|
|
交叉包套轧制Ti-44Al-5Nb-1Mo-2V-0.2B合金的微观组织演化及力学性能 |
王秀琦1, 李天瑞2, 刘国怀1(), 郭瑞琪1, 王昭东1 |
1 东北大学 轧制技术与连轧自动化国家重点实验室 沈阳 110819 2 安徽工业大学 冶金工程学院 马鞍山 243000 |
|
Microstructure Evolution and Mechanical Properties of Ti-44Al-5Nb-1Mo-2V-0.2B Alloys in the Cross Hot-Pack Rolling Process |
WANG Xiuqi1, LI Tianrui2, LIU Guohuai1(), GUO Ruiqi1, WANG Zhaodong1 |
1 State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819, China 2 School of Metallurgical Engineering, Anhui University of Technology, Maanshan 243000, China |
引用本文:
王秀琦, 李天瑞, 刘国怀, 郭瑞琪, 王昭东. 交叉包套轧制Ti-44Al-5Nb-1Mo-2V-0.2B合金的微观组织演化及力学性能[J]. 金属学报, 2024, 60(1): 95-106.
Xiuqi WANG,
Tianrui LI,
Guohuai LIU,
Ruiqi GUO,
Zhaodong WANG.
Microstructure Evolution and Mechanical Properties of Ti-44Al-5Nb-1Mo-2V-0.2B Alloys in the Cross Hot-Pack Rolling Process[J]. Acta Metall Sin, 2024, 60(1): 95-106.
1 |
Yang R. Advances and challenges of TiAl base alloys [J]. Acta Metall. Sin., 2015, 51: 129
doi: 10.11900/0412.1961.2014.00396
|
1 |
杨 锐. 钛铝金属间化合物的进展与挑战 [J]. 金属学报, 2015, 51: 129
|
2 |
Kim Y W, Kim S L. Advances in gammalloy materials-processes-application technology: Successes, dilemmas, and future [J]. JOM, 2018, 70: 553
doi: 10.1007/s11837-018-2747-x
|
3 |
Wu X H. Review of alloy and process development of TiAl alloys [J]. Intermetallics, 2006, 14: 1114
doi: 10.1016/j.intermet.2005.10.019
|
4 |
Dimiduk D M. Gamma titanium aluminide alloys—An assessment within the competition of aerospace structural materials [J]. Mater. Sci. Eng., 1999, A263: 281
|
5 |
Habel U, Heutling F, Kunze C, et al. Forged intermetallic γ-TiAl based alloy low pressure turbine blade in the geared turbofan [A]. Proceedings of the 13th World Conference on Titanium [C]. Hoboken: Wliey, 2016: 1223
|
6 |
Liu G H, Wang Z D, Fu T L, et al. Study on the microstructure, phase transition and hardness for the TiAl-Nb alloy design during directional solidification [J]. J. Alloys Compd., 2015, 650: 45
doi: 10.1016/j.jallcom.2015.07.259
|
7 |
Appel F, Clemens H, Fischer F D. Modeling concepts for intermetallic titanium aluminides [J]. Prog. Mater. Sci., 2016, 81: 55
doi: 10.1016/j.pmatsci.2016.01.001
|
8 |
Jin Y G, Wang J N, Yang J, et al. Microstructure refinement of cast TiAl alloys by β solidification [J]. Scr. Mater., 2004, 51: 113
doi: 10.1016/j.scriptamat.2004.03.044
|
9 |
Li T R, Liu G H, Xu M, et al. Microstructures and high temperature tensile properties of Ti-43Al-4Nb-1.5Mo alloy in the canned forging and heat treatment process [J]. Acta Metall. Sin., 2017, 53: 1055
|
9 |
李天瑞, 刘国怀, 徐 莽 等. Ti-43Al-4Nb-1.5Mo合金包套锻造与热处理过程的微观组织及高温拉伸性能 [J]. 金属学报, 2017, 53: 1055
|
10 |
Niu H Z, Kong F T, Xiao S L, et al. Effect of pack rolling on microstructures and tensile properties of as-forged Ti-44Al-6V-3Nb-0.3Y alloy [J]. Intermetallics, 2012, 21: 97
doi: 10.1016/j.intermet.2011.10.003
|
11 |
Clemens H, Chladil H F, Wallgram W, et al. In and ex situ investigations of the β-phase in a Nb and Mo containing γ-TiAl based alloy [J]. Intermetallics, 2008, 16: 827
doi: 10.1016/j.intermet.2008.03.008
|
12 |
Clemens H, Wallgram W, Kremmer S, et al. Design of novel β-solidifying TiAl alloys with adjustable β/B2-phase fraction and excellent hot-workability [J]. Adv. Eng. Mater., 2008, 10: 707
doi: 10.1002/adem.v10:8
|
13 |
Tetsui T, Shindo K, Kobayashi S, et al. Strengthening a high-strength TiAl alloy by hot-forging [J]. Intermetallics, 2003, 11: 299
doi: 10.1016/S0966-9795(02)00245-5
|
14 |
Li T R, Liu G H, Xu M, et al. High temperature deformation and control of homogeneous microstructure during hot pack rolling of Ti-44Al-5Nb-(Mo, V, B) alloys: The impact on mechanical properties [J]. Mater. Sci. Eng., 2019, A751: 1
|
15 |
Zhang W J, Lorenz U, Appel F. Recovery, recrystallization and phase transformations during thermomechanical processing and treatment of TiAl-based alloys [J]. Acta Mater., 2000, 48: 2803
doi: 10.1016/S1359-6454(00)00093-8
|
16 |
Niu H Z, Kong F T, Chen Y Y, et al. Low-temperature superplasticity of forged Ti-43Al-4Nb-2Mo-0.5B alloy [J]. J. Alloys Compd., 2012, 543: 19
doi: 10.1016/j.jallcom.2012.07.127
|
17 |
Imayev V M, Salishchev G A, Shagiev M R, et al. Low-temperature superplasticity of submicrocrystalline Ti-48Al-2Nb-2Cr alloy produced by multiple forging [J]. Scr. Mater., 1998, 40: 183
doi: 10.1016/S1359-6462(98)00419-9
|
18 |
Janschek P. Wrought TiAl blades [J]. Mater. Today: Proc., 2015, 2(): S92
|
19 |
Paul J D H, Lorenz U, Oehring M, et al. Up-scaling the size of TiAl components made via ingot metallurgy [J]. Intermetallics, 2013, 32: 318
doi: 10.1016/j.intermet.2012.08.006
|
20 |
Tang B, Cheng L, Kou H C, et al. Hot forging design and microstructure evolution of a high Nb containing TiAl alloy [J]. Intermetallics, 2015, 58: 7
doi: 10.1016/j.intermet.2014.11.002
|
21 |
Zeng S W, Zhao A M, Luo L, et al. Development of β-solidifying γ-TiAl alloys sheet [J]. Mater. Lett., 2017, 198: 31
doi: 10.1016/j.matlet.2017.03.173
|
22 |
Davim J P. Modern Manufacturing Engineering [M]. Cham: Springer, 2015: 41
|
23 |
Zhi C C, Ma L F, Huang Q X, et al. Effect of cross rolling on the edge microstructure and formability of AZ31B magnesium alloy [J]. Rare Met. Mater. Eng., 2018, 47: 1555
|
23 |
支晨琛, 马立峰, 黄庆学 等. 交叉轧制对AZ31B镁合金边部组织及成形性的影响 [J]. 稀有金属材料与工程, 2018, 47: 1555
|
24 |
Kim D G, Lee K M, Lee J S, et al. Evolution of microstructures and textures in magnesium AZ31 alloys deformed by normal and cross-roll rolling [J]. Mater. Lett., 2012, 75: 122
doi: 10.1016/j.matlet.2012.01.141
|
25 |
Chino Y, Sassa K, Kamiya A, et al. Enhanced formability at elevated temperature of a cross-rolled magnesium alloy sheet [J]. Mater. Sci. Eng., 2006, A441: 349
|
26 |
Fan C H, Zheng D S, Chen X H, et al. Effect of large strain cross rolling on microstructure and properties of Al-Li alloy plates with high magnesium content [J]. Trans. Nonferrous Met. Soc. China, 2019, 29: 263
doi: 10.1016/S1003-6326(19)64935-6
|
27 |
Liu D K, Huang G S, Gong G L, et al. Influence of different rolling routes on mechanical anisotropy and formability of commercially pure titanium sheet [J]. Trans. Nonferrous Met. Soc. China, 2017, 27: 1306
doi: 10.1016/S1003-6326(17)60151-1
|
28 |
Chen W, Wang H D, Lin Y C, et al. The dynamic responses of lamellar and equiaxed near β-Ti alloys subjected to multi-pass cross rolling [J]. J. Mater. Sci. Technol., 2020, 43: 220
doi: 10.1016/j.jmst.2019.10.017
|
29 |
Chen W, Lv Y P, Wang H D, et al. On the {10 1 ¯ 1} twin-accommodated mechanisms in equiaxed near β-Ti alloys operating by unidirectional and cross rolling [J]. Mater. Sci. Eng., 2020, A769: 138516
|
30 |
Wang D Z, Ji Y X, Wu Z Z. Effects of cross rolling on texture, mechanical properties and anisotropy of pure Mo plates [J]. Trans. Nonferrous Met. Soc. China, 2020, 30: 2170
doi: 10.1016/S1003-6326(20)65369-9
|
31 |
Zhu J L, Liu S F, Cao Y, et al. Effect of cross rolling cycle on the deformed and recrystallized gradient in high-purity tantalum plate [J]. Acta Metall. Sin., 2019, 55: 1019
|
31 |
祝佳林, 刘施峰, 曹 宇 等. 交叉轧制周期对高纯Ta板变形及再结晶梯度的影响 [J]. 金属学报, 2019, 55: 1019
doi: 10.11900/0412.1961.2018.00470
|
32 |
Fan H Y, Liu S F, Li L J, et al. Largely alleviating the orientation dependence by sequentially changing strain paths [J]. Mater. Des., 2016, 97: 464
doi: 10.1016/j.matdes.2016.02.084
|
33 |
Liu S F, Fan H Y, Deng C, et al. Through-thickness texture in clock-rolled tantalum plate [J]. Int. J. Refract. Met. Hard Mater., 2015, 48: 194
doi: 10.1016/j.ijrmhm.2014.08.019
|
34 |
Cerreta E, Mahajan S. Formation of deformation twins in TiAl [J]. Acta Mater., 2001, 49: 3803
doi: 10.1016/S1359-6454(01)00264-6
|
35 |
Hu D, Jiang H. Martensite in a TiAl alloy quenched from beta phase field [J]. Intermetallics, 2015, 56: 87
doi: 10.1016/j.intermet.2014.09.007
|
36 |
Wan Z P, Sun Y, Hu L X, et al. Experimental study and numerical simulation of dynamic recrystallization behavior of TiAl-based alloy [J]. Mater. Des., 2017, 122: 11
doi: 10.1016/j.matdes.2017.02.088
|
37 |
Niu H Z, Tong R L, Chen X J, et al. Rapid decomposition of lamellar microstructure and enhanced hot workability of an as-cast triphase Ti-45Al-6Nb-1Mo alloy via one-step alpha-extrusion & annealing [J]. Mater. Sci. Eng., 2021, A801: 140438
|
38 |
Li T R, Liu G H, Xu M, et al. Effects of hot-pack rolling process on microstructure, high-temperature tensile properties, and deformation mechanisms in hot-pack rolled thin Ti-44Al-5Nb-(Mo, V, B) sheets [J]. Mater. Sci. Eng., 2019, A764: 138197
|
39 |
Liu X F, Liu D, Liu R C, et al. Microstructure and tensile properties of Ti-43.5Al-4Nb-1Mo-0.1B alloy processed by hot canned extrusion [J]. Acta Metall. Sin., 2020, 56: 979
doi: 10.11900/0412.1961.2019.00388
|
39 |
刘先锋, 刘 冬, 刘仁慈 等. Ti-43.5Al-4Nb-1Mo-0.1B合金的包套热挤压组织与拉伸性能 [J]. 金属学报, 2020, 56: 979
doi: 10.11900/0412.1961.2019.00388
|
40 |
Han J C, Dong J, Zhang S Z, et al. Microstructure evolution and tensile properties of conventional cast TiAl-based alloy with trace Ni addition [J]. Mater. Sci. Eng., 2018, A715: 41
|
41 |
Liang X P, Liu Y, Li H Z, et al. An investigation on microstructural and mechanical properties of powder metallurgical TiAl alloy during hot pack-rolling [J]. Mater. Sci. Eng., 2014, A619: 265
|
42 |
Zhou H T, Kong F T, Wu K, et al. Hot pack rolling nearly lamellar Ti-44Al-8Nb-(W, B, Y) alloy with different rolling reductions: Lamellar colonies evolution and tensile properties [J]. Mater. Des., 2017, 121: 202
doi: 10.1016/j.matdes.2017.02.053
|
43 |
Huang Z W, Lin J P, Zhao Z X, et al. Fatigue response of a grain refined TiAl alloy Ti-44Al-5Nb-1W-1B with varied surface quality and thermal exposure history [J]. Intermetallics, 2017, 85: 1
doi: 10.1016/j.intermet.2017.01.010
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|