|
|
非均质Mn分布对淬火-配分钢微观组织和力学性能的影响 |
张超1, 熊志平1,2( ), 杨德振1, 程兴旺1,2 |
1 北京理工大学 材料学院 冲击环境材料技术国家级重点实验室 北京 100081 2 北京理工大学 唐山研究院 唐山 063000 |
|
Effect of Mn Heterogeneous Distribution on Microstructures and Mechanical Properties of Quenching and Partitioning Steels |
ZHANG Chao1, XIONG Zhiping1,2( ), YANG Dezhen1, CHENG Xingwang1,2 |
1 National Key Laboratory of Science and Technology on Materials under Shock and Impact, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China 2 Tangshan Research Institute, Beijing Institute of Technology, Tangshan 063000, China |
引用本文:
张超, 熊志平, 杨德振, 程兴旺. 非均质Mn分布对淬火-配分钢微观组织和力学性能的影响[J]. 金属学报, 2024, 60(1): 69-79.
Chao ZHANG,
Zhiping XIONG,
Dezhen YANG,
Xingwang CHENG.
Effect of Mn Heterogeneous Distribution on Microstructures and Mechanical Properties of Quenching and Partitioning Steels[J]. Acta Metall Sin, 2024, 60(1): 69-79.
1 |
Xiong Z P, Saleh A A, Marceau R K W, et al. Site-specific atomic-scale characterisation of retained austenite in a strip cast TRIP steel [J]. Acta Mater., 2017, 134: 1
doi: 10.1016/j.actamat.2017.05.060
|
2 |
Xiong X C, Chen B, Huang M X, et al. The effect of morphology on the stability of retained austenite in a quenched and partitioned steel [J]. Scr. Mater., 2013, 68: 321
doi: 10.1016/j.scriptamat.2012.11.003
|
3 |
Xu W, Huang M H, Wang J L, et al. Review: Relations between metastable austenite and fatigue behavior of steels [J]. Acta Metall. Sin., 2020, 56: 459
doi: 10.11900/0412.1961.2019.00399
|
3 |
徐 伟, 黄明浩, 王金亮 等. 综述: 钢中亚稳奥氏体组织与疲劳性能关系 [J]. 金属学报, 2020, 56: 459
|
4 |
Liu M, Hu H J, Tian J Y, et al. Effect of ausforming on the microstructures and mechanical properties of an ultra-high strength bainitic steel [J]. Acta Metall. Sin., 2021, 57: 749
doi: 10.11900/0412.1961.2020.00310
|
4 |
刘 曼, 胡海江, 田俊羽 等. 变形对超高强贝氏体钢组织和力学性能的影响 [J]. 金属学报, 2021, 57: 749
|
5 |
Speer J, Matlock D K, De Cooman B C, et al. Carbon partitioning into austenite after martensite transformation [J]. Acta Mater., 2003, 51: 2611
doi: 10.1016/S1359-6454(03)00059-4
|
6 |
Caballero F G, Bhadeshia H K D H. Very strong bainite [J]. Curr. Opin. Solid State Mater. Sci., 2004, 8: 251
doi: 10.1016/j.cossms.2004.09.005
|
7 |
Luo H W, Shi J, Wang C, et al. Experimental and numerical analysis on formation of stable austenite during the intercritical annealing of 5Mn steel [J]. Acta Mater., 2011, 59: 4002
doi: 10.1016/j.actamat.2011.03.025
|
8 |
Ding R, Yao Y J, Sun B H, et al. Chemical boundary engineering: A new route toward lean, ultrastrong yet ductile steels [J]. Sci. Adv., 2020, 6: eaay1430
doi: 10.1126/sciadv.aay1430
|
9 |
Sun W W, Wu Y X, Yang S C, et al. Advanced high strength steel (AHSS) development through chemical patterning of austenite [J]. Scr. Mater., 2018, 146: 60
doi: 10.1016/j.scriptamat.2017.11.007
|
10 |
Kim J H, Gu G, Kwon M H, et al. Microstructure and tensile properties of chemically heterogeneous steel consisting of martensite and austenite [J]. Acta Mater., 2022, 223: 117506
doi: 10.1016/j.actamat.2021.117506
|
11 |
Zhang C, Xiong Z P, Yang D Z, et al. Heterogeneous quenching and partitioning from manganese-partitioned pearlite: Retained austenite modification and formability improvement [J]. Acta Mater., 2022, 235: 118060
doi: 10.1016/j.actamat.2022.118060
|
12 |
Yang D Z, Xiong Z P, Zhang C, et al. Effect of tempering time on microstructures and mechanical properties of an Fe-0.39C-3.69Mn medium Mn steel [J]. J. Iron Steel Res., 2021, 33: 1161
|
12 |
杨德振, 熊志平, 张 超 等. 回火时间对Fe-0.39C-3.69Mn中锰钢的组织和力学性能的影响 [J]. 钢铁研究学报, 2021, 33: 1161
|
13 |
Cunningham J L, Medlin D J, Krauss G. Effects of induction hardening and prior cold work on a microalloyed medium carbon steel [J]. J. Mater. Eng. Perform., 1999, 8: 401
doi: 10.1361/105994999770346684
|
14 |
Yang D Z, Xiong Z P, Zhang C, et al. Evolution of microstructures and mechanical properties with tempering temperature of a pearlitic quenched and tempered steel [J]. J. Iron Steel Res. Int., 2022, 29: 1393
doi: 10.1007/s42243-021-00677-0
|
15 |
Santofimia M J, Zhao L, Petrov R, et al. Microstructural development during the quenching and partitioning process in a newly designed low-carbon steel [J]. Acta Mater., 2011, 59: 6059
doi: 10.1016/j.actamat.2011.06.014
|
16 |
Wang C Y, Shi J, Cao W Q, et al. Study on the martensite in low carbon CrNi3Si2MoV steel treated by Q&P process [J]. Acta Metall. Sin., 2011, 47: 718
|
16 |
王存宇, 时 捷, 曹文全 等. Q&P工艺处理低碳CrNi3Si2MoV钢中马氏体的研究 [J]. 金属学报, 2011, 47: 718
|
17 |
Gao P F, Liang J H, Chen W J, et al. Prediction and evaluation of optimum quenching temperature and microstructure in a 1300 MPa ultra-high-strength Q&P steel [J]. J. Iron Steel Res. Int., 2022, 29: 307
doi: 10.1007/s42243-020-00535-5
|
18 |
Xiong Z P, Jacques P J, Perlade A, et al. Characterization and control of the compromise between tensile properties and fracture toughness in a quenched and partitioned steel [J]. Metall. Mater. Trans., 2019, 50A: 3502
|
19 |
Shi J, Sun X J, Wang M Q, et al. Enhanced work-hardening behavior and mechanical properties in ultrafine-grained steels with large-fractioned metastable austenite [J]. Scr. Mater., 2010, 63: 815
doi: 10.1016/j.scriptamat.2010.06.023
|
20 |
Xu Y T, Li W, Du H, et al. Tailoring the metastable reversed austenite from metastable Mn-rich carbides [J]. Acta Mater., 2021, 214: 116986
doi: 10.1016/j.actamat.2021.116986
|
21 |
Yang Z N, Enomoto M, Zhang C, et al. Transition between alloy-element partitioned and non-partitioned growth of austenite from a ferrite and cementite mixture in a high-carbon low-alloy steel [J]. Philos. Mag. Lett., 2016, 96: 256
doi: 10.1080/09500839.2016.1197432
|
22 |
Li S, Yang Z N, Enomoto M, et al. Study of partition to non-partition transition of austenite growth along pearlite lamellae in near-eutectoid Fe-C-Mn alloy [J]. Acta Mater., 2019, 177: 198
doi: 10.1016/j.actamat.2019.07.038
|
23 |
Divinski S V, Hisker F, Kang Y S, et al. Tracer diffusion of 63Ni in nano-γ-FeNi produced by powder metallurgical method: Systematic investigations in the C, B, and A diffusion regimes [J]. Interface Sci., 2003, 11: 67
doi: 10.1023/A:1021587007368
|
24 |
Guo Q, Yen H W, Luo H, et al. On the mechanism of Mn partitioning during intercritical annealing in medium Mn steels [J]. Acta Mater., 2022, 225: 117601
doi: 10.1016/j.actamat.2021.117601
|
25 |
Li Z D, Yang Z G, Zhang C, et al. Influence of austenite deformation on ferrite growth in a Fe-C-Mn alloy [J]. Mater. Sci. Eng., 2010, A527: 4406
|
26 |
Liu L, He B B, Cheng G J, et al. Optimum properties of quenching and partitioning steels achieved by balancing fraction and stability of retained austenite [J]. Scr. Mater., 2018, 150: 1
doi: 10.1016/j.scriptamat.2018.02.035
|
27 |
Cech R E, Turnbull D. Heterogeneous nucleation of the martensite transformation [J]. JOM, 1956, 8: 124
doi: 10.1007/BF03377656
|
28 |
Jing S Y, Ding H, Ren Y P, et al. A new insight into annealing parameters in tailoring the mechanical properties of a medium Mn steel [J]. Scr. Mater., 2021, 202: 114019
doi: 10.1016/j.scriptamat.2021.114019
|
29 |
Gao G H, Gao B, Gui X L, et al. Correlation between microstructure and yield strength of as-quenched and Q&P steels with different carbon content (0.06-0.42 wt% C) [J]. Mater. Sci. Eng., 2019, A753: 1
|
30 |
HajyAkbary F, Sietsma J, Miyamoto G, et al. Analysis of the mechanical behavior of a 0.3C-1.6Si-3.5Mn (wt%) quenching and partitioning steel [J]. Mater. Sci. Eng., 2016, A677: 505
|
31 |
Bouquerel J, Verbeken K, De Cooman B C. Microstructure-based model for the static mechanical behaviour of multiphase steels [J]. Acta Mater., 2006, 54: 1443
doi: 10.1016/j.actamat.2005.10.059
|
32 |
McGuire M F. Stainless Steels for Design Engineers [M]. Materials Park: ASM International, 2008: 74
|
33 |
Irvine J, Baker T N. The influence of rolling variables on the strengthening mechanisms operating in niobium steels [J]. Mater. Sci. Eng., 1984, 64: 123
|
34 |
Krauss G. Martensite in steel: Strength and structure [J]. Mater. Sci. Eng., 1999, A273-275: 40
|
35 |
Rodriguez RM, Gutiérrez I. Unified formulation to predict the tensile curves of steels with different microstructures [J]. Mater. Sci. Forum, 2003, 426-432: 4525
doi: 10.4028/www.scientific.net/MSF.426-432
|
36 |
Xiong Z P, Timokhina I, Pereloma E. Clustering, nano-scale precipitation and strengthening of steels [J]. Prog. Mater. Sci., 2021, 118: 100764
doi: 10.1016/j.pmatsci.2020.100764
|
37 |
Smith D W, Hehemann R F. Influence of structural parameters on the yield strength of tempered martensite and lower bainite [J]. J. Iron Steel Inst., 1971, 209: 476
|
38 |
Taylor G I. The mechanism of plastic deformation of crystals. Part I.—Theoretical [J]. Proc. R. Soc, 1934, 145A: 362
|
39 |
Girault E, Jacques P, Harlet P, et al. Metallographic methods for revealing the multiphase microstructure of TRIP-assisted steels [J]. Mater. Charact., 1998, 40: 111
doi: 10.1016/S1044-5803(97)00154-X
|
40 |
Xiong Z P, Jacques P J, Perlade A, et al. Ductile and intergranular brittle fracture in a two-step quenching and partitioning steel [J]. Scr. Mater., 2018, 157: 6
doi: 10.1016/j.scriptamat.2018.07.030
|
41 |
Wang Y, Zhang K, Guo Z H, et al. A new effect of retained austenite on ductility enhancement of low carbon Q-P-T steel [J]. Acta Metall. Sin., 2012, 48: 641
doi: 10.3724/SP.J.1037.2012.00042
|
41 |
王 颖, 张 柯, 郭正洪 等. 残余奥氏体增强低碳Q-P-T钢塑性的新效应 [J]. 金属学报, 2012, 48: 641
|
42 |
Martelo D F, Mateo A, Chapetti M D. Crack closure and fatigue crack growth near threshold of a metastable austenitic stainless steel [J]. Int. J. Fatigue, 2015, 77: 64
doi: 10.1016/j.ijfatigue.2015.02.016
|
43 |
Mei Z, Morris J W. Influence of deformation-induced martensite on fatigue crack propagation in 304-type steels [J]. Metall. Trans., 1990, 21A: 3137
|
44 |
Niendorf T, Rubitschek F, Maier H J, et al. Fatigue crack growth—Microstructure relationships in a high-manganese austenitic TWIP steel [J]. Mater. Sci. Eng., 2010, A527: 2412
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|