|
|
Al和Cr协同作用提高核用高强钢耐水蒸气氧化性能 |
彭祥阳1, 张乐2, 李聪聪2, 侯硕1, 刘迪2, 周建明1, 路广遥1( ), 蒋虽合2( ) |
1中广核研究院有限公司 设备研究所 深圳 518000 2北京科技大学 新金属材料国家重点实验室 北京 100083 |
|
Synergetic Effects of Al and Cr on Enhancing Water Vapor Oxidation Resistance of Ultra-High Strength Steels for Nuclear Applications |
PENG Xiangyang1, ZHANG Le2, LI Congcong2, HOU Shuo1, LIU Di2, ZHOU Jianming1, LU Guangyao1( ), JIANG Suihe2( ) |
1Equipment Research Center, China Nuclear Power Technology Research Institute Co. Ltd., Shenzhen 518000, China 2State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083, China |
引用本文:
彭祥阳, 张乐, 李聪聪, 侯硕, 刘迪, 周建明, 路广遥, 蒋虽合. Al和Cr协同作用提高核用高强钢耐水蒸气氧化性能[J]. 金属学报, 2024, 60(3): 357-366.
Xiangyang PENG,
Le ZHANG,
Congcong LI,
Shuo HOU,
Di LIU,
Jianming ZHOU,
Guangyao LU,
Suihe JIANG.
Synergetic Effects of Al and Cr on Enhancing Water Vapor Oxidation Resistance of Ultra-High Strength Steels for Nuclear Applications[J]. Acta Metall Sin, 2024, 60(3): 357-366.
1 |
Zinkle S J, Busby J T. Structural materials for fission & fusion energy [J]. Mater. Today., 2009, 12(11): 12
|
2 |
Zinkle S J, Snead L L. Designing radiation resistance in materials for fusion energy [J]. Annu. Rev. Mater. Res., 2014, 44: 241
doi: 10.1146/matsci.2014.44.issue-1
|
3 |
Laverde D, Gómez-Acebo T, Castro F. Continuous and cyclic oxidation of T91 ferritic steel under steam [J]. Corros. Sci., 2004, 46: 613
doi: 10.1016/S0010-938X(03)00173-2
|
4 |
Chen Y, Sridharan K, Allen T. Corrosion behavior of ferritic-martensitic steel T91 in supercritical water [J]. Corros. Sci., 2006, 48: 2843
doi: 10.1016/j.corsci.2005.08.021
|
5 |
Ampornrat P, Was G S. Oxidation of ferritic-martensitic alloys T91, HCM12A and HT-9 in supercritical water [J]. J. Nucl. Mater., 2007, 371: 1
doi: 10.1016/j.jnucmat.2007.05.023
|
6 |
Jiang S H, Wang H, Wu Y, et al. Ultrastrong steel via minimal lattice misfit and high-density nanoprecipitation [J]. Nature, 2017, 544: 460
doi: 10.1038/nature22032
|
7 |
Jiang S H, Xu X Q, Li W, et al. Strain hardening mediated by coherent nanoprecipitates in ultrahigh-strength steels [J]. Acta Mater., 2021, 213: 116984
doi: 10.1016/j.actamat.2021.116984
|
8 |
Cao P P, Wang H, He J Y, et al. Effects of nanosized precipitates on irradiation behavior of CoCrFeNi high entropy alloys [J]. J. Alloys Compd., 2021, 859: 158291
doi: 10.1016/j.jallcom.2020.158291
|
9 |
Du J L, Jiang S H, Cao P P, et al. Superior radiation tolerance via reversible disordering-ordering transition of coherent superlattices [J]. Nat. Mater., 2023, 22: 443
|
10 |
Figueroa D, Robinson M J. The effects of sacrificial coatings on hydrogen embrittlement and re-embrittlement of ultra high strength steels [J]. Corros. Sci., 2008, 50: 1066
doi: 10.1016/j.corsci.2007.11.023
|
11 |
Wang Z H, Niu B, Wang Q, et al. Designing ultrastrong maraging stainless steels with improved uniform plastic strain via controlled precipitation of coherent nanoparticles [J]. J. Mater. Sci. Technol., 2021, 93: 60
doi: 10.1016/j.jmst.2021.04.011
|
12 |
Liu Q X, Pang M, Chen J, et al. Microstructure and properties characterization of Ti-containing Ni60/Graphite self-lubricating composite coatings applied on 300M ultra-high strength steel by laser cladding [J]. Mater. Chem. Phys., 2021, 266: 124554
doi: 10.1016/j.matchemphys.2021.124554
|
13 |
Xu X Q, Zhang X F, Sun X Y, et al. Effects of silicon additions on the oxide scale formation of an alumina-forming austenitic alloy [J]. Corros. Sci., 2012, 65: 317
doi: 10.1016/j.corsci.2012.08.039
|
14 |
Stott F H, Wood G C, Stringer J. The influence of alloying elements on the development and maintenance of protective scales [J]. Oxid. Met., 1995, 44: 113
doi: 10.1007/BF01046725
|
15 |
Jozaghi T, Wang C N, Arroyave R, et al. Design of alumina-forming austenitic stainless steel using genetic algorithms [J]. Mater. Des., 2020, 186: 108198
doi: 10.1016/j.matdes.2019.108198
|
16 |
Gesmundo F, Viani F. Transition from internal to external oxidation for binary alloys in the presence of an outer scale [J]. Oxid. Met., 1986, 25: 269
doi: 10.1007/BF01072908
|
17 |
Prescott R, Graham M J. The formation of aluminum oxide scales on high-temperature alloys [J]. Oxid. Met., 1992, 38: 233
doi: 10.1007/BF00666913
|
18 |
Niu Y, Zhang X J, Wu Y, et al. The third-element effect in the oxidation of Ni-xCr-7Al (x = 0, 5, 10, 15 at.%) alloys in 1atm O2 at 900-1000oC [J]. Corros. Sci., 2006, 48: 4020
doi: 10.1016/j.corsci.2006.03.008
|
19 |
Liu F, Götlind H, Svensson J E, et al. Early stages of the oxidation of a FeCrAlRE alloy (Kanthal AF) at 900oC: A detailed microstructural investigation [J]. Corros. Sci., 2008, 50: 2272
doi: 10.1016/j.corsci.2008.05.019
|
20 |
Hayashi S, Maeda T. Effect of Zr on initial oxidation behavior of FeCrAl alloys [J]. Oxid. Met., 2020, 93: 573
doi: 10.1007/s11085-020-09972-9
|
21 |
Shi H, Tang C C, Jianu A, et al. Oxidation behavior and microstructure evolution of alumina-forming austenitic & high entropy alloys in steam environment at 1200oC [J]. Corros. Sci., 2020, 170: 108654
doi: 10.1016/j.corsci.2020.108654
|
22 |
Wu J W, Liu X B. Recent development of SOFC metallic interconnect [J]. J. Mater. Sci. Technol., 2010, 26: 293
|
23 |
Zhou L F, Zeng Z P, Brady M P, et al. Chromium evaporation and oxidation characteristics of alumina-forming austenitic stainless steels for balance of plant applications in solid oxide fuel cells [J]. Int. J. Hydrogen Energy, 2021, 46: 21619
doi: 10.1016/j.ijhydene.2021.04.002
|
24 |
Asteman H, Svensson J E, Norell M, et al. Influence of water vapor and flow rate on the high-temperature oxidation of 304L; Effect of chromium oxide hydroxide evaporation [J]. Oxid. Met., 2000, 54: 11
doi: 10.1023/A:1004642310974
|
25 |
Yamamoto Y, Brady M P, Lu Z P, et al. Creep-resistant, Al2O3-forming austenitic stainless steels [J]. Science., 2007, 316: 433
pmid: 17446398
|
26 |
Li C C, Zhao W X, Wang H, et al. Enhanced corrosion resistance of an alumina-forming austenitic steel against molten Al [J]. Oxid. Met., 2020, 94: 465
doi: 10.1007/s11085-020-10002-x
|
27 |
Mortazavi N, Geers C, Esmaily M, et al. Interplay of water and reactive elements in oxidation of alumina-forming alloys [J]. Nat. Mater., 2018, 17: 610
doi: 10.1038/s41563-018-0105-6
pmid: 29891892
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|