|
|
NiAl和Cu在40CrNi3MoV钢中的析出行为及其对力学性能的影响 |
梁恩溥, 徐乐( ), 王毛球, 时捷 |
钢铁研究总院有限公司 特殊钢研究院 北京 100081 |
|
Precipitation Behavior of NiAl and Cu in 40CrNi3MoV Steel and Its Effect on Mechanical Properties |
LIANG Enpu, XU Le( ), WANG Maoqiu, SHI Jie |
Research Institute of Special Steels, Central Iron and Steel Research Institute Co. Ltd., Beijing 100081, China |
引用本文:
梁恩溥, 徐乐, 王毛球, 时捷. NiAl和Cu在40CrNi3MoV钢中的析出行为及其对力学性能的影响[J]. 金属学报, 2024, 60(2): 201-210.
Enpu LIANG,
Le XU,
Maoqiu WANG,
Jie SHI.
Precipitation Behavior of NiAl and Cu in 40CrNi3MoV Steel and Its Effect on Mechanical Properties[J]. Acta Metall Sin, 2024, 60(2): 201-210.
1 |
Wang W. Study of high strength and high toughness homogenizing Cr-Ni-Mo-V series steels [D]. Qinhuangdao: Yanshan University, 2016
|
1 |
王 卫. 高强高韧均质化Cr-Ni-Mo-V系钢的研究 [D]. 秦皇岛: 燕山大学, 2016
|
2 |
Wang X L, Wang M Q, Meng B, et al. Effect of tempering process on Microstructure and mechanical properties of Cr-Ni-Mo-V high strength steel [J]. Heat Treat. Met., 2017, 42(12): 135
|
2 |
王小龙, 王毛球, 孟 彬 等. 回火工艺对Cr-Ni-Mo-V高强钢组织和力学性能的影响 [J]. 金属热处理, 2017, 42(12): 135
|
3 |
Liu Y, Wang M Q, Liu G Q. Effects of tempering temperature on microstructure and mechanical properties of 40CrNi3MoV steel [J]. Heat Treat. Met., 2014, 39(6): 41
|
3 |
刘 燕, 王毛球, 刘国权. 回火温度对40CrNi3MoV钢组织和力学性能的影响 [J]. 金属热处理, 2014, 39(6): 41
|
4 |
Wang X L. Study on Microstructure and mechanical properties of 1350 MPa high strength martensitic steel [D]. Kunming: Kunming University of Technology, 2017
|
4 |
王小龙. 1350 MPa级高强度马氏体钢组织与力学性能的研究 [D]. 昆明: 昆明理工大学, 2017
|
5 |
Jiao Z B, Liu J C. Research and development of advanced nano-precipitate strengthened ultra-high strength steels [J]. Mater. China, 2011, 30(12): 6
|
5 |
焦增宝, 刘锦川. 新型纳米强化超高强度钢的研究与进展 [J]. 中国材料进展, 2011, 30(12): 6
|
6 |
Luo H W, Shen G H. Progress and perspective of ultra-high strength steels having high toughness [J]. Acta Metall. Sin., 2020, 56: 494
|
6 |
罗海文, 沈国慧. 超高强高韧化钢的研究进展和展望 [J]. 金属学报, 2020, 56: 494
|
7 |
Yoo C H, Lee H M, Chan J W, et al. M2C precipitates in isothermal tempering of high Co-Ni secondary hardening steel [J]. Metall. Mater. Trans., 1996, 27A: 3466
|
8 |
Kan L Y, Ye Q B, Tian Y, et al. Tempering process of Cu-NiAl nano co-precipitation strengthened steel [J]. Iron Steel, 2021, 56(2): 105
|
8 |
阚立烨, 叶其斌, 田 勇 等. Cu-NiAl纳米复合析出强化钢回火工艺 [J]. 钢铁, 2021, 56(2): 105
|
9 |
Liu Q D, Song H, Zhang J, et al. Strengthening of Ni-Mn-Cu-Al-Co steel by nanoscale Cu and β-NiAl co-precipitated couples [J]. Mater. Charact., 2021, 171: 110754
doi: 10.1016/j.matchar.2020.110754
|
10 |
Shen Q. Co-precipitation mechanisms research of Cu-rich and Ni-Al phases in steel [D]. Shanghai: Shanghai University, 2018
|
10 |
沈 琴. 钢中富Cu相和NiAl相复合析出机制的研究 [D]. 上海: 上海大学, 2018
|
11 |
Shen Q, Xiong X Y, Li T, et al. Effects of co-addition of Ni and Al on precipitation evolution and mechanical properties of Fe-Cu alloy [J]. Mater. Sci. Eng., 2018, A723: 279
|
12 |
Jiao Z B, Luan J H, Guo W, et al. Effects of welding and post-weld heat treatments on nanoscale precipitation and mechanical properties of an ultra-high strength steel hardened by NiAl and Cu nanoparticles [J]. Acta Mater., 2016, 120: 216
doi: 10.1016/j.actamat.2016.08.066
|
13 |
Kapoor M, Isheim D, Vaynman S, et al. Effects of increased alloying element content on NiAl-type precipitate formation, loading rate sensitivity, and ductility of Cu- and NiAl-precipitation-strengthened ferritic steels [J]. Acta Mater., 2016, 104: 166
doi: 10.1016/j.actamat.2015.11.041
|
14 |
Wang X J. Mechanism research of nanaoscale composite precipitates in Fe-Cu-Ni-Al-Mn steel [D]. Shanghai: Shanghai University, 2016
|
14 |
王晓姣. Fe-Cu-Ni-Al-Mn钢中强化相复合析出机制的研究 [D]. 上海: 上海大学, 2016
|
15 |
Jiang S H, Wang H, Wu Y, et al. Ultrastrong steel via minimal lattice misfit and high-density nanoprecipitation [J]. Nature, 2017, 544: 460
doi: 10.1038/nature22032
|
16 |
Wang X J, Shen Q, Yan J J, et al. Precipitation characterization of NiAl and Cu-rich phases in dual-phase region of precipitation strengthening steel [J]. Acta Metall. Sin., 2014, 50: 1305
doi: 10.11900/0412.1961.2014.00118
|
16 |
王晓姣, 沈 琴, 严菊杰 等. 沉淀强化钢中两相区NiAl相和富Cu相的析出特点 [J]. 金属学报, 2014, 50: 1305
doi: 10.11900/0412.1961.2014.00118
|
17 |
Lü Z P, Jiang S H, He J Y, et al. Second phase strengthening in advanced metal materials [J]. Acta Metall. Sin., 2016, 52: 1183
|
17 |
吕昭平, 蒋虽合, 何骏阳 等. 先进金属材料的第二相强化 [J]. 金属学报, 2016, 52: 1183
|
18 |
Jiao Z B, Luan J H, Zhang Z W, et al. Synergistic effects of Cu and Ni on nanoscale precipitation and mechanical properties of high-strength steels [J]. Acta Mater., 2013, 61: 5996
doi: 10.1016/j.actamat.2013.06.040
|
19 |
Kapoor M, Isheim D, Ghosh G, et al. Aging characteristics and mechanical properties of 1600 MPa body-centered cubic Cu and B2-NiAl precipitation-strengthened ferritic steel [J]. Acta Mater., 2014, 73: 56
doi: 10.1016/j.actamat.2014.03.051
|
20 |
Wang X J, Sha G, Shen Q, et al. Age-hardening effect and formation of nanoscale composite precipitates in a NiAlMnCu-containing steel [J]. Mater. Sci. Eng., 2015, 627A: 340
|
21 |
Jiao Z B, Luan J H, Miller M K, et al. Precipitation mechanism and mechanical properties of an ultra-high strength steel hardened by nanoscale NiAl and Cu particles [J]. Acta Mater., 2015, 97: 58
doi: 10.1016/j.actamat.2015.06.063
|
22 |
Xu S S, Li J P, Cui Y, et al. Mechanical properties and deformation mechanisms of a novel austenite-martensite dual phase steel [J]. Int. J. Plast., 2020, 128: 102677
doi: 10.1016/j.ijplas.2020.102677
|
23 |
Hofinger M, Turk C, Ognianov M, et al. Precipitation reactions in a Cu-Ni-Al medium carbon alloyed dual hardening steel [J]. Mater. Charact., 2020, 160: 110126
doi: 10.1016/j.matchar.2020.110126
|
24 |
Han Y Q, Wang Y B, Chen X, et al. Characterization of precipitates NiAl and Cu in 10Ni3MnCuAl steel during aging by three-dimensional atomic probe [J]. Mater. Rep., 2019, 33: 4136
|
24 |
韩永强, 王宇斌, 陈 旋 等. 三维原子探针表征10Ni3MnCuAl钢时效过程中析出相NiAl和Cu的变化规律 [J]. 材料导报, 2019, 33: 4136
|
25 |
Jiao Z B, Luan J H, Miller M K, et al. Effects of Mn partitioning on nanoscale precipitation and mechanical properties of ferritic steels strengthened by NiAl nanoparticles [J]. Acta Mater., 2015, 84: 283
doi: 10.1016/j.actamat.2014.10.065
|
26 |
Millán J, Sandlöbes S, Al-Zubi A, et al. Designing Heusler nanoprecipitates by elastic misfit stabilization in Fe-Mn maraging steels [J]. Acta Mater., 2014, 76: 94
doi: 10.1016/j.actamat.2014.05.016
|
27 |
Xu S S, Liu Y W, Zhang Y, et al. Precipitation kinetics and mechanical properties of nanostructured steels with Mo additions [J]. Mater. Res. Lett., 2020, 8: 187
doi: 10.1080/21663831.2020.1734976
|
28 |
Weissmüller J. Alloy effects in nanostructures [J]. Nanostruct. Mater., 1993, 3: 261
doi: 10.1016/0965-9773(93)90088-S
|
29 |
Zhou B C, Yang T, Zhou G, et al. Mechanisms for suppressing discontinuous precipitation and improving mechanical properties of NiAl-strengthened steels through nanoscale Cu partitioning [J]. Acta Mater., 2021, 205: 116561
doi: 10.1016/j.actamat.2020.116561
|
30 |
Ratanaphan S, Olmsted D L, Bulatov V V, et al. Grain boundary energies in body-centered cubic metals [J]. Acta Mater., 2015, 88: 346
doi: 10.1016/j.actamat.2015.01.069
|
31 |
Kim H K, Ko W S, Lee H J, et al. An identification scheme of grain boundaries and construction of a grain boundary energy database [J]. Scr. Mater., 2011, 64: 1152
doi: 10.1016/j.scriptamat.2011.03.020
|
32 |
Jiao Z B, Luan J H, Zhang Z W, et al. High-strength steels hardened mainly by nanoscale NiAl precipitates [J]. Scr. Mater., 2014, 87: 45
doi: 10.1016/j.scriptamat.2014.05.006
|
33 |
Mulholland M D, Seidman D N. Nanoscale co-precipitation and mechanical properties of a high-strength low-carbon steel [J]. Acta Mater., 2011, 59: 1881
doi: 10.1016/j.actamat.2010.11.054
|
34 |
Sui M L, Wang Y B, Cui J P, et al. In situ TEM/HRTEM investigations on deformation mechanisms in metals [J]. J. Chin. Electron Microscopy Soc., 2010, 29: 219
|
34 |
隋曼龄, 王艳波, 崔静萍 等. 透射电镜原位拉伸研究金属材料形变机制 [J]. 电子显微学报, 2010, 29: 219
|
35 |
Zhu J, Zhang Z H, Xie J X. Plastic deformation behavior and fracture mechanism of rare earth H13 steel based on in situ TEM tensile study [J]. Acta Metall. Sin., 2020, 56: 1592
doi: 10.11900/0412.1961.2020.00141
|
35 |
朱 健, 张志豪, 谢建新. 基于原位TEM拉伸的稀土H13钢塑性形变行为和断裂机制 [J]. 金属学报, 2020, 56: 1592
|
36 |
Li B Y, Zhao Q. In-situ tension fracture of super-high Mn steel and mechanism analysis [J]. Hot Work. Technol., 2016, 45(14): 36
|
36 |
李保元, 赵 清. 超高锰钢原位拉伸断裂及机理分析 [J]. 热加工工艺, 2016, 45(14): 36
|
37 |
Zhang J W. In situ investigation on plastic deformation and cracking of metals under TEM/SEM [D]. Qinhuangdao: Yanshan University, 2002
|
37 |
张静武. 金属塑性变形与断裂的TEM/SEM原位研究 [D]. 秦皇岛: 燕山大学, 2002
|
38 |
Brown L M, Stobbs W M. The work-hardening of copper-silica v. Equilibrium plastic relaxation by secondary dislocations [J]. Philos. Mag., 1976, 34: 351
doi: 10.1080/14786437608222028
|
39 |
Du Y B, Hu X F, Zhang S Q, et al. Microstructure and mechanical properties of HSLA steel containing 1.4%Cu [J]. Acta Metall. Sin., 2020, 56: 1343
doi: 10.11900/0412.1961.2020.00012
|
39 |
杜瑜宾, 胡小锋, 张守清 等. 含1.4%Cu的HSLA钢的组织和力学性能 [J]. 金属学报, 2020, 56: 1343
doi: 10.11900/0412.1961.2020.00012
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|