Please wait a minute...
金属学报  2024, Vol. 60 Issue (1): 117-128    DOI: 10.11900/0412.1961.2022.00387
  研究论文 本期目录 | 过刊浏览 |
中间层材料FeNb对高强钛-钢复合管界面及剪切强度的影响
程磊(), 张旭航, 韩盈, 程志诚, 余伟
北京科技大学 工程技术研究院 北京 100083
Effects of Interlayer Materials Fe and Nb on Interfacial Shear Strength of Hot Extruded High-Strength Titanium-Steel Composite Pipe
CHENG Lei(), ZHANG Xuhang, HAN Ying, CHENG Zhicheng, YU Wei
Institute of Engineering Technology, University of Science and Technology Beijing, Beijing 100083, China
引用本文:

程磊, 张旭航, 韩盈, 程志诚, 余伟. 中间层材料FeNb对高强钛-钢复合管界面及剪切强度的影响[J]. 金属学报, 2024, 60(1): 117-128.
Lei CHENG, Xuhang ZHANG, Ying HAN, Zhicheng CHENG, Wei YU. Effects of Interlayer Materials Fe and Nb on Interfacial Shear Strength of Hot Extruded High-Strength Titanium-Steel Composite Pipe[J]. Acta Metall Sin, 2024, 60(1): 117-128.

全文: PDF(4788 KB)   HTML
摘要: 

开发高强钛-钢复合管对于装备轻量化的研究具有重要意义。本工作采用高温挤压工艺制备以高强CrMo钢和TC11钛合金为基材的钛-钢复合管,研究了中间层材料Fe和Nb对高强钛-钢复合界面反应产物和结合强度的影响,并从界面扩散和组织演变的角度分析其断裂机制。结果表明:Fe中间层挤压态样品能够保持较高的剪切强度(185 MPa),在热处理过程中,Fe中间层析出的M23C6及钛基材的再结晶过程,导致界面剪切强度显著下降(70 MPa);Nb中间层920和970℃挤压态样品分别沿钢-Nb界面和Nb-钛界面断裂,这分别与钢-Nb界面处膜状NbC层的破裂和Nb-钛界面处β-Ti层的不连续特征相关,热处理后扩散修复的NbC层可使920℃挤压样品剪切强度从挤压态的131 MPa提升至170 MPa,而970℃挤压样品界面处不连续的β-Ti层以及Ti0.86Al0.11Nb0.03析出颗粒的回溶,使其界面强度反而下降。综合界面反应和组织转变特征,明确了含2种中间层高强钛-钢复合管的微观断裂机制。

关键词 钛-钢复合管高温挤压中间层剪切强度析出    
Abstract

The production of metallic composites is an effective way to combine the advantages of different metals. Specifically, the combination of titanium and CrMo steel in a composite pipe can yield good corrosion resistance and excellent abrasion performance, rendering it highly promising for use in the petroleum industry. However, the interfacial reactions between the two metals during the manufacturing process can lead to the precipitation of brittle carbides or intermetallic compounds, resulting in substantial weakening of the combining strength. This is particularly problematic for the TC11 titanium and CrMo steel matrix due to their higher alloy content. Thus, to improve the bonding properties of titanium-steel composites, an interlayer is added between the matrixes. In this study, the effects of interlayer materials (Fe and Nb), extruding temperatures (920 and 970oC), and heat treatment on the bonding strength of high-strength CrMo steel and TC11 titanium matrixes were investigated. The results revealed that for the titanium-steel composite pipe, the bonding strength of the Fe-titanium interface dominates the shear stress (185 MPa) due to the locking effects of unevenly deformed grains. However, after heat treatment, M23C6 heavily precipitates in the Fe interlayer causing it to become hard and brittle, weakening the locking effects, and resulting in a significant decrease in shear stress (70 MPa). Conversely, the Nb-interlayer samples extruded at 920oC mainly cracked along the steel-Nb interface, while those extruded at 970oC mainly cracked along the Nb-titanium interface. Thus, the two interfaces respectively dominated the shear stress of the two Nb-interlayer samples, and this feature persisted after heat treatment. Moreover, the different cracking routes were found to be caused by the formation of a new NbC layer and a β-titanium layer, respectively. As the fractured NbC layer recovered during the heat treatment, the shear stress of the 920oC extruded sample increased to 170 MPa and that of the 970oC extruded sample decreased due to the solution of Ti0.86Al0.11Nb0.03 particles and the discontinuous β-titanium layer induced by it. Thus, the comparative study of interlayer materials and different processing parameters on the interfacial shear stress can effectively improve the production of hot-extruded high-strength titanium-steel pipe.

Key wordstitanium-steel composite pipe    hot extrusion    interlayer    shear property    precipitation
收稿日期: 2022-08-15     
ZTFLH:  TG379  
基金资助:国家自然科学基金项目(52201059);中国博士后科学基金项目(2019TQ0028)
通讯作者: 程 磊,chenglei@ustb.edu.cn,主要从事高温合金及金属基复合材料的加工工艺及服役行为研究
Corresponding author: CHENG Lei, Tel: (010)62332598, E-mail: chenglei@ustb.edu.cn
作者简介: 程 磊,男,1991年生,博士
图1  挤压坯真空组坯示意图,拉伸剪切样品及压缩剪切样品检测示意图,界面硬度测试示意图,及挤压后含有芯棒的复合管截面与长度特征
图2  Fe中间层在920和970℃挤压后界面特征及合金成分面分布特征
图3  Fe中间层920和970℃挤压态和热处理态的界面元素线分布及挤压样品热处理后的界面形貌
图4  Nb中间层在920和970℃挤压后界面特征及其合金成分面分布特征
图5  Nb中间层920和970℃挤压态、热处理态的界面元素线分布特征及样品热处理后的界面形貌
InterlayerT / oCShear stress 1 / MPaFracture interfaceShear stress 2 / MPaShear stress 3 / MPaFracture interface
Fe920185Fe-TC117075Fe-TC11
970163Fe-TC117389Fe-TC11
Nb920131Steel-Nb170140Steel-Nb
970135Nb-TC119868Nb-TC11
表1  不同状态的复合界面剪切强度及其断裂特征
图6  920和970℃挤压态和热处理态Fe、Nb中间层的界面硬度
图7  不同合金体系1000℃的三元相图截面特征
图8  Fe中间层样品920和970℃挤压后的组织特征,及Fe中间层970℃挤压态样品热处理后的组织特征和中间层析出特征
图9  Fe和Nb中间层样品经不同挤压温度和热处理后的界面断裂特征
图10  Fe中间层、Nb中间层挤压及热处理态样品的组织及界面特征示意图
1 Guo X W, Wu Z J, Li N, et al. Research progress and prospects of rolling titanium/steel laminates [J]. China Metall., 2021, 31(3): 1
1 郭雄伟, 武张静, 李 宁 等. 钛/钢层合板轧制复合研究进展与展望 [J]. 中国冶金, 2021, 31(3): 1
2 Bai Y L, Liu X F, Wang W J, et al. Current status and research trends in processing and application of titanium/steel composite plate [J]. Chin. J. Eng., 2021, 43: 85
2 白于良, 刘雪峰, 王文静 等. 钛/钢复合板及其制备应用研究现状与发展趋势 [J]. 工程科学学报, 2021, 43: 85
3 Yang X, Shi C G, Ge Y H, et al. Three kinds of manufacturing technologies of titanium-steel composite plate for pressure vessel [J]. Pressure Vessel Technol., 2016, 33(12): 64
3 杨 旋, 史长根, 葛雨珩 等. 压力容器用钛-钢复合板的三种制造工艺 [J]. 制造与安装, 2016, 33(12): 64
4 Li H Y, Deng N J, Ge W, et al. Production technology of titanium & steel cladding tubes [A]. The 4th National Heat Exchanger Academic Conference [C]. Hefei: Hefei University of Technology Publishing House, 2011: 254
4 李弘缘, 邓宁嘉, 葛 伟 等. 钛/钢复合管生产工艺介绍 [A]. 全国第四届换热器学术会议论文集 [C]. 合肥: 合肥工业大学出版社, 2011: 254
5 Cai J W. Study on the titanium/steel bimetallic tube diffusion bonded under inner pressure [D]. Dalian: Dalian Jiaotong University, 2012
5 蔡建伟. 钛/钢双金属管内压扩散复合的研究 [D]. 大连: 大连交通大学, 2012
6 Guan H, Zhu H F, Kong F T, et al. Hot deformation behavior of extruded Ti-46Al-(V, Cr, Ni) alloy [J]. Forg. Stamp. Technol., 2019, 44(7): 158
6 关 红, 朱海峰, 孔凡涛 等. 挤压态Ti-46Al-(V, Cr, Ni)合金的高温变形行为 [J]. 锻压技术, 2019, 44(7): 158
7 Li P, Li C, Dong H G, et al. Vacuum diffusion bonding of TC4 titanium alloy to 316L stainless steel with AlCoCrCuNi2 high-entropy alloy interlayer [J]. J. Alloys Compd., 2022, 909: 164698
doi: 10.1016/j.jallcom.2022.164698
8 Chai X Y. Study on rolling process, microstructure and properties of titanium clad steel for ship and ocean engineering [D]. Beijing: Tsinghua University, 2018
8 柴希阳. 船舶与海洋工程用钛/钢复合板轧制工艺与组织性能研究 [D]. 北京: 清华大学, 2018
9 An T B, You H Y, Li D, et al. Microstructure and property of fusion weld seam of TA2/Q235 composite plate with Nb/Cu double transition layers [J]. Hot Work. Technol., 2019, 48(9): 18
9 安同邦, 由恒源, 李 弟 等. TA2/Q235复合板Nb/Cu双过渡层熔焊焊缝组织性能 [J]. 热加工工艺, 2019, 48(9): 18
10 Zhang Y Y, Wei J S, Qi Y C, et al. Microstructure and property of fusion welding butt joints of TA2/Q235 composite plate with Ni alloy transition layers [J]. Trans. China Weld. Inst., 2019, 40(1): 75
10 张亚运, 魏金山, 齐彦昌 等. TA2/Q235复合板用Ni基过渡层熔焊接头组织和性能 [J]. 焊接学报, 2019, 40(1): 75
11 Liu J G. Research on preparative technique of titanium-based laminated metal composites [D]. Beijing: University of Science and Technology Beijing, 2020
11 刘嘉庚. 钛系层压金属复合材料制备技术研究 [D]. 北京: 北京科技大学, 2020
12 Yu C, Xiao H, Yu H, et al. Mechanical properties and interfacial structure of hot-roll bonding TA2/Q235B plate using DT4 interlayer [J]. Mater. Sci. Eng., 2017, A695: 120
13 Ma Y, Rong Y, Wang J Z. Research on transition layers for the rolling Ti-steel composite plates [J]. Titanium Ind. Prog., 2010, 27(2): 24
13 马 英, 容 耀, 王敬忠. 轧制钛/钢复合板过渡层的研究 [J]. 钛工业进展, 2010, 27(2): 24
14 Peng L. Effect of heating temperature on microstructure and mechanical properties of Q235/Ti composites plates with Ni interlayer [J]. Iron Steel Vanadium Titanium, 2020, 41(2): 128
14 彭 琳. 加热温度对镍中间层热轧钛钢复合板微观组织及力学性能的影响 [J]. 钢铁钒钛, 2020, 41(2): 128
15 Yang D H, Luo Z A, Xie G M, et al. Interfacial microstructure and properties of a vacuum roll-cladding titanium-steel clad plate with a nickel interlayer [J]. Mater. Sci. Eng., 2019, A753: 49
16 Ha J S, Hong S I. Design of high strength Cu alloy interlayer for mechanical bonding Ti to steel and characterization of their tri-layered clad [J]. Mater. Des., 2013, 51: 293
doi: 10.1016/j.matdes.2013.04.068
17 Li B X, Chen Z J, He W J, et al. Effect of interlayer material and rolling temperature on microstructures and mechanical properties of titanium/steel clad plates [J]. Mater. Sci. Eng., 2019, A749: 241
18 Yu X. Diffusion bonding between steel/titanium with copper interlayer [D]. Dalian: Dalian Jiaotong University, 2009
18 于 昕. 铜过渡层钢/钛扩散复合研究 [D]. 大连: 大连交通大学, 2009
19 Hu C D, Dong H, Zhao H S, et al. Bore damage characteristics of a machine gun barrel [J]. Acta Armament., 2019, 40: 480
19 胡春东, 董 瀚, 赵洪山 等. 某机枪枪管內膛损伤特征 [J]. 兵工学报, 2019, 40: 480
doi: 10.3969/j.issn.1000-1093.2019.03.005
20 Yang H B, Wang H, Yao P W, et al. Effects of annealing time on microstructure and properties of TA2/Q235 explosive composite plate [J]. Ordnance Mater. Sci. Eng., 2020, 43(6): 46
20 杨洪波, 王 豪, 姚沛文 等. 退火时间对TA2/Q235爆炸复合板组织性能的影响 [J]. 兵器材料科学与工程, 2020, 43(6): 46
21 Chen C Y, Chen C C, Yang J R. Microstructure characterization of nanometer carbides heterogeneous precipitation in Ti-Nb and Ti-Nb-Mo steel [J]. Mater. Charact., 2014, 88: 69
doi: 10.1016/j.matchar.2013.11.016
22 Jang J H, Heo Y U, Lee C H, et al. Interphase precipitation in Ti-Nb and Ti-Nb-Mo bearing steel [J]. Mater. Sci. Technol., 2013, 29: 309
doi: 10.1179/1743284712Y.0000000131
23 Hin C, Bréchet Y, Maugis P, et al. Kinetics of heterogeneous dislocation precipitation of NbC in alpha-iron [J]. Acta Mater., 2008, 56: 5535
doi: 10.1016/j.actamat.2008.07.044
24 Zhang Z W, Liu C T, Miller M K, et al. A nanoscale co-precipitation approach for property enhancement of Fe-base alloys [J]. Sci. Rep., 2013, 3: 1327
doi: 10.1038/srep01327 pmid: 23429646
25 Chen C Y, Chen C C, Yang J R. Dualism of precipitation morphology in high strength low alloy steel [J]. Mater. Sci. Eng., 2015, A626: 74
26 Yeli G, Auger M A, Wilford K, et al. Sequential nucleation of phases in a 17-4PH steel: Microstructural characterisation and mechanical properties [J]. Acta Mater., 2017, 125: 38
doi: 10.1016/j.actamat.2016.11.052
27 Lejček P. Grain Boundary Segregation in Metals [M]. Berlin, Heidelberg: Springer, 2010: 159
28 Huang Z. Interface structure and interface failure behavior of TA2/stainless steel/Q235 composite plate [D]. Chongqing: Chongqing University, 2021
28 黄 钊. TA2/不锈钢/Q235复合板的界面结构及失效行为 [D]. 重庆: 重庆大学, 2021
29 Hosford W F. Mechanical Behavior of Materials [M]. Cambridge: Cambridge University Press, 2005: 129
30 Pineau A, Benzerga A A, Pardoen T. Failure of metals I: Brittle and ductile fracture [J]. Acta Mater., 2016, 107: 424
doi: 10.1016/j.actamat.2015.12.034
[1] 郑雄, 赖玉香, 向雪梅, 陈江华. 稀土元素LaAlMgSi合金性能和微结构的影响[J]. 金属学报, 2024, 60(1): 107-116.
[2] 梁凯, 姚志浩, 谢锡善, 姚凯俊, 董建新. 新型耐热合金SP2215组织与性能的关联性[J]. 金属学报, 2023, 59(6): 797-811.
[3] 王长胜, 付华栋, 张洪涛, 谢建新. 冷轧变形对高性能Cu-Ni-Si合金组织性能与析出行为的影响[J]. 金属学报, 2023, 59(5): 585-598.
[4] 朱云鹏, 覃嘉宇, 王金辉, 马鸿斌, 金培鹏, 李培杰. 机械球磨结合粉末冶金制备AZ61超细晶镁合金的组织与性能[J]. 金属学报, 2023, 59(2): 257-266.
[5] 马国楠, 朱士泽, 王东, 肖伯律, 马宗义. SiC颗粒增强Al-Zn-Mg-Cu复合材料的时效行为和力学性能[J]. 金属学报, 2023, 59(12): 1655-1664.
[6] 芮祥, 李艳芬, 张家榕, 王旗涛, 严伟, 单以银. 新型纳米复合强化9Cr-ODS钢的设计、组织与力学性能[J]. 金属学报, 2023, 59(12): 1590-1602.
[7] 陈凯旋, 李宗烜, 王自东, Demange Gilles, 陈晓华, 张佳伟, 吴雪华, Zapolsky Helena. Cu-2.0Fe合金等温处理过程中富Fe析出相的形态演变[J]. 金属学报, 2023, 59(12): 1665-1674.
[8] 巩向鹏, 伍翠兰, 罗世芳, 沈若涵, 鄢俊. 自然时效对Al-2.95Cu-1.55Li-0.57Mg-0.18Zr合金160℃人工时效的影响[J]. 金属学报, 2023, 59(11): 1428-1438.
[9] 李小琳, 刘林锡, 李雅婷, 杨佳伟, 邓想涛, 王海丰. 单一 MX 型析出相强化马氏体耐热钢力学性能及蠕变行为[J]. 金属学报, 2022, 58(9): 1199-1207.
[10] 刘续希, 柳文波, 李博岩, 贺新福, 杨朝曦, 恽迪. 辐照条件下Fe-Cu合金中富Cu析出相的临界形核尺寸和最小能量路径的弦方法计算[J]. 金属学报, 2022, 58(7): 943-955.
[11] 高川, 邓运来, 王冯权, 郭晓斌. 蠕变时效对欠时效7075铝合金力学性能的影响[J]. 金属学报, 2022, 58(6): 746-759.
[12] 唐帅, 蓝慧芳, 段磊, 金剑锋, 李建平, 刘振宇, 王国栋. 铁素体区等温过程中Ti-Mo-Cu微合金钢中的共析出行为[J]. 金属学报, 2022, 58(3): 355-364.
[13] 袁波, 郭明星, 韩少杰, 张济山, 庄林忠. 添加3%ZnAl-Mg-Si-Cu合金非等温时效析出行为的影响[J]. 金属学报, 2022, 58(3): 345-354.
[14] 韩汝洋, 杨庚蔚, 孙新军, 赵刚, 梁小凯, 朱晓翔. 钒微合金化中锰马氏体耐磨钢奥氏体晶粒长大行为[J]. 金属学报, 2022, 58(12): 1589-1599.
[15] 孙士杰, 田艳中, 张哲峰. 析出强化Fe53Mn15Ni15Cr10Al4Ti2C1 高熵合金强韧化机制[J]. 金属学报, 2022, 58(1): 54-66.