Please wait a minute...
金属学报  2024, Vol. 60 Issue (3): 357-366    DOI: 10.11900/0412.1961.2022.00463
  研究论文 本期目录 | 过刊浏览 |
AlCr协同作用提高核用高强钢耐水蒸气氧化性能
彭祥阳1, 张乐2, 李聪聪2, 侯硕1, 刘迪2, 周建明1, 路广遥1(), 蒋虽合2()
1中广核研究院有限公司 设备研究所 深圳 518000
2北京科技大学 新金属材料国家重点实验室 北京 100083
Synergetic Effects of Al and Cr on Enhancing Water Vapor Oxidation Resistance of Ultra-High Strength Steels for Nuclear Applications
PENG Xiangyang1, ZHANG Le2, LI Congcong2, HOU Shuo1, LIU Di2, ZHOU Jianming1, LU Guangyao1(), JIANG Suihe2()
1Equipment Research Center, China Nuclear Power Technology Research Institute Co. Ltd., Shenzhen 518000, China
2State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083, China
引用本文:

彭祥阳, 张乐, 李聪聪, 侯硕, 刘迪, 周建明, 路广遥, 蒋虽合. AlCr协同作用提高核用高强钢耐水蒸气氧化性能[J]. 金属学报, 2024, 60(3): 357-366.
Xiangyang PENG, Le ZHANG, Congcong LI, Shuo HOU, Di LIU, Jianming ZHOU, Guangyao LU, Suihe JIANG. Synergetic Effects of Al and Cr on Enhancing Water Vapor Oxidation Resistance of Ultra-High Strength Steels for Nuclear Applications[J]. Acta Metall Sin, 2024, 60(3): 357-366.

全文: PDF(3300 KB)   HTML
摘要: 

前期研发的Fe-Ni-Al基超高强度马氏体时效钢表现出了良好的力学和抗辐照性能,然而典型Cr2O3氧化保护膜的耐热钢在轻水反应堆高温高压含水蒸气的服役环境中极易失效,亟待研发兼具抗高温水蒸气氧化、优异力学和抗辐照性能的先进材料。本工作在前期研发的Fe-Ni-Al系超高强度马氏体时效钢基础上添加不同含量的Cr元素,在保持新型马氏体钢优异力学性能的同时,对其在干燥空气和含水蒸气环境中的氧化性能进行研究。采用非自耗真空电弧炉制备合金铸锭,并对时效处理后的高强钢进行600℃干燥空气和潮湿空气2种环境中的抗氧化性能测试,对氧化后样品的表面和截面形貌进行微观组织表征。结果表明,添加9%Cr后的Fe-13Ni-2.3Al高强钢在600℃空气 + 10%水蒸气的气氛中氧化100 h的平均单位面积增重仅为0.1 mg/cm2,是添加5%Cr的Fe-13Ni-2.3Al高强钢和Fe-18Ni-3Al马氏体时效钢的1/50。对氧化后高强钢微观组织表征分析表明,在Al和Cr元素协同作用下,Fe-13Ni-9Cr-2.3Al高强钢在600℃空气 + 10%水蒸气条件下表面自发形成了富Fe、Cr、Al的复合氧化膜,提高了抗高温水蒸气氧化性能,其中Cr通过第三组元效应降低氧化物膜-基体界面氧分压,从而促进在高温水蒸气条件下在基体表面形成致密连续的富Al氧化膜。

关键词 超高强度钢水蒸气氧化氧化膜第三组元效应协同效应    
Abstract

Heat-resistant steels that usually form a typical Cr2O3 protective scale easily fail under the servicing environment of high-temperature and -pressure water vapor in a light water reactor. Advanced materials with a superior combination of high-temperature water vapor oxidation resistance, excellent mechanical properties, and radiation resistance must be developed. This work develops a new ultra-high strength maraging stainless steel by alloying different Cr contents into a recently developed Fe-Ni-Al ultrahigh strength steel without losing its high mechanical properties. The oxidation properties of the new martensitic steel are tested in both dry air and water vapor atmospheres. The alloy ingot is prepared by arc melting under argon atmosphere. The oxidation resistance of steel after aging treatment is tested in dry air and humid air at 600oC. The surface and cross-section morphologies of the oxidized samples are then characterized. The results show that the average weight gain per unit area of the Fe-13Ni-2.3Al high-strength steel added with 9%Cr (mass fraction) is only 0.1 mg/cm2 after 100 h oxidation at 600oC in a 10% water vapor atmosphere. It decreases more than 50 times compared with those of the Fe-13Ni-2.3Al high-strength steel and the Fe-18Ni-3Al maraging steel added with 5%Cr. The microstructure characterization of the oxidized high-strength steel reveals that a composite oxide film rich in Fe, Cr, and Al spontaneously forms on the surface of the Fe-13Ni-9Cr-2.3Al high-strength steel in the 600oC air + 10% water vapor atmosphere due to the synergistical effect of the Al and Cr additions. The oxygen partial pressure at the interface between the oxide film and the matrix is reduced by the third component effect of Cr, which promotes the formation of a dense and continuous Al-rich oxide film on the substrate surface in a high-temperature water vapor atmosphere.

Key wordsultra-high strength steel    oxidation by water vapor    oxide film    third element effect    synergetic effect
收稿日期: 2022-09-16     
ZTFLH:  TG146.2  
基金资助:国家自然科学基金项目(51971018);国家自然科学基金项目(U20B2025)
通讯作者: 路广遥,luguangyao@cgnpc.com.cn,主要从事核电装备及核电材料技术研究;蒋虽合,jiangsh@ustb.edu.cn,主要从事超高强度钢研究
Corresponding author: LU Guangyao, senior engineer, Tel: 18566285086, E-mail: luguangyao@cgnpc.com.cn; JIANG Suihe, professor, Tel: 17710175186, E-mail: jiangsh@ustb.edu.cn
作者简介: 彭祥阳,男,1989年生,高级工程师,硕士
SampleNiCrAlMoNbCFe
5Cr1352.310.20Bal.
9Cr1392.310.20Bal.
0Cr1803.050.20.08Bal.
表1  Fe-Ni-Cr-Al系马氏体钢的名义成分 (mass fraction / %)
图1  氧化前经过时效处理的5Cr和9Cr试样的SEM像、XRD谱和拉伸应力-应变曲线

Temperature

Sample

Tensile strength MPaYield strength MPaElongation %
RT5Cr188917736.5
9Cr189017777.6
600oC5Cr57651051.1
9Cr57252345.1
表2  氧化前经时效处理的5Cr和9Cr试样在室温和600℃下的力学性能
图2  氧化实验后5Cr、9Cr和0Cr试样的氧化增重及表面形貌
图3  5Cr、9Cr和0Cr试样经600℃干燥空气等温氧化100 h后的截面SEM像和EDS分析
图4  5Cr、9Cr和0Cr试样经600℃空气 + 10%水蒸气等温氧化100 h后的截面SEM像和EDS分析
图5  经600℃空气 + 10%水蒸气氧化100 h的9Cr试样及其氧化膜的截面形貌、成分分布及结构分析
图6  9Cr和5Cr试样初期氧化行为示意图
1 Zinkle S J, Busby J T. Structural materials for fission & fusion energy [J]. Mater. Today., 2009, 12(11): 12
2 Zinkle S J, Snead L L. Designing radiation resistance in materials for fusion energy [J]. Annu. Rev. Mater. Res., 2014, 44: 241
doi: 10.1146/matsci.2014.44.issue-1
3 Laverde D, Gómez-Acebo T, Castro F. Continuous and cyclic oxidation of T91 ferritic steel under steam [J]. Corros. Sci., 2004, 46: 613
doi: 10.1016/S0010-938X(03)00173-2
4 Chen Y, Sridharan K, Allen T. Corrosion behavior of ferritic-martensitic steel T91 in supercritical water [J]. Corros. Sci., 2006, 48: 2843
doi: 10.1016/j.corsci.2005.08.021
5 Ampornrat P, Was G S. Oxidation of ferritic-martensitic alloys T91, HCM12A and HT-9 in supercritical water [J]. J. Nucl. Mater., 2007, 371: 1
doi: 10.1016/j.jnucmat.2007.05.023
6 Jiang S H, Wang H, Wu Y, et al. Ultrastrong steel via minimal lattice misfit and high-density nanoprecipitation [J]. Nature, 2017, 544: 460
doi: 10.1038/nature22032
7 Jiang S H, Xu X Q, Li W, et al. Strain hardening mediated by coherent nanoprecipitates in ultrahigh-strength steels [J]. Acta Mater., 2021, 213: 116984
doi: 10.1016/j.actamat.2021.116984
8 Cao P P, Wang H, He J Y, et al. Effects of nanosized precipitates on irradiation behavior of CoCrFeNi high entropy alloys [J]. J. Alloys Compd., 2021, 859: 158291
doi: 10.1016/j.jallcom.2020.158291
9 Du J L, Jiang S H, Cao P P, et al. Superior radiation tolerance via reversible disordering-ordering transition of coherent superlattices [J]. Nat. Mater., 2023, 22: 443
10 Figueroa D, Robinson M J. The effects of sacrificial coatings on hydrogen embrittlement and re-embrittlement of ultra high strength steels [J]. Corros. Sci., 2008, 50: 1066
doi: 10.1016/j.corsci.2007.11.023
11 Wang Z H, Niu B, Wang Q, et al. Designing ultrastrong maraging stainless steels with improved uniform plastic strain via controlled precipitation of coherent nanoparticles [J]. J. Mater. Sci. Technol., 2021, 93: 60
doi: 10.1016/j.jmst.2021.04.011
12 Liu Q X, Pang M, Chen J, et al. Microstructure and properties characterization of Ti-containing Ni60/Graphite self-lubricating composite coatings applied on 300M ultra-high strength steel by laser cladding [J]. Mater. Chem. Phys., 2021, 266: 124554
doi: 10.1016/j.matchemphys.2021.124554
13 Xu X Q, Zhang X F, Sun X Y, et al. Effects of silicon additions on the oxide scale formation of an alumina-forming austenitic alloy [J]. Corros. Sci., 2012, 65: 317
doi: 10.1016/j.corsci.2012.08.039
14 Stott F H, Wood G C, Stringer J. The influence of alloying elements on the development and maintenance of protective scales [J]. Oxid. Met., 1995, 44: 113
doi: 10.1007/BF01046725
15 Jozaghi T, Wang C N, Arroyave R, et al. Design of alumina-forming austenitic stainless steel using genetic algorithms [J]. Mater. Des., 2020, 186: 108198
doi: 10.1016/j.matdes.2019.108198
16 Gesmundo F, Viani F. Transition from internal to external oxidation for binary alloys in the presence of an outer scale [J]. Oxid. Met., 1986, 25: 269
doi: 10.1007/BF01072908
17 Prescott R, Graham M J. The formation of aluminum oxide scales on high-temperature alloys [J]. Oxid. Met., 1992, 38: 233
doi: 10.1007/BF00666913
18 Niu Y, Zhang X J, Wu Y, et al. The third-element effect in the oxidation of Ni-xCr-7Al (x = 0, 5, 10, 15 at.%) alloys in 1atm O2 at 900-1000oC [J]. Corros. Sci., 2006, 48: 4020
doi: 10.1016/j.corsci.2006.03.008
19 Liu F, Götlind H, Svensson J E, et al. Early stages of the oxidation of a FeCrAlRE alloy (Kanthal AF) at 900oC: A detailed microstructural investigation [J]. Corros. Sci., 2008, 50: 2272
doi: 10.1016/j.corsci.2008.05.019
20 Hayashi S, Maeda T. Effect of Zr on initial oxidation behavior of FeCrAl alloys [J]. Oxid. Met., 2020, 93: 573
doi: 10.1007/s11085-020-09972-9
21 Shi H, Tang C C, Jianu A, et al. Oxidation behavior and microstructure evolution of alumina-forming austenitic & high entropy alloys in steam environment at 1200oC [J]. Corros. Sci., 2020, 170: 108654
doi: 10.1016/j.corsci.2020.108654
22 Wu J W, Liu X B. Recent development of SOFC metallic interconnect [J]. J. Mater. Sci. Technol., 2010, 26: 293
23 Zhou L F, Zeng Z P, Brady M P, et al. Chromium evaporation and oxidation characteristics of alumina-forming austenitic stainless steels for balance of plant applications in solid oxide fuel cells [J]. Int. J. Hydrogen Energy, 2021, 46: 21619
doi: 10.1016/j.ijhydene.2021.04.002
24 Asteman H, Svensson J E, Norell M, et al. Influence of water vapor and flow rate on the high-temperature oxidation of 304L; Effect of chromium oxide hydroxide evaporation [J]. Oxid. Met., 2000, 54: 11
doi: 10.1023/A:1004642310974
25 Yamamoto Y, Brady M P, Lu Z P, et al. Creep-resistant, Al2O3-forming austenitic stainless steels [J]. Science., 2007, 316: 433
pmid: 17446398
26 Li C C, Zhao W X, Wang H, et al. Enhanced corrosion resistance of an alumina-forming austenitic steel against molten Al [J]. Oxid. Met., 2020, 94: 465
doi: 10.1007/s11085-020-10002-x
27 Mortazavi N, Geers C, Esmaily M, et al. Interplay of water and reactive elements in oxidation of alumina-forming alloys [J]. Nat. Mater., 2018, 17: 610
doi: 10.1038/s41563-018-0105-6 pmid: 29891892
[1] 刘来娣, 丁彪, 任维丽, 钟云波, 王晖, 王秋良. DZ445镍基高温合金高温长时间氧化形成的多层膜结构[J]. 金属学报, 2023, 59(3): 387-398.
[2] 沈朝, 王志鹏, 胡波, 李德江, 曾小勤, 丁文江. 镁合金抗高温氧化机理研究进展[J]. 金属学报, 2023, 59(3): 371-386.
[3] 张开元, 董文超, 赵栋, 李世键, 陆善平. 固态相变对Fe-Co-Ni超高强度钢长臂梁构件焊接-淬火过程应力和变形的影响[J]. 金属学报, 2023, 59(12): 1633-1643.
[4] 徐文国, 郝文江, 李应举, 赵庆彬, 卢炳聿, 郭和一, 刘天宇, 冯小辉, 杨院生. 微量AlTiInconel 690合金高温氧化行为的影响[J]. 金属学报, 2023, 59(12): 1547-1558.
[5] 丛鸿达, 王金龙, 王成, 宁珅, 高若恒, 杜瑶, 陈明辉, 朱圣龙, 王福会. 新型无机硅酸盐复合涂层制备及其在高温水蒸气环境的氧化行为[J]. 金属学报, 2022, 58(8): 1083-1092.
[6] 孙蓉蓉, 姚美意, 林晓冬, 张文怀, 仇云龙, 胡丽娟, 谢耀平, 杨健, 董建新, 成国光. 添加TiFe22Cr5Al3Mo合金在500℃过热蒸汽中腐蚀行为的影响[J]. 金属学报, 2022, 58(5): 610-622.
[7] 林晓冬, 马海滨, 任啟森, 孙蓉蓉, 张文怀, 胡丽娟, 梁雪, 李毅丰, 姚美意. Fe13Cr5Al4Mo合金在高温高压水环境中的腐蚀行为[J]. 金属学报, 2022, 58(12): 1611-1622.
[8] 石增敏, 梁静宇, 李箭, 王毛球, 方子帆. 板条马氏体拉伸塑性行为的原位分析[J]. 金属学报, 2021, 57(5): 595-604.
[9] 钱月,孙蓉蓉,张文怀,姚美意,张金龙,周邦新,仇云龙,杨健,成国光,董建新. NbFe22Cr5Al3Mo合金显微组织和耐腐蚀性能的影响[J]. 金属学报, 2020, 56(3): 321-332.
[10] 包飞洋, 李艳芬, 王光全, 张家榕, 严伟, 石全强, 单以银, 杨柯, 许斌, 宋丹戎, 严明宇, 魏学栋. ODS钢在600700 ℃静态Pb-Bi共晶中的腐蚀行为及机理[J]. 金属学报, 2020, 56(10): 1366-1376.
[11] 张笑一, 尚海龙, 马冰洋, 李荣斌, 李戈扬. 镀膜Al箔钎料对AlN陶瓷的钎焊[J]. 金属学报, 2018, 54(4): 575-580.
[12] 惠亚军,潘辉,李文远,刘锟,陈斌,崔阳. 1000 MPa级Nb-Ti微合金化超高强度钢加热制度研究[J]. 金属学报, 2017, 53(2): 129-139.
[13] 杨忠波,赵文金,程竹青,邱军,张海,卓洪. Nb含量对 Zr-xNb-0.4Sn-0.3Fe合金耐腐蚀性能的影响[J]. 金属学报, 2017, 53(1): 47-56.
[14] 王家贞,王俭秋,韩恩厚. 800合金在300 ℃ NaOH和ETA溶液中的腐蚀行为*[J]. 金属学报, 2016, 52(5): 599-606.
[15] 欧美琼,刘扬,查向东,马颖澈,程乐明,刘奎. 一种新型镍基合金在超临界多种离子共存环境下的腐蚀行为*[J]. 金属学报, 2016, 52(12): 1557-1564.