Please wait a minute...
金属学报  2024, Vol. 60 Issue (2): 201-210    DOI: 10.11900/0412.1961.2022.00008
  研究论文 本期目录 | 过刊浏览 |
NiAlCu40CrNi3MoV钢中的析出行为及其对力学性能的影响
梁恩溥, 徐乐(), 王毛球, 时捷
钢铁研究总院有限公司 特殊钢研究院 北京 100081
Precipitation Behavior of NiAl and Cu in 40CrNi3MoV Steel and Its Effect on Mechanical Properties
LIANG Enpu, XU Le(), WANG Maoqiu, SHI Jie
Research Institute of Special Steels, Central Iron and Steel Research Institute Co. Ltd., Beijing 100081, China
引用本文:

梁恩溥, 徐乐, 王毛球, 时捷. NiAlCu40CrNi3MoV钢中的析出行为及其对力学性能的影响[J]. 金属学报, 2024, 60(2): 201-210.
Enpu LIANG, Le XU, Maoqiu WANG, Jie SHI. Precipitation Behavior of NiAl and Cu in 40CrNi3MoV Steel and Its Effect on Mechanical Properties[J]. Acta Metall Sin, 2024, 60(2): 201-210.

全文: PDF(4008 KB)   HTML
摘要: 

为提高40CrNi3MoV钢的力学性能,在40CrNi3MoV钢中添加Al、Cu元素,研究了调质处理后实验用钢中的NiAl、Cu析出行为及其对力学性能的影响。利用SEM、TEM和EDS等手段表征了NiAl和Cu析出相的成分、结构、尺寸和形貌,通过三维原子探针(3DAP)对析出相形成元素的分布特征进行表征,对比研究了实验用钢的力学性能。结果表明,只添加Al元素后实验用钢中形成与基体共格的B2-NiAl析出相,这些NiAl相主要在晶界处析出且尺寸较大;进一步添加Cu元素后,析出了与基体共格的bcc结构富Cu相,添加Cu后减少了大尺寸NiAl相在晶界处的析出,促进了晶内纳米级NiAl析出。实验用钢中的NiAl析出相和基体点阵错配度小,对抗拉强度提供了200 MPa强化增量;添加Cu后,均匀分布的细小富Cu相和被细化的NiAl相增加了对位错的阻碍作用,屈服强度进一步提高了200 MPa,然而大量细小高密度的NiAl和Cu析出相降低了拉伸过程中产生裂纹的临界应变,因此与只添加Al元素的实验用钢相比,抗拉强度并未提高。

关键词 40CrNi3MoV钢NiAl和Cu析出3DAP拉伸强度    
Abstract

With the continuous improvement of the pressure-bearing capacity of pressure vessels, higher requirements are put forward for the mechanical properties of materials. 40CrNi3MoV steel is a typical pressure-vessel steel, which mainly depends on carbide strengthening. To further improve its mechanical properties, Al and Cu were added to the material to form intermetallic compound precipitates for strengthening, then the precipitation behavior of NiAl and Cu and their effects on mechanical properties were studied. The size, composition, structure, and morphology of NiAl and Cu precipitates were characterized by SEM, TEM, and EDS. The distribution characteristics of precipitate-forming elements were characterized by three-dimensional atomic probe, and the mechanical properties of the experimental steel were compared. The results show that B2-NiAl precipitates coherent with the matrix are formed in the experimental steel after adding only Al. These NiAl precipitates are mainly precipitated at the grain boundaries and are large; after adding Cu, a bcc-ordered Cu-rich phase coherent with the matrix is precipitated. At this point, the large-scale precipitation of the NiAl phase at the grain boundaries is reduced and nanoscale NiAl precipitation is promoted in the crystal. The mismatch between the NiAl precipitates and the matrix lattice in the experimental steel is small, and the tensile strength increases by 200 MPa; The uniformly distributed, fine Cu-rich phase and the refined NiAl phase increase the resistance to dislocation, and the yield strength is also increased by 200 MPa. However, a large quantity of fine and high-density NiAl and Cu precipitates reduce the critical strain of cracks in the tensile process. Therefore, compared with the experimental steel with only Al added, the tensile strength is not improved.

Key words40CrNi3MoV steel    NiAl and Cu precipitation    3DAP    tensile strength
收稿日期: 2022-01-06     
ZTFLH:  TG142  
基金资助:农机装备材料生产应用示范平台项目(TC200H01X/05)
通讯作者: 徐 乐,xule@nercast.com,主要从事合金结构钢研究
Corresponding author: XU Le, professor, Tel: 18911259273, E-mail: xule@nercast.com
作者简介: 梁恩溥,男,1996年生,博士生
SteelCMnCrNiMoVAlCuFe
P-Mo0.411.000.993.021.020.20--Bal.
P-Al0.421.091.063.091.020.211.09-Bal.
P-Al + Cu0.401.011.043.050.960.211.081.52Bal.
表1  3种实验用钢的化学成分 (mass fraction / %)
图1  3种实验用钢500℃回火后的工程应力-应变曲线
图2  500℃回火后的P-Al钢TEM像和EDS元素分布图
图3  500℃回火后的P-Al + Cu钢的TEM像和EDS元素分布图
图4  500℃回火后P-Al钢和P-Al + Cu钢中析出相的HRTEM像和FFT衍射图
图5  500℃回火后P-Al钢的原子三维空间分布图
图6  500℃回火后的P-Al + Cu钢的原子三维空间分布图
图7  实验用钢中NiAl和Cu经三维原子重构的空间分布图
图8  500℃回火后P-Al钢和P-Al + Cu钢的拉伸断口形貌和XRD谱
1 Wang W. Study of high strength and high toughness homogenizing Cr-Ni-Mo-V series steels [D]. Qinhuangdao: Yanshan University, 2016
1 王 卫. 高强高韧均质化Cr-Ni-Mo-V系钢的研究 [D]. 秦皇岛: 燕山大学, 2016
2 Wang X L, Wang M Q, Meng B, et al. Effect of tempering process on Microstructure and mechanical properties of Cr-Ni-Mo-V high strength steel [J]. Heat Treat. Met., 2017, 42(12): 135
2 王小龙, 王毛球, 孟 彬 等. 回火工艺对Cr-Ni-Mo-V高强钢组织和力学性能的影响 [J]. 金属热处理, 2017, 42(12): 135
3 Liu Y, Wang M Q, Liu G Q. Effects of tempering temperature on microstructure and mechanical properties of 40CrNi3MoV steel [J]. Heat Treat. Met., 2014, 39(6): 41
3 刘 燕, 王毛球, 刘国权. 回火温度对40CrNi3MoV钢组织和力学性能的影响 [J]. 金属热处理, 2014, 39(6): 41
4 Wang X L. Study on Microstructure and mechanical properties of 1350 MPa high strength martensitic steel [D]. Kunming: Kunming University of Technology, 2017
4 王小龙. 1350 MPa级高强度马氏体钢组织与力学性能的研究 [D]. 昆明: 昆明理工大学, 2017
5 Jiao Z B, Liu J C. Research and development of advanced nano-precipitate strengthened ultra-high strength steels [J]. Mater. China, 2011, 30(12): 6
5 焦增宝, 刘锦川. 新型纳米强化超高强度钢的研究与进展 [J]. 中国材料进展, 2011, 30(12): 6
6 Luo H W, Shen G H. Progress and perspective of ultra-high strength steels having high toughness [J]. Acta Metall. Sin., 2020, 56: 494
6 罗海文, 沈国慧. 超高强高韧化钢的研究进展和展望 [J]. 金属学报, 2020, 56: 494
7 Yoo C H, Lee H M, Chan J W, et al. M2C precipitates in isothermal tempering of high Co-Ni secondary hardening steel [J]. Metall. Mater. Trans., 1996, 27A: 3466
8 Kan L Y, Ye Q B, Tian Y, et al. Tempering process of Cu-NiAl nano co-precipitation strengthened steel [J]. Iron Steel, 2021, 56(2): 105
8 阚立烨, 叶其斌, 田 勇 等. Cu-NiAl纳米复合析出强化钢回火工艺 [J]. 钢铁, 2021, 56(2): 105
9 Liu Q D, Song H, Zhang J, et al. Strengthening of Ni-Mn-Cu-Al-Co steel by nanoscale Cu and β-NiAl co-precipitated couples [J]. Mater. Charact., 2021, 171: 110754
doi: 10.1016/j.matchar.2020.110754
10 Shen Q. Co-precipitation mechanisms research of Cu-rich and Ni-Al phases in steel [D]. Shanghai: Shanghai University, 2018
10 沈 琴. 钢中富Cu相和NiAl相复合析出机制的研究 [D]. 上海: 上海大学, 2018
11 Shen Q, Xiong X Y, Li T, et al. Effects of co-addition of Ni and Al on precipitation evolution and mechanical properties of Fe-Cu alloy [J]. Mater. Sci. Eng., 2018, A723: 279
12 Jiao Z B, Luan J H, Guo W, et al. Effects of welding and post-weld heat treatments on nanoscale precipitation and mechanical properties of an ultra-high strength steel hardened by NiAl and Cu nanoparticles [J]. Acta Mater., 2016, 120: 216
doi: 10.1016/j.actamat.2016.08.066
13 Kapoor M, Isheim D, Vaynman S, et al. Effects of increased alloying element content on NiAl-type precipitate formation, loading rate sensitivity, and ductility of Cu- and NiAl-precipitation-strengthened ferritic steels [J]. Acta Mater., 2016, 104: 166
doi: 10.1016/j.actamat.2015.11.041
14 Wang X J. Mechanism research of nanaoscale composite precipitates in Fe-Cu-Ni-Al-Mn steel [D]. Shanghai: Shanghai University, 2016
14 王晓姣. Fe-Cu-Ni-Al-Mn钢中强化相复合析出机制的研究 [D]. 上海: 上海大学, 2016
15 Jiang S H, Wang H, Wu Y, et al. Ultrastrong steel via minimal lattice misfit and high-density nanoprecipitation [J]. Nature, 2017, 544: 460
doi: 10.1038/nature22032
16 Wang X J, Shen Q, Yan J J, et al. Precipitation characterization of NiAl and Cu-rich phases in dual-phase region of precipitation strengthening steel [J]. Acta Metall. Sin., 2014, 50: 1305
doi: 10.11900/0412.1961.2014.00118
16 王晓姣, 沈 琴, 严菊杰 等. 沉淀强化钢中两相区NiAl相和富Cu相的析出特点 [J]. 金属学报, 2014, 50: 1305
doi: 10.11900/0412.1961.2014.00118
17 Lü Z P, Jiang S H, He J Y, et al. Second phase strengthening in advanced metal materials [J]. Acta Metall. Sin., 2016, 52: 1183
17 吕昭平, 蒋虽合, 何骏阳 等. 先进金属材料的第二相强化 [J]. 金属学报, 2016, 52: 1183
18 Jiao Z B, Luan J H, Zhang Z W, et al. Synergistic effects of Cu and Ni on nanoscale precipitation and mechanical properties of high-strength steels [J]. Acta Mater., 2013, 61: 5996
doi: 10.1016/j.actamat.2013.06.040
19 Kapoor M, Isheim D, Ghosh G, et al. Aging characteristics and mechanical properties of 1600 MPa body-centered cubic Cu and B2-NiAl precipitation-strengthened ferritic steel [J]. Acta Mater., 2014, 73: 56
doi: 10.1016/j.actamat.2014.03.051
20 Wang X J, Sha G, Shen Q, et al. Age-hardening effect and formation of nanoscale composite precipitates in a NiAlMnCu-containing steel [J]. Mater. Sci. Eng., 2015, 627A: 340
21 Jiao Z B, Luan J H, Miller M K, et al. Precipitation mechanism and mechanical properties of an ultra-high strength steel hardened by nanoscale NiAl and Cu particles [J]. Acta Mater., 2015, 97: 58
doi: 10.1016/j.actamat.2015.06.063
22 Xu S S, Li J P, Cui Y, et al. Mechanical properties and deformation mechanisms of a novel austenite-martensite dual phase steel [J]. Int. J. Plast., 2020, 128: 102677
doi: 10.1016/j.ijplas.2020.102677
23 Hofinger M, Turk C, Ognianov M, et al. Precipitation reactions in a Cu-Ni-Al medium carbon alloyed dual hardening steel [J]. Mater. Charact., 2020, 160: 110126
doi: 10.1016/j.matchar.2020.110126
24 Han Y Q, Wang Y B, Chen X, et al. Characterization of precipitates NiAl and Cu in 10Ni3MnCuAl steel during aging by three-dimensional atomic probe [J]. Mater. Rep., 2019, 33: 4136
24 韩永强, 王宇斌, 陈 旋 等. 三维原子探针表征10Ni3MnCuAl钢时效过程中析出相NiAl和Cu的变化规律 [J]. 材料导报, 2019, 33: 4136
25 Jiao Z B, Luan J H, Miller M K, et al. Effects of Mn partitioning on nanoscale precipitation and mechanical properties of ferritic steels strengthened by NiAl nanoparticles [J]. Acta Mater., 2015, 84: 283
doi: 10.1016/j.actamat.2014.10.065
26 Millán J, Sandlöbes S, Al-Zubi A, et al. Designing Heusler nanoprecipitates by elastic misfit stabilization in Fe-Mn maraging steels [J]. Acta Mater., 2014, 76: 94
doi: 10.1016/j.actamat.2014.05.016
27 Xu S S, Liu Y W, Zhang Y, et al. Precipitation kinetics and mechanical properties of nanostructured steels with Mo additions [J]. Mater. Res. Lett., 2020, 8: 187
doi: 10.1080/21663831.2020.1734976
28 Weissmüller J. Alloy effects in nanostructures [J]. Nanostruct. Mater., 1993, 3: 261
doi: 10.1016/0965-9773(93)90088-S
29 Zhou B C, Yang T, Zhou G, et al. Mechanisms for suppressing discontinuous precipitation and improving mechanical properties of NiAl-strengthened steels through nanoscale Cu partitioning [J]. Acta Mater., 2021, 205: 116561
doi: 10.1016/j.actamat.2020.116561
30 Ratanaphan S, Olmsted D L, Bulatov V V, et al. Grain boundary energies in body-centered cubic metals [J]. Acta Mater., 2015, 88: 346
doi: 10.1016/j.actamat.2015.01.069
31 Kim H K, Ko W S, Lee H J, et al. An identification scheme of grain boundaries and construction of a grain boundary energy database [J]. Scr. Mater., 2011, 64: 1152
doi: 10.1016/j.scriptamat.2011.03.020
32 Jiao Z B, Luan J H, Zhang Z W, et al. High-strength steels hardened mainly by nanoscale NiAl precipitates [J]. Scr. Mater., 2014, 87: 45
doi: 10.1016/j.scriptamat.2014.05.006
33 Mulholland M D, Seidman D N. Nanoscale co-precipitation and mechanical properties of a high-strength low-carbon steel [J]. Acta Mater., 2011, 59: 1881
doi: 10.1016/j.actamat.2010.11.054
34 Sui M L, Wang Y B, Cui J P, et al. In situ TEM/HRTEM investigations on deformation mechanisms in metals [J]. J. Chin. Electron Microscopy Soc., 2010, 29: 219
34 隋曼龄, 王艳波, 崔静萍 等. 透射电镜原位拉伸研究金属材料形变机制 [J]. 电子显微学报, 2010, 29: 219
35 Zhu J, Zhang Z H, Xie J X. Plastic deformation behavior and fracture mechanism of rare earth H13 steel based on in situ TEM tensile study [J]. Acta Metall. Sin., 2020, 56: 1592
doi: 10.11900/0412.1961.2020.00141
35 朱 健, 张志豪, 谢建新. 基于原位TEM拉伸的稀土H13钢塑性形变行为和断裂机制 [J]. 金属学报, 2020, 56: 1592
36 Li B Y, Zhao Q. In-situ tension fracture of super-high Mn steel and mechanism analysis [J]. Hot Work. Technol., 2016, 45(14): 36
36 李保元, 赵 清. 超高锰钢原位拉伸断裂及机理分析 [J]. 热加工工艺, 2016, 45(14): 36
37 Zhang J W. In situ investigation on plastic deformation and cracking of metals under TEM/SEM [D]. Qinhuangdao: Yanshan University, 2002
37 张静武. 金属塑性变形与断裂的TEM/SEM原位研究 [D]. 秦皇岛: 燕山大学, 2002
38 Brown L M, Stobbs W M. The work-hardening of copper-silica v. Equilibrium plastic relaxation by secondary dislocations [J]. Philos. Mag., 1976, 34: 351
doi: 10.1080/14786437608222028
39 Du Y B, Hu X F, Zhang S Q, et al. Microstructure and mechanical properties of HSLA steel containing 1.4%Cu [J]. Acta Metall. Sin., 2020, 56: 1343
doi: 10.11900/0412.1961.2020.00012
39 杜瑜宾, 胡小锋, 张守清 等. 含1.4%Cu的HSLA钢的组织和力学性能 [J]. 金属学报, 2020, 56: 1343
doi: 10.11900/0412.1961.2020.00012
[1] 吕超然, 徐乐, 史超, 刘进德, 蒋伟斌, 王毛球. Al42CrMo螺栓钢淬透性及组织的影响[J]. 金属学报, 2020, 56(10): 1324-1334.
[2] 陶然, 赵玉涛, 陈刚, 怯喜周. 电磁场下原位合成纳米ZrB2 np/AA6111复合材料组织与性能研究[J]. 金属学报, 2019, 55(1): 160-170.
[3] 李晓林, 崔阳, 肖宝亮, 张大伟, 金钊, 程政. V-N微合金钢在线快速感应回火工艺中V(C, N)析出强化机制[J]. 金属学报, 2018, 54(10): 1368-1376.
[4] 谢尘, 吴晓春, 闵娜, 沈贇靓. 3DAP研究高碳高合金钢深冷处理过程的C偏聚行为[J]. 金属学报, 2015, 51(3): 325-332.
[5] 安彤,秦飞,王晓亮. 焊锡接点IMC层微结构演化与力学行为[J]. 金属学报, 2013, 49(9): 1137-1142.
[6] 余锡模,赵世金. Cu和Ni低碳高强度钢等时回火析出富Cu相的研究[J]. 金属学报, 2013, 49(5): 569-575.
[7] 杨金侠,李金国,王猛,王延辉,金涛,孙晓峰. 热处理工艺对一种新型铸造镍基高温合金的组织和性能影响[J]. 金属学报, 2012, 48(6): 654-660.
[8] 刘文庆 朱晓勇 钟柳明 王晓姣 刘庆冬. 微合金钢中第二相临界转变尺寸的研究[J]. 金属学报, 2011, 47(8): 1094-1098.
[9] 王华 史文 何燕霖 符仁钰 李麟. Mn和P在超低碳烘烤硬化钢中的分布形态及对其拉伸行为的影响研究[J]. 金属学报, 2011, 47(3): 263-268.
[10] 迟成宇 董建新 刘文庆 谢锡善. 3DAP研究Super304H耐热不锈钢中富Cu相的析出行为[J]. 金属学报, 2010, 46(9): 1141-1146.
[11] 尹立孟 杨艳 刘亮岐 张新平. 电子封装微互连焊点力学行为的尺寸效应[J]. 金属学报, 2009, 45(4): 422-427.
[12] 刘庆冬 刘文庆 王泽民 周邦新. 回火马氏体中合金碳化物的3D原子探针表征 I. 形核[J]. 金属学报, 2009, 45(11): 1281-1287.
[13] 刘庆冬 彭剑超 刘文庆 周邦新. 回火马氏体中合金碳化物的3D原子探针表征 II. 长大[J]. 金属学报, 2009, 45(11): 1288-1296.
[14] 刘庆冬 褚于良 彭剑超 刘文庆 周邦新. 回火马氏体中合金碳化物的3D原子探针表征 III. 粗化[J]. 金属学报, 2009, 45(11): 1297-1302.