Please wait a minute...
金属学报  2024, Vol. 60 Issue (2): 189-200    DOI: 10.11900/0412.1961.2022.00350
  研究论文 本期目录 | 过刊浏览 |
冷轧中锰钢的再结晶调控及其对力学性能的影响
胡宝佳1,2, 郑沁园1,2, 路轶1,2, 贾春妮1, 梁田3, 郑成武1(), 李殿中1()
1 中国科学院金属研究所 沈阳材料科学国家研究中心 沈阳 110016
2 中国科学技术大学 材料科学与工程学院 沈阳 110016
3 中国科学院金属研究所 中国科学院核用材料与安全评价重点实验室 沈阳 110016
Recrystallization Controlling in a Cold-Rolled Medium Mn Steel and Its Effect on Mechanical Properties
HU Baojia1,2, ZHENG Qinyuan1,2, LU Yi1,2, JIA Chunni1, LIANG Tian3, ZHENG Chengwu1(), LI Dianzhong1()
1 Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2 School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
3 CAS Key Laboratory of Nuclear Materials and Safety Assessment, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
引用本文:

胡宝佳, 郑沁园, 路轶, 贾春妮, 梁田, 郑成武, 李殿中. 冷轧中锰钢的再结晶调控及其对力学性能的影响[J]. 金属学报, 2024, 60(2): 189-200.
Baojia HU, Qinyuan ZHENG, Yi LU, Chunni JIA, Tian LIANG, Chengwu ZHENG, Dianzhong LI. Recrystallization Controlling in a Cold-Rolled Medium Mn Steel and Its Effect on Mechanical Properties[J]. Acta Metall Sin, 2024, 60(2): 189-200.

全文: PDF(4890 KB)   HTML
摘要: 

为探究铁素体再结晶对冷轧中锰钢微观组织与力学性能的影响规律,以0.15C-5Mn (质量分数,%)冷轧中锰钢为研究对象,采用两步临界区退火的热处理方法,利用SEM、TEM和EBSD等表征手段和力学性能测试方法,研究了铁素体再结晶调控对冷轧中锰钢多样化残余奥氏体形成及其力学性能的影响。结果表明,通过在不同温度预先调控冷轧中锰钢中的铁素体再结晶,可获得由不同比例的等轴状再结晶铁素体和马氏体组成的双相细晶组织。经常规退火处理后,在终态组织中形成了不同体积分数的超细晶再结晶铁素体和呈等轴状/板条状形貌的多样化细晶残余奥氏体,使中锰钢在拉伸变形过程中表现出多样化的TRIP效应,在提升冷轧中锰钢强塑性能的同时,其Lüders变形也获得改善。

关键词 冷轧中锰钢铁素体再结晶残余奥氏体TRIP效应力学性能    
Abstract

Owing to the excellent combination of specific strength and ductility, medium Mn steels (MMSs) with Mn contents of 3%-12% (mass fraction) are considered the most promising candidates for the third-generation advanced high-strength steel. The combination of excellent strength-ductility is mainly attributed to the active transformation-induced plasticity effect of the metastable retained austenite during deformation. Therefore, producing a considerable amount of retained austenite with reasonable stabilities in the steel by various heat treatment schedules is always important. In this study, granular- and lamellar-structured retained austenites were developed in a cold-rolled 0.15C-5Mn MMS by introducing a technical process of precontrolling ferrite recrystallization in the annealing schedule. The microstructures of the annealed samples were analyzed using SEM, EBSD, and TEM. The results show that duplex microstructures comprising various amounts of recrystallized ferrite and fresh martensite can be obtained in the cold-rolled MMS when controlling the occurrence of recrystallization at different intercritical temperatures by a preannealing process. When this microstructure is used for the final austenite reverted transformation annealing, the resultant ultrafine duplex microstructure with recrystallized ferrite and two types of heterogeneous retained austenite, i.e., lamellar and granular, is produced. The heterogeneous-structured austenite shows more sensitivity to increasing strain, i.e., various mechanical stabilities, which enable an excellent strength-ductility combination and reduced Lüders strain in the cold-rolled medium Mn steel.

Key wordscold-rolled medium Mn steel    ferrite recrystallization    retained austenite    TRIP effect    mechanical property
收稿日期: 2022-07-20     
ZTFLH:  TG142  
基金资助:国家自然科学基金项目(52071322)
通讯作者: 郑成武,cwzheng@imr.ac.cn,主要从事先进钢铁微观组织与转变机制研究;
李殿中,dzli@imr.ac.cn,主要从事特殊钢与大构件制备研究
Corresponding author: ZHENG Chengwu, professor, Tel: (024)23971973, E-mail: cwzheng@imr.ac.cn;
LI Dianzhong, professor, Tel: (024)23971281, E-mail: dzli@imr.ac.cn
作者简介: 胡宝佳,男,1989年生,博士生
图1  0.15C-5Mn冷轧中锰钢(MMS)两步热处理工艺示意图
图2  0.15C-5Mn冷轧MMS在不同临界区温度预退火处理后微观组织的SEM像和TEM明场像
图3  0.15C-5Mn冷轧MMS在不同临界区温度预退火处理后微观组织的EBSD分析
图4  0.15C-5Mn冷轧MMS经不同温度预退火并奥氏体逆相变(ART)处理试样及常规ART处理试样的微观组织的SEM像和TEM明场像
图5  0.15C-5Mn冷轧MMS经不同温度预退火并ART处理及常规ART处理后的XRD谱
图6  0.15C-5Mn冷轧MMS经不同温度预退火并ART处理及常规ART处理试样的工程应力-应变曲线
图7  冷轧MMS在不同温度预先调控再结晶后再进行ART处理时微观组织演变的示意图
图8  0.15C-5Mn冷轧MMS经700℃预退火及预退火并ART处理后的微观组织的STEM像
图9  0.15C-5Mn冷轧MMS常规ART处理及在不同温度预退火并ART处理试样的加工硬化率曲线(a) ART650 (b) R-ART680 (c) R-ART700 (d) R-ART720
图10  经700℃预退火并ART处理试样的真应力-真应变曲线和相应的加工硬化率曲线及不同变形阶段微观组织的EBSD像
1 Yang D P, Du P J, Wu D, et al. The microstructure evolution and tensile properties of medium-Mn steel heat-treated by a two-step annealing process [J]. J. Mater. Sci. Technol., 2021, 75: 205
doi: 10.1016/j.jmst.2020.10.032
2 Huang L, Deng X T, Liu J, et al. Relationship between retained austenite stability and cryogenic impact toughness in 0.12C-3.0Mn low carbon medium manganese steel [J]. Acta Metall. Sin., 2017, 53: 316
2 黄 龙, 邓想涛, 刘 佳 等. 0.12C-3.0Mn低碳中锰钢中残余奥氏体稳定性与低温韧性的关系 [J]. 金属学报, 2017, 53: 316
3 Chen S, Hu J, Shan L Y, et al. Characteristics of bainitic transformation and its effects on the mechanical properties in quenching and partitioning steels [J]. Mater. Sci. Eng., 2021, A803: 140706
4 Hu B J, Zheng Q Y, Jia C N, et al. Improvement of mechanical properties of a medium-Mn TRIP steel by precursor microstructure control [J]. Acta Metall. Sin. (Engl. Lett.), 2022, 35: 1068
doi: 10.1007/s40195-021-01355-6
5 Cai M H, Huang H S, Pan H J, et al. Microstructure and tensile properties of a Nb-Mo microalloyed 6.5Mn alloy processed by intercritical annealing and quenching and partitioning [J]. Acta Metall. Sin. (Engl. Lett.), 2017, 30: 665
doi: 10.1007/s40195-017-0597-0
6 Lu Q, Lai Q Q, Chai Z S, et al. Revolutionizing car body manufacturing using a unified steel metallurgy concept [J]. Sci. Adv., 2021, 7: eabk0176
doi: 10.1126/sciadv.abk0176
7 Yang F, Luo H W, Dong H. Effects of intercritical annealing temperature on the tensile behavior of cold rolled 7Mn steel and the constitutive modeling [J]. Acta Metall. Sin., 2018, 54: 859
7 阳 锋, 罗海文, 董 瀚. 退火温度对冷轧7Mn钢拉伸行为的影响及模拟研究 [J]. 金属学报, 2018, 54: 859
8 Cai M H, Huang H S, Su J H, et al. Enhanced tensile properties of a reversion annealed 6.5Mn-TRIP alloy via tailoring initial microstructure and cold rolling reduction [J]. J. Mater. Sci. Technol., 2018, 34: 1428
doi: 10.1016/j.jmst.2017.12.008
9 Hu J, Du L X, Xu W, et al. Ensuring combination of strength, ductility and toughness in medium-manganese steel through optimization of nano-scale metastable austenite [J]. Mater. Charact., 2018, 136: 20
doi: 10.1016/j.matchar.2017.11.058
10 Liang J H, Zhao Z Z, Tang D, et al. Improved microstructural homogeneity and mechanical property of medium manganese steel with Mn segregation banding by alternating lath matrix [J]. Mater. Sci. Eng., 2018, A711: 175
11 Yan S, Liu X H, Liang T S, et al. The effects of the initial microstructure on microstructural evolution, mechanical properties and reversed austenite stability of intercritically annealed Fe-6.1Mn-1.5Si-0.12C steel [J]. Mater. Sci. Eng., 2018, A712: 332
12 Li Y, Li W, Min N, et al. Mechanical response of a medium manganese steel with encapsulated austenite [J]. Scr. Mater., 2020, 178: 211
doi: 10.1016/j.scriptamat.2019.11.033
13 Luo L B, Li W, Liu S L, et al. Effect of intermediate temperature annealing on the stability of retained austenite and mechanical properties of medium Mn-TRIP steel [J]. Mater. Sci. Eng., 2019, A742: 69
14 LI X, Song R B, Zhou N P, et al. An ultrahigh strength and enhanced ductility cold-rolled medium-Mn steel treated by intercritical annealing [J]. Scr. Mater., 2018, 154: 30
doi: 10.1016/j.scriptamat.2018.05.016
15 Xu Y B, Zou Y, Hu Z P, et al. Correlation between deformation behavior and austenite characteristics in a Mn-Al type TRIP steel [J]. Mater. Sci. Eng., 2017, A698: 126
16 Shen G H, Hu B, Yang Z B, et al. Influence of tempering temperature on mechanical properties and microstructures of high-Al-contained medium Mn steel having δ-ferrite [J]. Acta Metall. Sin., 2022, 58: 165
16 沈国慧, 胡 斌, 杨占兵 等. 回火温度对含δ铁素体高铝中锰钢力学性能和微观组织的影响 [J]. 金属学报, 2022, 58: 165
doi: 10.11900/0412.1961.2021.00089
17 Zhou C, Ye Q B, Hu J, et al. Ultra-high-strength multi-alloyed steel with enhanced cryogenic toughness using thermally stable retained austenite [J]. Mater. Sci. Eng., 2022, A831: 142356
18 Hui W J, Shao C W, Zhang Y J, et al. Microstructure and mechanical properties of medium Mn steel containing 3%Al processed by warm rolling [J]. Mater. Sci. Eng., 2017, A707: 501
19 Cheng P, Hu B, Liu S L, et al. Influence of retained austenite and Cu precipitates on the mechanical properties of a cold-rolled and intercritically annealed medium Mn steel [J]. Mater. Sci. Eng., 2019, A746: 41
20 Wei X, Zhang X L, Cai M H, et al. Stress-state-dependent deformation and fracture behaviors in a cold-rolled 7Mn steel [J]. Mater. Sci. Eng., 2022, A831: 142102
21 Zhang Y, Ding H. Ultrafine also can be ductile: On the essence of Lüders band elongation in ultrafine-grained medium manganese steel [J]. Mater. Sci. Eng., 2018, A733: 220
22 Hu B, Tu X, Wang Y, et al. Recent progress and future research prospects on the plastic instability of medium-Mn steels: A review [J]. Chin. J. Eng., 2020, 42: 48
22 胡 斌, 屠 鑫, 王 玉 等. 中锰钢塑性失稳现象的研究进展及未来研究展望 [J]. 工程科学学报, 2020, 42: 48
23 Yan S, Li T L, Liang T S, et al. By controlling recrystallization degree: A plain medium Mn steel overcoming Lüders deformation and low yield-to-tensile ratio simultaneously [J]. Mater. Sci. Eng., 2019, A758: 79
24 Li Z C, Ding H, Misra R D K, et al. Deformation behavior in cold-rolled medium-manganese TRIP steel and effect of pre-strain on the Lüders bands [J]. Mater. Sci. Eng., 2017, A679: 230
25 Zhao Z Z, Liang J H, Zhao A M, et al. Effects of the austenitizing temperature on the mechanical properties of cold-rolled medium-Mn steel system [J]. J. Alloys Compd., 2017, 691: 51
doi: 10.1016/j.jallcom.2016.08.093
26 Wang H S, Zhang Y X, Yuan G, et al. Significance of cold rolling reduction on Lüders band formation and mechanical behavior in cold-rolled intercritically annealed medium-Mn steel [J]. Mater. Sci. Eng., 2018, A737: 176
27 Zou Y, Xu Y B, Hu Z P, et al. High strength-toughness combination of a low-carbon medium-manganese steel plate with laminated microstructure and retained austenite [J]. Mater. Sci. Eng., 2017, A707: 270
28 Han J, Kang S H, Lee S J, et al. Fabrication of bimodal-grained Al-free medium Mn steel by double intercritical annealing and its tensile properties [J]. J. Alloys Compd., 2016, 681: 580
doi: 10.1016/j.jallcom.2016.04.014
29 Han J, Lee S J, Jung J G, et al. The effects of the initial martensite microstructure on the microstructure and tensile properties of intercritically annealed Fe-9Mn-0.05C steel [J]. Acta Mater., 2014, 78: 369
doi: 10.1016/j.actamat.2014.07.005
30 Luo H W, Dong H, Huang M X. Effect of intercritical annealing on the Lüders strains of medium Mn transformation-induced plasticity steels [J]. Mater. Des., 2015, 83: 42
doi: 10.1016/j.matdes.2015.05.085
31 Wan X H, Liu G, Yang Z G, et al. Flash annealing yields a strong and ductile medium Mn steel with heterogeneous microstructure [J]. Scr. Mater., 2021, 198: 113819
doi: 10.1016/j.scriptamat.2021.113819
32 Ma J W, Lu Q, Sun L, et al. Two-step intercritical annealing to eliminate Lüders band in a strong and ductile medium Mn steel [J]. Metall. Mater. Trans., 2018, 49A: 4404
33 Kim M T, Park T M, Baik K H, et al. Effects of cold rolling reduction ratio on microstructures and tensile properties of intercritically annealed medium-Mn steels [J]. Mater. Sci. Eng., 2019, A752: 43
34 Zhang X L, Yan J H, Liu T, et al. Microstructural evolution and mechanical behavior of a novel heterogeneous medium Mn cold-rolled steel [J]. Mater. Sci. Eng., 2021, A800: 140344
35 Wan X H, Liu G, Ding R, et al. Stabilizing austenite via a core-shell structure in the medium Mn steels [J]. Scr. Mater., 2019, 166: 68
doi: 10.1016/j.scriptamat.2019.03.015
36 Hu B J, Zheng C W, Zheng Q Y, et al. Ultra-fine heterogeneous microstructure enables high strength-ductility in a cold-rolled medium Mn steel [J]. Acta Metall. Sin. (Engl. Lett.), 2022, 35: 1712
doi: 10.1007/s40195-022-01414-6
37 Wang C Y, Shi J, Cao W Q, et al. Characterization of microstructure obtained by quenching and partitioning process in low alloy martensitic steel [J]. Mater. Sci. Eng., 2010, A527: 3442
38 Lee S, Lee K, De Cooman B C. Observation of the TWIP + TRIP plasticity-enhancement mechanism in Al-added 6 wt pct medium Mn steel [J]. Metall. Mater. Trans., 2015, 46A: 2356
39 De Cooman B C, Lee S J, Shin S, et al. Combined intercritical annealing and Q&P processing of medium Mn steel [J]. Metall. Mater. Trans., 2017, 48A: 39
40 Hu B, Shen X, Gao Q Y, et al. Yielding behavior of triplex medium Mn steel alternated with cooling strategies altering martensite/ferrite interfacial feature [J]. J. Mater. Sci. Technol., 2022, 126: 60
doi: 0.1016/j.jmst.2022.04.003
41 Jeong M S, Park T M, Choi S, et al. Recovering the ductility of medium-Mn steel by restoring the original microstructure [J]. Scr. Mater., 2021, 190: 16
doi: 10.1016/j.scriptamat.2020.08.022
42 Lai Q Q, Gouné M, Perlade A, et al. Mechanism of austenite formation from spheroidized microstructure in an intermediate Fe-0.1C-3.5Mn steel [J]. Metall. Mater. Trans., 2016, 47A: 3375
43 Chen L S, Zhang J Y, Tian Y Q, et al. Effect of Mn pre-partitioning on C partitioning and retained austenite of Q&P Steels [J]. Acta Metall. Sin., 2015, 51: 527
43 陈连生, 张健杨, 田亚强 等. 预先Mn配分处理对Q&P钢中C配分及残余奥氏体的影响 [J]. 金属学报, 2015, 51: 527
44 Rao P M, Sarma V S, Sankaran S. Microstructure and mechanical properties of V-Nb microalloyed ultrafine-grained dual-phase steels processed through severe cold rolling and intercritical annealing [J]. Metall. Mater. Trans., 2017, 48A: 1176
45 Hu J, Du L X, Sun G S, et al. The determining role of reversed austenite in enhancing toughness of a novel ultra-low carbon medium manganese high strength steel [J]. Scr. Mater., 2015, 104: 87
doi: 10.1016/j.scriptamat.2015.04.009
46 Shao C W, Hui W J, Zhang Y J, et al. Microstructure and mechanical properties of a novel cold rolled medium-Mn steel with superior strength and ductility [J]. Acta Metall. Sin., 2019, 55: 191
doi: 10.11900/0412.1961.2018.00081
46 邵成伟, 惠卫军, 张永健 等. 一种新型高强度高塑性冷轧中锰钢的组织和力学性能 [J]. 金属学报, 2019, 55: 191
doi: 10.11900/0412.1961.2018.00081
47 Sun B H, Ma Y, Vanderesse N, et al. Macroscopic to nanoscopic in situ investigation on yielding mechanisms in ultrafine grained medium Mn steels: Role of the austenite-ferrite interface [J]. Acta Mater., 2019, 178: 10
doi: 10.1016/j.actamat.2019.07.043
48 Hu J, Zhang J M, Sun G S, et al. High strength and ductility combination in nano-/ultrafine-grained medium-Mn steel by tuning the stability of reverted austenite involving intercritical annealing [J]. J. Mater. Sci., 2019, 54: 6565
doi: 10.1007/s10853-018-03291-w
49 Ma J W, Liu H T, Lu Q, et al. Transformation kinetics of retained austenite in the tensile Lüders strain range in medium Mn steel [J]. Scr. Mater., 2019, 169: 1
doi: 10.1016/j.scriptamat.2019.04.044
[1] 张超, 熊志平, 杨德振, 程兴旺. 非均质Mn分布对淬火-配分钢微观组织和力学性能的影响[J]. 金属学报, 2024, 60(1): 69-79.
[2] 郑雄, 赖玉香, 向雪梅, 陈江华. 稀土元素LaAlMgSi合金性能和微结构的影响[J]. 金属学报, 2024, 60(1): 107-116.
[3] 杨俊杰, 张昌盛, 李洪佳, 谢雷, 王虹, 孙光爱. 拉伸-扭转复合加载对镍基高温合金GH4169力学性能与变形机理的影响[J]. 金属学报, 2024, 60(1): 30-42.
[4] 王秀琦, 李天瑞, 刘国怀, 郭瑞琪, 王昭东. 交叉包套轧制Ti-44Al-5Nb-1Mo-2V-0.2B合金的微观组织演化及力学性能[J]. 金属学报, 2024, 60(1): 95-106.
[5] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[6] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[7] 郑亮, 张强, 李周, 张国庆. /降氧过程对高温合金粉末表面特性和合金性能的影响:粉末存储到脱气处理[J]. 金属学报, 2023, 59(9): 1265-1278.
[8] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[9] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[10] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[11] 丁桦, 张宇, 蔡明晖, 唐正友. 奥氏体基Fe-Mn-Al-C轻质钢的研究进展[J]. 金属学报, 2023, 59(8): 1027-1041.
[12] 袁江淮, 王振玉, 马冠水, 周广学, 程晓英, 汪爱英. Cr2AlC涂层相结构演变对力学性能的影响[J]. 金属学报, 2023, 59(7): 961-968.
[13] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[14] 王滨, 牛梦超, 王威, 姜涛, 栾军华, 杨柯. Cu马氏体时效不锈钢的组织与强韧性[J]. 金属学报, 2023, 59(5): 636-646.
[15] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.