging properties of high-strength and high-conductivity Cu-Cr-Zr alloy [J]. Chin. J. Nonferrous Met., 2017, 27: 2420
|
27 |
丁宗业, 贾淑果, 宁向梅 等. 高强高导Cu-Cr-Zr合金时效性能 [J]. 中国有色金属学报, 2017, 27: 2420
|
28 |
Shen B, Cheng J Y, Li H Y. Dynamics of phase transformation of Cu-Cr-Zr-Mg alloy [J]. Trans. Mater. Heat Treat., 2014, 35(9): 121
|
28 |
沈 斌, 程建奕, 李海英. Cu-Cr-Zr-Mg合金的相变动力学 [J]. 材料热处理学报, 2014, 35(9): 121
|
29 |
Peng L J, Xie H F, Huang G J, et al. The phase transformation and strengthening of a Cu-0.71 wt% Cr alloy [J]. J. Alloys Compd., 2017, 708: 1096
doi: 10.1016/j.jallcom.2017.03.069
|
30 |
Yang Y, Wang L, Snead L, et al. Development of novel Cu-Cr-Nb-Zr alloys with the aid of computational thermodynamics [J]. Mater. Des., 2018, 156: 370
doi: 10.1016/j.matdes.2018.07.003
|
31 |
Zhang Y, Guo J M, Chen J H, et al. On the stacking fault energy related deformation mechanism of nanocrystalline Cu and Cu alloys: A first-principles and TEM study [J]. J. Alloys Compd., 2019, 776: 807
doi: 10.1016/j.jallcom.2018.10.275
|
32 |
Sun X L, Jie J C, Wang T M, et al. Effect of two-step cryorolling and aging on mechanical and electrical properties of a Cu-Cr-Ni-Si alloy for lead frames applications [J]. Mater. Sci. Eng., 2021, A809: 140521
|
33 |
Zhang S R, Kang H J, Li R G, et al. Microstructure evolution, electrical conductivity and mechanical properties of dual-scale Cu5Zr/ZrB2 particulate reinforced copper matrix composites [J]. Mater. Sci. Eng., 2019, A762: 138108
|
34 |
Gamin Y V, Muñoz Bolaños J A, Aleschenko A S, et al. Influence of the radial-shear rolling (RSR) process on the microstructure, electrical conductivity and mechanical properties of a Cu-Ni-Cr-Si alloy [J]. Mater. Sci. Eng., 2021, A822: 141676
|
35 |
Zhang S R, Kang H J, Wang Z C, et al. Microstructure and properties of dual-scale particulate reinforced copper matrix composites with superior comprehensive properties [J]. J. Alloys Compd., 2021, 860: 157888
doi: 10.1016/j.jallcom.2020.157888
|
36 |
Wu Y K, Li Y, Lu J Y, et al. Correlations between microstructures and properties of Cu-Ni-Si-Cr alloy [J]. Mater. Sci. Eng., 2018, A731: 403
|
37 |
Sun X L, Jie J C, Wang P F, et al. Effects of Co and Si additions and cryogenic rolling on structure and properties of Cu-Cr alloys [J]. Mater. Sci. Eng., 2019, A740-741: 165
|
38 |
Wu Y K, Li Y, Lu J Y, et al. Effects of pre-deformation on precipitation behaviors and properties in Cu-Ni-Si-Cr alloy [J]. Mater. Sci. Eng., 2019, A742: 501
|
39 |
Wang W, Guo E Y, Chen Z N, et al. Correlation between microstructures and mechanical properties of cryorolled CuNiSi alloys with Cr and Zr alloying [J]. Mater. Charact., 2018, 144: 532
doi: 10.1016/j.matchar.2018.08.003
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|