|
|
纳米结构多主元合金的力学行为及强塑化机制 |
刘畅1, 吴戈2( ), 吕坚3,4( ) |
1 西安交通大学 金属材料强度国家重点实验室 材料创新设计中心 西安 710049 2 西安交通大学 金属材料强度国家重点实验室 微纳尺度材料行为研究中心 西安 710049 3 香港城市大学 机械工程系 香港 999077 4 香港城市大学 深圳研究院 深圳 518057 |
|
Nanostructural Multi-Principal-Element Alloys: Mechanical Properties and Toughening Mechanisms |
LIU Chang1, WU Ge2( ), LU Jian3,4( ) |
1 Center for Alloy Innovation and Design (CAID), State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China 2 Center for Advancing Materials Performance from the Nanoscale (CAMP-Nano), State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China 3 Department of Mechanical Engineering, City University of Hong Kong, Hong Kong 999077, China 4 Shenzhen Research Institute, City University of Hong Kong, Shenzhen 518057, China |
引用本文:
刘畅, 吴戈, 吕坚. 纳米结构多主元合金的力学行为及强塑化机制[J]. 金属学报, 2024, 60(1): 16-29.
Chang LIU,
Ge WU,
Jian LU.
Nanostructural Multi-Principal-Element Alloys: Mechanical Properties and Toughening Mechanisms[J]. Acta Metall Sin, 2024, 60(1): 16-29.
1 |
Campbell F C. Elements of Metallurgy and Engineering Alloys [M]. Materials Park: ASM International, 2008: 41
|
2 |
Cantor B, Chang I T H, Knight P, et al. Microstructural development in equiatomic multicomponent alloys [J]. Mater. Sci. Eng., 2004, A375-377: 213
|
3 |
Yeh J W, Chen S K, Lin S J, et al. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes [J]. Adv. Eng. Mater., 2004, 6: 299
doi: 10.1002/adem.v6:5
|
4 |
Ye Y F, Wang Q, Lu J, et al. High-entropy alloy: Challenges and prospects [J]. Mater. Today, 2016, 19: 349
doi: 10.1016/j.mattod.2015.11.026
|
5 |
Guo S, Hu Q, Ng C, et al. More than entropy in high-entropy alloys: Forming solid solutions or amorphous phase [J]. Intermetallics, 2013, 41: 96
doi: 10.1016/j.intermet.2013.05.002
|
6 |
Lu C Y, Niu L L, Chen N J, et al. Enhancing radiation tolerance by controlling defect mobility and migration pathways in multicomponent single-phase alloys [J]. Nat. Commun., 2016, 7: 13564
doi: 10.1038/ncomms13564
pmid: 27976669
|
7 |
Senkov O N, Gorsse S, Miracle D B. High temperature strength of refractory complex concentrated alloys [J]. Acta Mater., 2019, 175: 394
doi: 10.1016/j.actamat.2019.06.032
|
8 |
Chen X F, Wang Q, Cheng Z Y, et al. Direct observation of chemical short-range order in a medium-entropy alloy [J]. Nature, 2021, 592: 712
doi: 10.1038/s41586-021-03428-z
|
9 |
Zhang R P, Zhao S T, Ding J, et al. Short-range order and its impact on the CrCoNi medium-entropy alloy [J]. Nature, 2020, 581: 283
doi: 10.1038/s41586-020-2275-z
|
10 |
Gerard A Y, Han J, McDonnell S J, et al. Aqueous passivation of multi-principal element alloy Ni38Fe20Cr22Mn10Co10: Unexpected high Cr enrichment within the passive film [J]. Acta Mater., 2020, 198: 121
doi: 10.1016/j.actamat.2020.07.024
|
11 |
Sohn S S, da Silva A K, Ikeda Y, et al. Ultrastrong medium-entropy single-phase alloys designed via severe lattice distortion [J]. Adv. Mater., 2019, 31: 1807142
doi: 10.1002/adma.v31.8
|
12 |
Lee C, Chou Y, Kim G, et al. Lattice-distortion-enhanced yield strength in a refractory high-entropy alloy [J]. Adv. Mater., 2020, 32: 2004029
doi: 10.1002/adma.v32.49
|
13 |
Ding Q Q, Zhang Y, Chen X, et al. Tuning element distribution, structure and properties by composition in high-entropy alloys [J]. Nature, 2019, 574: 223
doi: 10.1038/s41586-019-1617-1
|
14 |
Bu Y Q, Wu Y, Lei Z F, et al. Local chemical fluctuation mediated ductility in body-centered-cubic high-entropy alloys [J]. Mater. Today, 2021, 46: 28
doi: 10.1016/j.mattod.2021.02.022
|
15 |
Senkov O N, Wilks G B, Scott J M, et al. Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys [J]. Intermetallics, 2011, 19: 698
doi: 10.1016/j.intermet.2011.01.004
|
16 |
Wang F L, Balbus G H, Xu S Z, et al. Multiplicity of dislocation pathways in a refractory multiprincipal element alloy [J]. Science, 2020, 370: 95
doi: 10.1126/science.aba3722
pmid: 33004516
|
17 |
Yang T, Zhao Y L, Tong Y, et al. Multicomponent intermetallic nanoparticles and superb mechanical behaviors of complex alloys [J]. Science, 2018, 362: 933
doi: 10.1126/science.aas8815
pmid: 30467166
|
18 |
Liang Y J, Wang L J, Wen Y R, et al. High-content ductile coherent nanoprecipitates achieve ultrastrong high-entropy alloys [J]. Nat. Commun., 2018, 9: 4063
doi: 10.1038/s41467-018-06600-8
|
19 |
Li Z M, Pradeep K G, Deng Y, et al. Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off [J]. Nature, 2016, 534: 227
doi: 10.1038/nature17981
|
20 |
Huang H L, Wu Y, He J Y, et al. Phase-transformation ductilization of brittle high-entropy alloys via metastability engineering [J]. Adv. Mater., 2017, 29: 1701678
doi: 10.1002/adma.v29.30
|
21 |
Lu Y P, Dong Y, Guo S, et al. A promising new class of high-temperature alloys: Eutectic high-entropy alloys [J]. Sci. Rep., 2014, 4: 6200
doi: 10.1038/srep06200
pmid: 25160691
|
22 |
Shi P J, Li R G, Li Y, et al. Hierarchical crack buffering triples ductility in eutectic herringbone high-entropy alloys [J]. Science, 2021, 373: 912
doi: 10.1126/science.abf6986
pmid: 34413235
|
23 |
Ma E, Zhu T. Towards strength-ductility synergy through the design of heterogeneous nanostructures in metals [J]. Mater. Today, 2017, 20: 323
doi: 10.1016/j.mattod.2017.02.003
|
24 |
Zhu K Y, Vassel A, Brisset F, et al. Nanostructure formation mechanism of α-titanium using SMAT [J]. Acta Mater., 2004, 52: 4101
doi: 10.1016/j.actamat.2004.05.023
|
25 |
Shahmir H, Mousavi T, He J Y, et al. Microstructure and properties of a CoCrFeNiMn high-entropy alloy processed by equal-channel angular pressing [J]. Mater. Sci. Eng., 2017, A705: 411
|
26 |
Picak S, Yilmaz H C, Karaman I. Simultaneous deformation twinning and martensitic transformation in CoCrFeMnNi high entropy alloy at high temperatures [J]. Scr. Mater., 2021, 202: 113995
doi: 10.1016/j.scriptamat.2021.113995
|
27 |
Pan Q S, Zhang L X, Feng R, et al. Gradient cell-structured high-entropy alloy with exceptional strength and ductility [J]. Science, 2021, 374: 984
doi: 10.1126/science.abj8114
|
28 |
Čížek J, Haušild P, Cieslar M, et al. Strength enhancement of high entropy alloy HfNbTaTiZr by severe plastic deformation [J]. J. Alloys Compd., 2018, 768: 924
doi: 10.1016/j.jallcom.2018.07.319
|
29 |
Schuh B, Mendez-Martin F, Völker B, et al. Mechanical properties, microstructure and thermal stability of a nanocrystalline CoCrFeMnNi high-entropy alloy after severe plastic deformation [J]. Acta Mater., 2015, 96: 258
doi: 10.1016/j.actamat.2015.06.025
|
30 |
Nguyen N T C, Asghari-Rad P, Sathiyamoorthi P, et al. Ultrahigh high-strain-rate superplasticity in a nanostructured high-entropy alloy [J]. Nat. Commun., 2020, 11: 2736
doi: 10.1038/s41467-020-16601-1
|
31 |
Fang T H, Li W L, Tao N R, et al. Revealing extraordinary intrinsic tensile plasticity in gradient nano-grained copper [J]. Science, 2011, 331: 1587
doi: 10.1126/science.1200177
pmid: 21330487
|
32 |
Liu C, Liu Y, Wang Q, et al. Nano-dual-phase metallic glass film enhances strength and ductility of a gradient nanograined magnesium alloy [J]. Adv. Sci., 2020, 7: 2001480
doi: 10.1002/advs.v7.19
|
33 |
Qin S, Yang M X, Jiang P, et al. Designing structures with combined gradients of grain size and precipitation in high entropy alloys for simultaneous improvement of strength and ductility [J]. Acta Mater., 2022, 230: 117847
doi: 10.1016/j.actamat.2022.117847
|
34 |
Guo W, Pei Z R, Sang X H, et al. Shape-preserving machining produces gradient nanolaminate medium entropy alloys with high strain hardening capability [J]. Acta Mater., 2019, 170: 176
doi: 10.1016/j.actamat.2019.03.024
|
35 |
Sharma A. High entropy alloy coatings and technology [J]. Coatings, 2021, 11: 372
doi: 10.3390/coatings11040372
|
36 |
Ketov S V, Shi X T, Xie G Q, et al. Nanostructured Zr-Pd metallic glass thin film for biochemical applications [J]. Sci. Rep., 2015, 5: 7799
doi: 10.1038/srep07799
pmid: 25589472
|
37 |
Li M X, Sun Y T, Wang C, et al. Data-driven discovery of a universal indicator for metallic glass forming ability [J]. Nat. Mater., 2022, 21: 165
doi: 10.1038/s41563-021-01129-6
|
38 |
Li M X, Zhao S F, Lu Z, et al. High-temperature bulk metallic glasses developed by combinatorial methods [J]. Nature, 2019, 569: 99
doi: 10.1038/s41586-019-1145-z
|
39 |
Yan X H, Zhang Y. High-entropy films and compositional gradient materials [J]. Surf. Technol., 2019, 48(6): 98
|
39 |
闫薛卉, 张 勇. 高熵薄膜和成分梯度材料 [J]. 表面技术, 2019, 48(6): 98
|
40 |
Zou Y, Ma H, Spolenak R. Ultrastrong ductile and stable high-entropy alloys at small scales [J]. Nat. Commun., 2015, 6: 7748
doi: 10.1038/ncomms8748
pmid: 26159936
|
41 |
Zou Y, Wheeler J M, Ma H, et al. Nanocrystalline high-entropy alloys: A new paradigm in high-temperature strength and stability [J]. Nano Lett., 2017, 17: 1569
doi: 10.1021/acs.nanolett.6b04716
pmid: 28125236
|
42 |
Zhang Z J, Sheng H W, Wang Z J, et al. Dislocation mechanisms and 3D twin architectures generate exceptional strength-ductility-toughness combination in CrCoNi medium-entropy alloy [J]. Nat. Commun., 2017, 8: 14390
doi: 10.1038/ncomms14390
pmid: 28218267
|
43 |
Chen Y J, Chen D K, An X H, et al. Unraveling dual phase transformations in a CrCoNi medium-entropy alloy [J]. Acta Mater., 2021, 215: 117112
doi: 10.1016/j.actamat.2021.117112
|
44 |
Salemi F, Abbasi M H, Karimzadeh F. Synthesis and thermodynamic analysis of nanostructured CuNiCoZnAl high entropy alloy produced by mechanical alloying [J]. J. Alloys Compd., 2016, 685: 278
doi: 10.1016/j.jallcom.2016.05.274
|
45 |
Vaidya M, Muralikrishna G M, Murty B S. High-entropy alloys by mechanical alloying: A review [J]. J. Mater. Res., 2019, 34: 664
doi: 10.1557/jmr.2019.37
|
46 |
Varalakshmi S, Kamaraj M, Murty B S. Synthesis and characterization of nanocrystalline AlFeTiCrZnCu high entropy solid solution by mechanical alloying [J]. J. Alloys Compd., 2008, 460: 253
doi: 10.1016/j.jallcom.2007.05.104
|
47 |
Fu Z Q, Chen W P, Xiao H Q, et al. Fabrication and properties of nanocrystalline Co0.5FeNiCrTi0.5 high entropy alloy by MA-SPS technique [J]. Mater. Des., 2013, 44: 535
doi: 10.1016/j.matdes.2012.08.048
|
48 |
Hall E O. The deformation and ageing of mild steel: III Discussion of results [J]. Proc. Phys. Soc., 1951, 64B: 747
|
49 |
Petch N J. The cleavage strength of polycrystals [J]. J. Iron Steel Inst., 1953, 174: 25
|
50 |
Liu W H, Wu Y, He J Y, et al. Grain growth and the Hall-Petch relationship in a high-entropy FeCrNiCoMn alloy [J]. Scr. Mater., 2013, 68: 526
doi: 10.1016/j.scriptamat.2012.12.002
|
51 |
Schiøtz J, Di Tolla F D, Jacobsen K W. Softening of nanocrystalline metals at very small grain sizes [J]. Nature, 1998, 391: 561
doi: 10.1038/35328
|
52 |
Hu J, Shi Y N, Sauvage X, et al. Grain boundary stability governs hardening and softening in extremely fine nanograined metals [J]. Science, 2017, 355: 1292
doi: 10.1126/science.aal5166
pmid: 28336664
|
53 |
Xin S W, Shen X, Du C C, et al. Bulk nanocrystalline boron-doped VNbMoTaW high entropy alloys with ultrahigh strength, hardness, and resistivity [J]. J. Alloys Compd., 2021, 853: 155995
doi: 10.1016/j.jallcom.2020.155995
|
54 |
Wu G, Liu C, Brognara A, et al. Symbiotic crystal-glass alloys via dynamic chemical partitioning [J]. Mater. Today, 2021, 51: 6
doi: 10.1016/j.mattod.2021.10.025
|
55 |
Zhu Y T, Wu X L. Ductility and plasticity of nanostructured metals: Differences and issues [J]. Mater. Today Nano, 2018, 2: 15
|
56 |
Li H, Zhang H X, Li S Z, et al. Uniting tensile ductility with ultrahigh strength via composition undulation [J]. Nature, 2022, 604: 273
doi: 10.1038/s41586-022-04459-w
|
57 |
Gottstein G. Physical Foundations of Materials Science [M]. Berlin: Springer, 2004: 26
|
58 |
Li Z M. Interstitial equiatomic CoCrFeMnNi high-entropy alloys: Carbon content, microstructure, and compositional homogeneity effects on deformation behavior [J]. Acta Mater., 2019, 164: 400
doi: 10.1016/j.actamat.2018.10.050
|
59 |
Lei Z F, Liu X J, Wu Y, et al. Enhanced strength and ductility in a high-entropy alloy via ordered oxygen complexes [J]. Nature, 2018, 563: 546
doi: 10.1038/s41586-018-0685-y
|
60 |
Wang Z W, Baker I, Cai Z H, et al. The effect of interstitial carbon on the mechanical properties and dislocation substructure evolution in Fe40.4Ni11.3Mn34.8Al7.5Cr6 high entropy alloys [J]. Acta Mater., 2016, 120: 228
doi: 10.1016/j.actamat.2016.08.072
|
61 |
Liu C, Liu W J, Xia W Z, et al. Massive interstitial solid solution alloys achieve near-theoretical strength [J]. Nat. Commun., 2022, 13: 1102
doi: 10.1038/s41467-022-28706-w
pmid: 35232964
|
62 |
Schuh B, Völker B, Todt J, et al. Thermodynamic instability of a nanocrystalline, single-phase TiZrNbHfTa alloy and its impact on the mechanical properties [J]. Acta Mater., 2018, 142: 201
doi: 10.1016/j.actamat.2017.09.035
|
63 |
Wang Z W, Lu W J, An F C, et al. High stress twinning in a compositionally complex steel of very high stacking fault energy [J]. Nat. Commun., 2022, 13: 3598
doi: 10.1038/s41467-022-31315-2
pmid: 35739123
|
64 |
Kou H N, Lu J, Li Y. High-strength and high-ductility nanostructured and amorphous metallic materials [J]. Adv. Mater., 2014, 26: 5518
doi: 10.1002/adma.v26.31
|
65 |
Liu X W, Sun L G, Zhu L L, et al. High-order hierarchical nanotwins with superior strength and ductility [J]. Acta Mater., 2018, 149: 397
doi: 10.1016/j.actamat.2018.01.047
|
66 |
Wu G, Balachandran S, Gault B, et al. Crystal-glass high-entropy nanocomposites with near theoretical compressive strength and large deformability [J]. Adv. Mater., 2020, 32: 2002619
doi: 10.1002/adma.v32.34
|
67 |
Sun L G, Wu G, Wang Q, et al. Nanostructural metallic materials: Structures and mechanical properties [J]. Mater. Today, 2020, 38: 114
doi: 10.1016/j.mattod.2020.04.005
|
68 |
Tian L, Cheng Y Q, Shan Z W, et al. Approaching the ideal elastic limit of metallic glasses [J]. Nat. Commun., 2012, 3: 609
doi: 10.1038/ncomms1619
pmid: 22215084
|
69 |
Guo H, Yan P F, Wang Y B, et al. Tensile ductility and necking of metallic glass [J]. Nat. Mater., 2007, 6: 735
pmid: 17704779
|
70 |
Jang D, Greer J R. Transition from a strong-yet-brittle to a stronger-and-ductile state by size reduction of metallic glasses [J]. Nat. Mater., 2010, 9: 215
doi: 10.1038/nmat2622
pmid: 20139966
|
71 |
Wu G, Chan K C, Zhu L L, et al. Dual-phase nanostructuring as a route to high-strength magnesium alloys [J]. Nature, 2017, 545: 80
doi: 10.1038/nature21691
|
72 |
Takeuchi A, Inoue A. Calculations of amorphous-forming composition range for ternary alloy systems and analyses of stabilization of amorphous phase and amorphous-forming ability [J]. Mater. Trans., 2001, 42: 1435
doi: 10.2320/matertrans.42.1435
|
73 |
Zhao S T, Li Z Z, Zhu C Y, et al. Amorphization in extreme deformation of the CrMnFeCoNi high-entropy alloy [J]. Sci. Adv., 2021, 7: eabb3108
doi: 10.1126/sciadv.abb3108
|
74 |
Wu G, Liu C, Sun L G, et al. Hierarchical nanostructured aluminum alloy with ultrahigh strength and large plasticity [J]. Nat. Commun., 2019, 10: 5099
doi: 10.1038/s41467-019-13087-4
pmid: 31704930
|
75 |
Liu C, Li Z M, Lu W J, et al. Reactive wear protection through strong and deformable oxide nanocomposite surfaces [J]. Nat. Commun., 2021, 12: 5518
doi: 10.1038/s41467-021-25778-y
pmid: 34535645
|
76 |
Chen M W, Ma E, Hemker K J, et al. Deformation twinning in nanocrystalline aluminum [J]. Science, 2003, 300: 1275
pmid: 12714676
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|