Please wait a minute...
金属学报  2024, Vol. 60 Issue (1): 69-79    DOI: 10.11900/0412.1961.2022.00315
  研究论文 本期目录 | 过刊浏览 |
非均质Mn分布对淬火-配分钢微观组织和力学性能的影响
张超1, 熊志平1,2(), 杨德振1, 程兴旺1,2
1 北京理工大学 材料学院 冲击环境材料技术国家级重点实验室 北京 100081
2 北京理工大学 唐山研究院 唐山 063000
Effect of Mn Heterogeneous Distribution on Microstructures and Mechanical Properties of Quenching and Partitioning Steels
ZHANG Chao1, XIONG Zhiping1,2(), YANG Dezhen1, CHENG Xingwang1,2
1 National Key Laboratory of Science and Technology on Materials under Shock and Impact, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
2 Tangshan Research Institute, Beijing Institute of Technology, Tangshan 063000, China
引用本文:

张超, 熊志平, 杨德振, 程兴旺. 非均质Mn分布对淬火-配分钢微观组织和力学性能的影响[J]. 金属学报, 2024, 60(1): 69-79.
Chao ZHANG, Zhiping XIONG, Dezhen YANG, Xingwang CHENG. Effect of Mn Heterogeneous Distribution on Microstructures and Mechanical Properties of Quenching and Partitioning Steels[J]. Acta Metall Sin, 2024, 60(1): 69-79.

全文: PDF(5673 KB)   HTML
摘要: 

目前,基于非均质高温奥氏体来调控先进高强钢的组织和性能,引起研究学者的广泛关注。为进一步明晰合金元素非均质程度对组织和性能的影响,指导先进高强钢的设计,本工作采用以Mn配分的珠光体为初始组织的快速淬火-配分工艺,研究了奥氏体化时间和温度对高温奥氏体中非均质Mn分布的影响规律,进一步探讨了微观组织和力学性能的演变。结果表明,高温奥氏体的Mn分布能够调控淬火过程的马氏体转变。当高温奥氏体继承了珠光体中富Mn渗碳体和贫Mn铁素体中的Mn分布时,淬火后可获得富Mn片状残余奥氏体与贫Mn马氏体板条构成的鬼珠光体组织。随奥氏体化保温时间的延长和温度的升高,高温奥氏体中Mn元素非均质程度减弱,导致鬼珠光体组织减少,块状残余奥氏体和粗大板条马氏体数量增多、且尺寸增大。随着保温时间的延长,屈服强度由于细晶强化的减弱而降低;均匀延伸率由于块状残余奥氏体的增多而升高,颈缩后的延伸率因块状残余奥氏体形成的脆性马氏体而降低。由于残余奥氏体和马氏体的含量随着奥氏体化工艺不发生改变,使得抗拉强度和断裂总延伸率也不发生变化。由此可见,通过改变奥氏体化的工艺参数,能够在保证高抗拉强度(约1700 MPa)和高断裂总延伸率(约20%)的基础上,实现对屈服强度和均匀延伸率的进一步调控。

关键词 非均质组织Mn配分珠光体残余奥氏体高温奥氏体    
Abstract

The ever increasing demand for safe and lightweight steel has promoted the development of advanced high-strength steel (AHSS). Recently, many AHSSs have been developed through chemical heterogeneity, resulting in microstructure refinement and mechanical property optimization. Although many efforts emphasize the construction of Mn-heterogeneous high-temperature austenite (γ-Fe), the influence of Mn-heterogeneous distribution remains unclear. In this work, different austenitization times and temperatures are applied to Mn-partitioned pearlite, followed by the same quenching and partitioning process. The effect of Mn distribution in high-temperature austenite on the microstructural evolution and mechanical properties is systematically investigated. Results show that the Mn-heterogeneous high-temperature austenite can tailor the austenite-to-martensite transformation during quenching. The Mn-depleted austenite is then readily transformed into lath martensite, and the Mn-enriched austenite is mainly retained as film roughness (RA), both of which assemble the ghost pearlite. With an increase in austenitization time and temperature, the Mn atom diffusion from the Mn-enriched austenite (originated from cementite lamellae) to the Mn-depleted one (originated from ferrite lamellae) increases, leading to the decreased chemical heterogeneity in high-temperature austenite. Thus, the fraction of ghost pearlite decreases while the fraction and size of blocky RA and coarse lath martensite increase. A wider lath martensite lowers the strength of the yield or the elastic limit of steel. The increased fraction and size of blocky RA ensure an increased uniform elongation by transformation-induced plasticity effect, whereas the transformation product (i.e., fresh martensite) is detrimental to the post-uniform elongation. Meanwhile, because the fractions of RA and martensite hardly change with austenitization condition, the ultimate tensile strength (about 1700 MPa) and total elongation (about 20%) are relatively constant. Therefore, tuning the Mn distribution in high-temperature austenite provides an effective strategy to tailor yield strength and uniform elongation while maintaining large ultimate tensile strength and total elongation.

Key wordsheterogeneous microstructure    Mn partition    pearlite    retained austenite    high-temperature austenite
收稿日期: 2022-06-24     
ZTFLH:  TG142.1  
基金资助:国家自然科学基金项目(52271004);国家自然科学基金项目(51901021);北京理工大学科技创新计划创新人才科技专项计划项目(2019CX01019)
通讯作者: 熊志平,zpxiong@bit.edu.cn,主要从事先进钢铁材料的开发与研究
Corresponding author: XIONG Zhiping, associate professor, Tel: (010)68912490, E-mail: zpxiong@bit.edu.cn
作者简介: 张 超,男,1992年生,博士生
图1  以Mn配分珠光体为初始组织的淬火-配分工艺示意图
图2  经590℃保温6 h的珠光体化处理后试样微观组织的SEM、TEM像和Mn元素分布
图3  经不同奥氏体化时间、温度处理后的直接淬火试样微观组织的SEM像
图4  经不同奥氏体化时间、温度处理后的淬火-配分试样微观组织的SEM像
图5  经不同奥氏体化时间、温度处理后的淬火-配分试样的XRD谱
图6  不同奥氏体化时间、温度处理后淬火-配分试样中各相含量及晶粒尺寸变化
图7  PPQ&P 770-10试样中的RA形貌、Mn元素分布、选区电子衍射(SAED)花样和TKD像
图8  在770℃保温不同时间的淬火-配分试样的工程应力-工程应变曲线及应变硬化指数曲线

Time

s

YS

MPa

UTS

MPa

TEL

%

UEL

%

TEL - UEL

%

101499 ± 91719 ± 620.7 ± 1.813.8 ± 1.06.9
901430 ± 41677 ± 2120.1 ± 1.415.0 ± 1.55.1
12001247 ± 121697 ± 221.8 ± 0.416.5 ± 0.25.3
表1  在770℃保温不同时间的淬火-配分试样的力学性能
图9  在770℃保温不同时间的淬火-配分试样拉伸断口的SEM像
图10  在770℃保温不同时间的Mn原子扩散距离及淬火-配分工艺组织演变示意图
图11  热膨胀曲线推导出的淬火阶段马氏体的转变曲线及一阶导数曲线
图12  PPQ&P 770-10试样在不同应变下的显微组织
1 Xiong Z P, Saleh A A, Marceau R K W, et al. Site-specific atomic-scale characterisation of retained austenite in a strip cast TRIP steel [J]. Acta Mater., 2017, 134: 1
doi: 10.1016/j.actamat.2017.05.060
2 Xiong X C, Chen B, Huang M X, et al. The effect of morphology on the stability of retained austenite in a quenched and partitioned steel [J]. Scr. Mater., 2013, 68: 321
doi: 10.1016/j.scriptamat.2012.11.003
3 Xu W, Huang M H, Wang J L, et al. Review: Relations between metastable austenite and fatigue behavior of steels [J]. Acta Metall. Sin., 2020, 56: 459
doi: 10.11900/0412.1961.2019.00399
3 徐 伟, 黄明浩, 王金亮 等. 综述: 钢中亚稳奥氏体组织与疲劳性能关系 [J]. 金属学报, 2020, 56: 459
4 Liu M, Hu H J, Tian J Y, et al. Effect of ausforming on the microstructures and mechanical properties of an ultra-high strength bainitic steel [J]. Acta Metall. Sin., 2021, 57: 749
doi: 10.11900/0412.1961.2020.00310
4 刘 曼, 胡海江, 田俊羽 等. 变形对超高强贝氏体钢组织和力学性能的影响 [J]. 金属学报, 2021, 57: 749
5 Speer J, Matlock D K, De Cooman B C, et al. Carbon partitioning into austenite after martensite transformation [J]. Acta Mater., 2003, 51: 2611
doi: 10.1016/S1359-6454(03)00059-4
6 Caballero F G, Bhadeshia H K D H. Very strong bainite [J]. Curr. Opin. Solid State Mater. Sci., 2004, 8: 251
doi: 10.1016/j.cossms.2004.09.005
7 Luo H W, Shi J, Wang C, et al. Experimental and numerical analysis on formation of stable austenite during the intercritical annealing of 5Mn steel [J]. Acta Mater., 2011, 59: 4002
doi: 10.1016/j.actamat.2011.03.025
8 Ding R, Yao Y J, Sun B H, et al. Chemical boundary engineering: A new route toward lean, ultrastrong yet ductile steels [J]. Sci. Adv., 2020, 6: eaay1430
doi: 10.1126/sciadv.aay1430
9 Sun W W, Wu Y X, Yang S C, et al. Advanced high strength steel (AHSS) development through chemical patterning of austenite [J]. Scr. Mater., 2018, 146: 60
doi: 10.1016/j.scriptamat.2017.11.007
10 Kim J H, Gu G, Kwon M H, et al. Microstructure and tensile properties of chemically heterogeneous steel consisting of martensite and austenite [J]. Acta Mater., 2022, 223: 117506
doi: 10.1016/j.actamat.2021.117506
11 Zhang C, Xiong Z P, Yang D Z, et al. Heterogeneous quenching and partitioning from manganese-partitioned pearlite: Retained austenite modification and formability improvement [J]. Acta Mater., 2022, 235: 118060
doi: 10.1016/j.actamat.2022.118060
12 Yang D Z, Xiong Z P, Zhang C, et al. Effect of tempering time on microstructures and mechanical properties of an Fe-0.39C-3.69Mn medium Mn steel [J]. J. Iron Steel Res., 2021, 33: 1161
12 杨德振, 熊志平, 张 超 等. 回火时间对Fe-0.39C-3.69Mn中锰钢的组织和力学性能的影响 [J]. 钢铁研究学报, 2021, 33: 1161
13 Cunningham J L, Medlin D J, Krauss G. Effects of induction hardening and prior cold work on a microalloyed medium carbon steel [J]. J. Mater. Eng. Perform., 1999, 8: 401
doi: 10.1361/105994999770346684
14 Yang D Z, Xiong Z P, Zhang C, et al. Evolution of microstructures and mechanical properties with tempering temperature of a pearlitic quenched and tempered steel [J]. J. Iron Steel Res. Int., 2022, 29: 1393
doi: 10.1007/s42243-021-00677-0
15 Santofimia M J, Zhao L, Petrov R, et al. Microstructural development during the quenching and partitioning process in a newly designed low-carbon steel [J]. Acta Mater., 2011, 59: 6059
doi: 10.1016/j.actamat.2011.06.014
16 Wang C Y, Shi J, Cao W Q, et al. Study on the martensite in low carbon CrNi3Si2MoV steel treated by Q&P process [J]. Acta Metall. Sin., 2011, 47: 718
16 王存宇, 时 捷, 曹文全 等. Q&P工艺处理低碳CrNi3Si2MoV钢中马氏体的研究 [J]. 金属学报, 2011, 47: 718
17 Gao P F, Liang J H, Chen W J, et al. Prediction and evaluation of optimum quenching temperature and microstructure in a 1300 MPa ultra-high-strength Q&P steel [J]. J. Iron Steel Res. Int., 2022, 29: 307
doi: 10.1007/s42243-020-00535-5
18 Xiong Z P, Jacques P J, Perlade A, et al. Characterization and control of the compromise between tensile properties and fracture toughness in a quenched and partitioned steel [J]. Metall. Mater. Trans., 2019, 50A: 3502
19 Shi J, Sun X J, Wang M Q, et al. Enhanced work-hardening behavior and mechanical properties in ultrafine-grained steels with large-fractioned metastable austenite [J]. Scr. Mater., 2010, 63: 815
doi: 10.1016/j.scriptamat.2010.06.023
20 Xu Y T, Li W, Du H, et al. Tailoring the metastable reversed austenite from metastable Mn-rich carbides [J]. Acta Mater., 2021, 214: 116986
doi: 10.1016/j.actamat.2021.116986
21 Yang Z N, Enomoto M, Zhang C, et al. Transition between alloy-element partitioned and non-partitioned growth of austenite from a ferrite and cementite mixture in a high-carbon low-alloy steel [J]. Philos. Mag. Lett., 2016, 96: 256
doi: 10.1080/09500839.2016.1197432
22 Li S, Yang Z N, Enomoto M, et al. Study of partition to non-partition transition of austenite growth along pearlite lamellae in near-eutectoid Fe-C-Mn alloy [J]. Acta Mater., 2019, 177: 198
doi: 10.1016/j.actamat.2019.07.038
23 Divinski S V, Hisker F, Kang Y S, et al. Tracer diffusion of 63Ni in nano-γ-FeNi produced by powder metallurgical method: Systematic investigations in the C, B, and A diffusion regimes [J]. Interface Sci., 2003, 11: 67
doi: 10.1023/A:1021587007368
24 Guo Q, Yen H W, Luo H, et al. On the mechanism of Mn partitioning during intercritical annealing in medium Mn steels [J]. Acta Mater., 2022, 225: 117601
doi: 10.1016/j.actamat.2021.117601
25 Li Z D, Yang Z G, Zhang C, et al. Influence of austenite deformation on ferrite growth in a Fe-C-Mn alloy [J]. Mater. Sci. Eng., 2010, A527: 4406
26 Liu L, He B B, Cheng G J, et al. Optimum properties of quenching and partitioning steels achieved by balancing fraction and stability of retained austenite [J]. Scr. Mater., 2018, 150: 1
doi: 10.1016/j.scriptamat.2018.02.035
27 Cech R E, Turnbull D. Heterogeneous nucleation of the martensite transformation [J]. JOM, 1956, 8: 124
doi: 10.1007/BF03377656
28 Jing S Y, Ding H, Ren Y P, et al. A new insight into annealing parameters in tailoring the mechanical properties of a medium Mn steel [J]. Scr. Mater., 2021, 202: 114019
doi: 10.1016/j.scriptamat.2021.114019
29 Gao G H, Gao B, Gui X L, et al. Correlation between microstructure and yield strength of as-quenched and Q&P steels with different carbon content (0.06-0.42 wt% C) [J]. Mater. Sci. Eng., 2019, A753: 1
30 HajyAkbary F, Sietsma J, Miyamoto G, et al. Analysis of the mechanical behavior of a 0.3C-1.6Si-3.5Mn (wt%) quenching and partitioning steel [J]. Mater. Sci. Eng., 2016, A677: 505
31 Bouquerel J, Verbeken K, De Cooman B C. Microstructure-based model for the static mechanical behaviour of multiphase steels [J]. Acta Mater., 2006, 54: 1443
doi: 10.1016/j.actamat.2005.10.059
32 McGuire M F. Stainless Steels for Design Engineers [M]. Materials Park: ASM International, 2008: 74
33 Irvine J, Baker T N. The influence of rolling variables on the strengthening mechanisms operating in niobium steels [J]. Mater. Sci. Eng., 1984, 64: 123
34 Krauss G. Martensite in steel: Strength and structure [J]. Mater. Sci. Eng., 1999, A273-275: 40
35 Rodriguez RM, Gutiérrez I. Unified formulation to predict the tensile curves of steels with different microstructures [J]. Mater. Sci. Forum, 2003, 426-432: 4525
doi: 10.4028/www.scientific.net/MSF.426-432
36 Xiong Z P, Timokhina I, Pereloma E. Clustering, nano-scale precipitation and strengthening of steels [J]. Prog. Mater. Sci., 2021, 118: 100764
doi: 10.1016/j.pmatsci.2020.100764
37 Smith D W, Hehemann R F. Influence of structural parameters on the yield strength of tempered martensite and lower bainite [J]. J. Iron Steel Inst., 1971, 209: 476
38 Taylor G I. The mechanism of plastic deformation of crystals. Part I.—Theoretical [J]. Proc. R. Soc, 1934, 145A: 362
39 Girault E, Jacques P, Harlet P, et al. Metallographic methods for revealing the multiphase microstructure of TRIP-assisted steels [J]. Mater. Charact., 1998, 40: 111
doi: 10.1016/S1044-5803(97)00154-X
40 Xiong Z P, Jacques P J, Perlade A, et al. Ductile and intergranular brittle fracture in a two-step quenching and partitioning steel [J]. Scr. Mater., 2018, 157: 6
doi: 10.1016/j.scriptamat.2018.07.030
41 Wang Y, Zhang K, Guo Z H, et al. A new effect of retained austenite on ductility enhancement of low carbon Q-P-T steel [J]. Acta Metall. Sin., 2012, 48: 641
doi: 10.3724/SP.J.1037.2012.00042
41 王 颖, 张 柯, 郭正洪 等. 残余奥氏体增强低碳Q-P-T钢塑性的新效应 [J]. 金属学报, 2012, 48: 641
42 Martelo D F, Mateo A, Chapetti M D. Crack closure and fatigue crack growth near threshold of a metastable austenitic stainless steel [J]. Int. J. Fatigue, 2015, 77: 64
doi: 10.1016/j.ijfatigue.2015.02.016
43 Mei Z, Morris J W. Influence of deformation-induced martensite on fatigue crack propagation in 304-type steels [J]. Metall. Trans., 1990, 21A: 3137
44 Niendorf T, Rubitschek F, Maier H J, et al. Fatigue crack growth—Microstructure relationships in a high-manganese austenitic TWIP steel [J]. Mater. Sci. Eng., 2010, A527: 2412
[1] 李赛, 杨泽南, 张弛, 杨志刚. 珠光体-奥氏体相变中扩散通道的相场法研究[J]. 金属学报, 2023, 59(10): 1376-1388.
[2] 孙毅, 郑沁园, 胡宝佳, 王平, 郑成武, 李殿中. 3Mn-0.2C中锰钢形变诱导铁素体动态相变机理[J]. 金属学报, 2022, 58(5): 649-659.
[3] 蒋中华, 杜军毅, 王培, 郑建能, 李殿中, 李依依. M-A岛高温回火转变产物对核电SA508-3钢冲击韧性影响机制[J]. 金属学报, 2021, 57(7): 891-902.
[4] 刘曼, 胡海江, 田俊羽, 徐光. 变形对超高强贝氏体钢组织和力学性能的影响[J]. 金属学报, 2021, 57(6): 749-756.
[5] 罗海文,沈国慧. 超高强高韧化钢的研究进展和展望[J]. 金属学报, 2020, 56(4): 494-512.
[6] 冯汉臣,闵学刚,魏大圣,周立初,崔世云,方峰. 低温回火对超大形变冷拔珠光体钢丝显微组织和力学性能的影响[J]. 金属学报, 2019, 55(5): 585-592.
[7] 徐文胜, 张文征. 先共析渗碳体上形核的珠光体晶体学研究[J]. 金属学报, 2019, 55(4): 496-510.
[8] 田亚强,田耕,郑小平,陈连生,徐勇,张士宏. 淬火配分贝氏体钢不同位置残余奥氏体C、Mn元素表征及其稳定性[J]. 金属学报, 2019, 55(3): 332-340.
[9] 邵成伟, 惠卫军, 张永健, 赵晓丽, 翁宇庆. 一种新型高强度高塑性冷轧中锰钢的组织和力学性能[J]. 金属学报, 2019, 55(2): 191-201.
[10] 潘栋, 赵宇光, 徐晓峰, 王艺橦, 江文强, 鞠虹. 高能瞬时电脉冲处理对42CrMo钢组织与性能的影响[J]. 金属学报, 2018, 54(9): 1245-1252.
[11] 季培蓓, 周立初, 周雪峰, 方峰, 蒋建清. 冷拉拔珠光体钢丝的力学性能各向异性研究[J]. 金属学报, 2018, 54(4): 494-500.
[12] 杨继兰, 蒋元凯, 顾剑锋, 郭正洪, 陈海龑. 奥氏体化温度对中碳淬火-配分钢干滑动摩擦磨损性能的影响[J]. 金属学报, 2018, 54(1): 21-30.
[13] 黄龙,邓想涛,刘佳,王昭东. 0.12C-3.0Mn低碳中锰钢中残余奥氏体稳定性与低温韧性的关系[J]. 金属学报, 2017, 53(3): 316-324.
[14] 桂晓露,张宝祥,高古辉,赵平,白秉哲,翁宇庆. Q-P-T处理贝氏体/马氏体复相高强钢疲劳断裂特性研究*[J]. 金属学报, 2016, 52(9): 1036-1044.
[15] 谢振家,尚成嘉,周文浩,吴彬彬. 低合金多相钢中残余奥氏体对塑性和韧性的影响*[J]. 金属学报, 2016, 52(2): 224-232.