Please wait a minute...
金属学报  2024, Vol. 60 Issue (1): 16-29    DOI: 10.11900/0412.1961.2022.00366
  综述 本期目录 | 过刊浏览 |
纳米结构多主元合金的力学行为及强塑化机制
刘畅1, 吴戈2(), 吕坚3,4()
1 西安交通大学 金属材料强度国家重点实验室 材料创新设计中心 西安 710049
2 西安交通大学 金属材料强度国家重点实验室 微纳尺度材料行为研究中心 西安 710049
3 香港城市大学 机械工程系 香港 999077
4 香港城市大学 深圳研究院 深圳 518057
Nanostructural Multi-Principal-Element Alloys: Mechanical Properties and Toughening Mechanisms
LIU Chang1, WU Ge2(), LU Jian3,4()
1 Center for Alloy Innovation and Design (CAID), State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
2 Center for Advancing Materials Performance from the Nanoscale (CAMP-Nano), State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
3 Department of Mechanical Engineering, City University of Hong Kong, Hong Kong 999077, China
4 Shenzhen Research Institute, City University of Hong Kong, Shenzhen 518057, China
引用本文:

刘畅, 吴戈, 吕坚. 纳米结构多主元合金的力学行为及强塑化机制[J]. 金属学报, 2024, 60(1): 16-29.
Chang LIU, Ge WU, Jian LU. Nanostructural Multi-Principal-Element Alloys: Mechanical Properties and Toughening Mechanisms[J]. Acta Metall Sin, 2024, 60(1): 16-29.

全文: PDF(3868 KB)   HTML
摘要: 

超强高塑性合金在基础设施、航空航天、国防军工等领域中有广泛的应用需求,然而,金属的塑性通常随着强度的增加而降低,即:强度-塑性相互掣肘。本文从纳米结构多主元合金的强塑化研究存在的挑战出发,综述了剧烈塑性变形、物理气相沉积、机械合金化等纳米结构制备方法对多主元合金力学性能的影响。阐述了相关合金的跨尺度变形机制及塑性变形起源,并对未来纳米结构多主元合金的研发及机制分析进行了展望。

关键词 多主元合金纳米结构强度塑性剧烈塑性变形物理气相沉积    
Abstract

Enhancing the strength of metallic materials has long been a primary goal for material scientists due to their significant potential for various industrial applications. However, the methods employed to increase the strength of metals often result in reduced deformation ability, leading to what is commonly termed as the strength-deformability trade-off dilemma. This paper offers a review of the advancements made in nanostructured multi-principal-element alloys (MPEAs) and discusses the challenges associated with simultaneously improving strength and deformability. This review summarizes the various common methods used to fabricate nanostructured MPEAs, including severe plastic deformation, physical vapor deposition, and mechanical alloying. In addition, this paper reviews the strengthening and deformation mechanisms intrinsic to these alloys. Finally, a brief outlook on potential future research directions for nanostructured MPEAs is provided.

Key wordsmulti-principal-element alloy    nanostructure    strength    plasticity    severe plastic deformation    physical vapor deposition
收稿日期: 2022-07-28     
ZTFLH:  TG139  
基金资助:深港科技创新合作区深圳园区项目(HZQB-KCZYB-2020030)
通讯作者: 吴 戈,gewuxjtu@xjtu.edu.cn,主要从事非晶合金、高熵合金、镁基合金与铝基合金,以及晶体-非晶纳米双相合金与晶界的非晶相变研究;
吕 坚,jian.lu@cityu.edu.hk,主要从事纳米材料与先进材料的制备和力学性能,实验力学,材料表面工程和仿真模拟等研究
Corresponding author: WU Ge, professor, Tel: 13022875977, E-mail: gewuxjtu@xjtu.edu.cn;
LU Jian, professor, Tel: (+852)34429653, E-mail: jian.lu@cityu.edu.hk
作者简介: 刘 畅,女,1991年生,教授,博士
图1  常见的剧烈塑性变形方法示意图
图2  基于磁控溅射的高通量材料制备方法[38]
图3  CrFeCoNiPd合金[13]和VCoNi合金[8]的原子尺度结构成分信息
图4  高强塑性NiCo纳米晶合金[56]
图5  (TiNbZr)86O12C1N1 合金的结构、成分和力学性能[61]
图6  多主元合金中的孪生诱发塑性(TWIP)效应和相变诱发塑性(TRIP)效应[19,20,63,66,67]
图7  CoCrNi、(CoCrNi)88Fe10Si1B1和(CoCrNi)75Fe21Si2B2合金的TEM分析[66]
1 Campbell F C. Elements of Metallurgy and Engineering Alloys [M]. Materials Park: ASM International, 2008: 41
2 Cantor B, Chang I T H, Knight P, et al. Microstructural development in equiatomic multicomponent alloys [J]. Mater. Sci. Eng., 2004, A375-377: 213
3 Yeh J W, Chen S K, Lin S J, et al. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes [J]. Adv. Eng. Mater., 2004, 6: 299
doi: 10.1002/adem.v6:5
4 Ye Y F, Wang Q, Lu J, et al. High-entropy alloy: Challenges and prospects [J]. Mater. Today, 2016, 19: 349
doi: 10.1016/j.mattod.2015.11.026
5 Guo S, Hu Q, Ng C, et al. More than entropy in high-entropy alloys: Forming solid solutions or amorphous phase [J]. Intermetallics, 2013, 41: 96
doi: 10.1016/j.intermet.2013.05.002
6 Lu C Y, Niu L L, Chen N J, et al. Enhancing radiation tolerance by controlling defect mobility and migration pathways in multicomponent single-phase alloys [J]. Nat. Commun., 2016, 7: 13564
doi: 10.1038/ncomms13564 pmid: 27976669
7 Senkov O N, Gorsse S, Miracle D B. High temperature strength of refractory complex concentrated alloys [J]. Acta Mater., 2019, 175: 394
doi: 10.1016/j.actamat.2019.06.032
8 Chen X F, Wang Q, Cheng Z Y, et al. Direct observation of chemical short-range order in a medium-entropy alloy [J]. Nature, 2021, 592: 712
doi: 10.1038/s41586-021-03428-z
9 Zhang R P, Zhao S T, Ding J, et al. Short-range order and its impact on the CrCoNi medium-entropy alloy [J]. Nature, 2020, 581: 283
doi: 10.1038/s41586-020-2275-z
10 Gerard A Y, Han J, McDonnell S J, et al. Aqueous passivation of multi-principal element alloy Ni38Fe20Cr22Mn10Co10: Unexpected high Cr enrichment within the passive film [J]. Acta Mater., 2020, 198: 121
doi: 10.1016/j.actamat.2020.07.024
11 Sohn S S, da Silva A K, Ikeda Y, et al. Ultrastrong medium-entropy single-phase alloys designed via severe lattice distortion [J]. Adv. Mater., 2019, 31: 1807142
doi: 10.1002/adma.v31.8
12 Lee C, Chou Y, Kim G, et al. Lattice-distortion-enhanced yield strength in a refractory high-entropy alloy [J]. Adv. Mater., 2020, 32: 2004029
doi: 10.1002/adma.v32.49
13 Ding Q Q, Zhang Y, Chen X, et al. Tuning element distribution, structure and properties by composition in high-entropy alloys [J]. Nature, 2019, 574: 223
doi: 10.1038/s41586-019-1617-1
14 Bu Y Q, Wu Y, Lei Z F, et al. Local chemical fluctuation mediated ductility in body-centered-cubic high-entropy alloys [J]. Mater. Today, 2021, 46: 28
doi: 10.1016/j.mattod.2021.02.022
15 Senkov O N, Wilks G B, Scott J M, et al. Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys [J]. Intermetallics, 2011, 19: 698
doi: 10.1016/j.intermet.2011.01.004
16 Wang F L, Balbus G H, Xu S Z, et al. Multiplicity of dislocation pathways in a refractory multiprincipal element alloy [J]. Science, 2020, 370: 95
doi: 10.1126/science.aba3722 pmid: 33004516
17 Yang T, Zhao Y L, Tong Y, et al. Multicomponent intermetallic nanoparticles and superb mechanical behaviors of complex alloys [J]. Science, 2018, 362: 933
doi: 10.1126/science.aas8815 pmid: 30467166
18 Liang Y J, Wang L J, Wen Y R, et al. High-content ductile coherent nanoprecipitates achieve ultrastrong high-entropy alloys [J]. Nat. Commun., 2018, 9: 4063
doi: 10.1038/s41467-018-06600-8
19 Li Z M, Pradeep K G, Deng Y, et al. Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off [J]. Nature, 2016, 534: 227
doi: 10.1038/nature17981
20 Huang H L, Wu Y, He J Y, et al. Phase-transformation ductilization of brittle high-entropy alloys via metastability engineering [J]. Adv. Mater., 2017, 29: 1701678
doi: 10.1002/adma.v29.30
21 Lu Y P, Dong Y, Guo S, et al. A promising new class of high-temperature alloys: Eutectic high-entropy alloys [J]. Sci. Rep., 2014, 4: 6200
doi: 10.1038/srep06200 pmid: 25160691
22 Shi P J, Li R G, Li Y, et al. Hierarchical crack buffering triples ductility in eutectic herringbone high-entropy alloys [J]. Science, 2021, 373: 912
doi: 10.1126/science.abf6986 pmid: 34413235
23 Ma E, Zhu T. Towards strength-ductility synergy through the design of heterogeneous nanostructures in metals [J]. Mater. Today, 2017, 20: 323
doi: 10.1016/j.mattod.2017.02.003
24 Zhu K Y, Vassel A, Brisset F, et al. Nanostructure formation mechanism of α-titanium using SMAT [J]. Acta Mater., 2004, 52: 4101
doi: 10.1016/j.actamat.2004.05.023
25 Shahmir H, Mousavi T, He J Y, et al. Microstructure and properties of a CoCrFeNiMn high-entropy alloy processed by equal-channel angular pressing [J]. Mater. Sci. Eng., 2017, A705: 411
26 Picak S, Yilmaz H C, Karaman I. Simultaneous deformation twinning and martensitic transformation in CoCrFeMnNi high entropy alloy at high temperatures [J]. Scr. Mater., 2021, 202: 113995
doi: 10.1016/j.scriptamat.2021.113995
27 Pan Q S, Zhang L X, Feng R, et al. Gradient cell-structured high-entropy alloy with exceptional strength and ductility [J]. Science, 2021, 374: 984
doi: 10.1126/science.abj8114
28 Čížek J, Haušild P, Cieslar M, et al. Strength enhancement of high entropy alloy HfNbTaTiZr by severe plastic deformation [J]. J. Alloys Compd., 2018, 768: 924
doi: 10.1016/j.jallcom.2018.07.319
29 Schuh B, Mendez-Martin F, Völker B, et al. Mechanical properties, microstructure and thermal stability of a nanocrystalline CoCrFeMnNi high-entropy alloy after severe plastic deformation [J]. Acta Mater., 2015, 96: 258
doi: 10.1016/j.actamat.2015.06.025
30 Nguyen N T C, Asghari-Rad P, Sathiyamoorthi P, et al. Ultrahigh high-strain-rate superplasticity in a nanostructured high-entropy alloy [J]. Nat. Commun., 2020, 11: 2736
doi: 10.1038/s41467-020-16601-1
31 Fang T H, Li W L, Tao N R, et al. Revealing extraordinary intrinsic tensile plasticity in gradient nano-grained copper [J]. Science, 2011, 331: 1587
doi: 10.1126/science.1200177 pmid: 21330487
32 Liu C, Liu Y, Wang Q, et al. Nano-dual-phase metallic glass film enhances strength and ductility of a gradient nanograined magnesium alloy [J]. Adv. Sci., 2020, 7: 2001480
doi: 10.1002/advs.v7.19
33 Qin S, Yang M X, Jiang P, et al. Designing structures with combined gradients of grain size and precipitation in high entropy alloys for simultaneous improvement of strength and ductility [J]. Acta Mater., 2022, 230: 117847
doi: 10.1016/j.actamat.2022.117847
34 Guo W, Pei Z R, Sang X H, et al. Shape-preserving machining produces gradient nanolaminate medium entropy alloys with high strain hardening capability [J]. Acta Mater., 2019, 170: 176
doi: 10.1016/j.actamat.2019.03.024
35 Sharma A. High entropy alloy coatings and technology [J]. Coatings, 2021, 11: 372
doi: 10.3390/coatings11040372
36 Ketov S V, Shi X T, Xie G Q, et al. Nanostructured Zr-Pd metallic glass thin film for biochemical applications [J]. Sci. Rep., 2015, 5: 7799
doi: 10.1038/srep07799 pmid: 25589472
37 Li M X, Sun Y T, Wang C, et al. Data-driven discovery of a universal indicator for metallic glass forming ability [J]. Nat. Mater., 2022, 21: 165
doi: 10.1038/s41563-021-01129-6
38 Li M X, Zhao S F, Lu Z, et al. High-temperature bulk metallic glasses developed by combinatorial methods [J]. Nature, 2019, 569: 99
doi: 10.1038/s41586-019-1145-z
39 Yan X H, Zhang Y. High-entropy films and compositional gradient materials [J]. Surf. Technol., 2019, 48(6): 98
39 闫薛卉, 张 勇. 高熵薄膜和成分梯度材料 [J]. 表面技术, 2019, 48(6): 98
40 Zou Y, Ma H, Spolenak R. Ultrastrong ductile and stable high-entropy alloys at small scales [J]. Nat. Commun., 2015, 6: 7748
doi: 10.1038/ncomms8748 pmid: 26159936
41 Zou Y, Wheeler J M, Ma H, et al. Nanocrystalline high-entropy alloys: A new paradigm in high-temperature strength and stability [J]. Nano Lett., 2017, 17: 1569
doi: 10.1021/acs.nanolett.6b04716 pmid: 28125236
42 Zhang Z J, Sheng H W, Wang Z J, et al. Dislocation mechanisms and 3D twin architectures generate exceptional strength-ductility-toughness combination in CrCoNi medium-entropy alloy [J]. Nat. Commun., 2017, 8: 14390
doi: 10.1038/ncomms14390 pmid: 28218267
43 Chen Y J, Chen D K, An X H, et al. Unraveling dual phase transformations in a CrCoNi medium-entropy alloy [J]. Acta Mater., 2021, 215: 117112
doi: 10.1016/j.actamat.2021.117112
44 Salemi F, Abbasi M H, Karimzadeh F. Synthesis and thermodynamic analysis of nanostructured CuNiCoZnAl high entropy alloy produced by mechanical alloying [J]. J. Alloys Compd., 2016, 685: 278
doi: 10.1016/j.jallcom.2016.05.274
45 Vaidya M, Muralikrishna G M, Murty B S. High-entropy alloys by mechanical alloying: A review [J]. J. Mater. Res., 2019, 34: 664
doi: 10.1557/jmr.2019.37
46 Varalakshmi S, Kamaraj M, Murty B S. Synthesis and characterization of nanocrystalline AlFeTiCrZnCu high entropy solid solution by mechanical alloying [J]. J. Alloys Compd., 2008, 460: 253
doi: 10.1016/j.jallcom.2007.05.104
47 Fu Z Q, Chen W P, Xiao H Q, et al. Fabrication and properties of nanocrystalline Co0.5FeNiCrTi0.5 high entropy alloy by MA-SPS technique [J]. Mater. Des., 2013, 44: 535
doi: 10.1016/j.matdes.2012.08.048
48 Hall E O. The deformation and ageing of mild steel: III Discussion of results [J]. Proc. Phys. Soc., 1951, 64B: 747
49 Petch N J. The cleavage strength of polycrystals [J]. J. Iron Steel Inst., 1953, 174: 25
50 Liu W H, Wu Y, He J Y, et al. Grain growth and the Hall-Petch relationship in a high-entropy FeCrNiCoMn alloy [J]. Scr. Mater., 2013, 68: 526
doi: 10.1016/j.scriptamat.2012.12.002
51 Schiøtz J, Di Tolla F D, Jacobsen K W. Softening of nanocrystalline metals at very small grain sizes [J]. Nature, 1998, 391: 561
doi: 10.1038/35328
52 Hu J, Shi Y N, Sauvage X, et al. Grain boundary stability governs hardening and softening in extremely fine nanograined metals [J]. Science, 2017, 355: 1292
doi: 10.1126/science.aal5166 pmid: 28336664
53 Xin S W, Shen X, Du C C, et al. Bulk nanocrystalline boron-doped VNbMoTaW high entropy alloys with ultrahigh strength, hardness, and resistivity [J]. J. Alloys Compd., 2021, 853: 155995
doi: 10.1016/j.jallcom.2020.155995
54 Wu G, Liu C, Brognara A, et al. Symbiotic crystal-glass alloys via dynamic chemical partitioning [J]. Mater. Today, 2021, 51: 6
doi: 10.1016/j.mattod.2021.10.025
55 Zhu Y T, Wu X L. Ductility and plasticity of nanostructured metals: Differences and issues [J]. Mater. Today Nano, 2018, 2: 15
56 Li H, Zhang H X, Li S Z, et al. Uniting tensile ductility with ultrahigh strength via composition undulation [J]. Nature, 2022, 604: 273
doi: 10.1038/s41586-022-04459-w
57 Gottstein G. Physical Foundations of Materials Science [M]. Berlin: Springer, 2004: 26
58 Li Z M. Interstitial equiatomic CoCrFeMnNi high-entropy alloys: Carbon content, microstructure, and compositional homogeneity effects on deformation behavior [J]. Acta Mater., 2019, 164: 400
doi: 10.1016/j.actamat.2018.10.050
59 Lei Z F, Liu X J, Wu Y, et al. Enhanced strength and ductility in a high-entropy alloy via ordered oxygen complexes [J]. Nature, 2018, 563: 546
doi: 10.1038/s41586-018-0685-y
60 Wang Z W, Baker I, Cai Z H, et al. The effect of interstitial carbon on the mechanical properties and dislocation substructure evolution in Fe40.4Ni11.3Mn34.8Al7.5Cr6 high entropy alloys [J]. Acta Mater., 2016, 120: 228
doi: 10.1016/j.actamat.2016.08.072
61 Liu C, Liu W J, Xia W Z, et al. Massive interstitial solid solution alloys achieve near-theoretical strength [J]. Nat. Commun., 2022, 13: 1102
doi: 10.1038/s41467-022-28706-w pmid: 35232964
62 Schuh B, Völker B, Todt J, et al. Thermodynamic instability of a nanocrystalline, single-phase TiZrNbHfTa alloy and its impact on the mechanical properties [J]. Acta Mater., 2018, 142: 201
doi: 10.1016/j.actamat.2017.09.035
63 Wang Z W, Lu W J, An F C, et al. High stress twinning in a compositionally complex steel of very high stacking fault energy [J]. Nat. Commun., 2022, 13: 3598
doi: 10.1038/s41467-022-31315-2 pmid: 35739123
64 Kou H N, Lu J, Li Y. High-strength and high-ductility nanostructured and amorphous metallic materials [J]. Adv. Mater., 2014, 26: 5518
doi: 10.1002/adma.v26.31
65 Liu X W, Sun L G, Zhu L L, et al. High-order hierarchical nanotwins with superior strength and ductility [J]. Acta Mater., 2018, 149: 397
doi: 10.1016/j.actamat.2018.01.047
66 Wu G, Balachandran S, Gault B, et al. Crystal-glass high-entropy nanocomposites with near theoretical compressive strength and large deformability [J]. Adv. Mater., 2020, 32: 2002619
doi: 10.1002/adma.v32.34
67 Sun L G, Wu G, Wang Q, et al. Nanostructural metallic materials: Structures and mechanical properties [J]. Mater. Today, 2020, 38: 114
doi: 10.1016/j.mattod.2020.04.005
68 Tian L, Cheng Y Q, Shan Z W, et al. Approaching the ideal elastic limit of metallic glasses [J]. Nat. Commun., 2012, 3: 609
doi: 10.1038/ncomms1619 pmid: 22215084
69 Guo H, Yan P F, Wang Y B, et al. Tensile ductility and necking of metallic glass [J]. Nat. Mater., 2007, 6: 735
pmid: 17704779
70 Jang D, Greer J R. Transition from a strong-yet-brittle to a stronger-and-ductile state by size reduction of metallic glasses [J]. Nat. Mater., 2010, 9: 215
doi: 10.1038/nmat2622 pmid: 20139966
71 Wu G, Chan K C, Zhu L L, et al. Dual-phase nanostructuring as a route to high-strength magnesium alloys [J]. Nature, 2017, 545: 80
doi: 10.1038/nature21691
72 Takeuchi A, Inoue A. Calculations of amorphous-forming composition range for ternary alloy systems and analyses of stabilization of amorphous phase and amorphous-forming ability [J]. Mater. Trans., 2001, 42: 1435
doi: 10.2320/matertrans.42.1435
73 Zhao S T, Li Z Z, Zhu C Y, et al. Amorphization in extreme deformation of the CrMnFeCoNi high-entropy alloy [J]. Sci. Adv., 2021, 7: eabb3108
doi: 10.1126/sciadv.abb3108
74 Wu G, Liu C, Sun L G, et al. Hierarchical nanostructured aluminum alloy with ultrahigh strength and large plasticity [J]. Nat. Commun., 2019, 10: 5099
doi: 10.1038/s41467-019-13087-4 pmid: 31704930
75 Liu C, Li Z M, Lu W J, et al. Reactive wear protection through strong and deformable oxide nanocomposite surfaces [J]. Nat. Commun., 2021, 12: 5518
doi: 10.1038/s41467-021-25778-y pmid: 34535645
76 Chen M W, Ma E, Hemker K J, et al. Deformation twinning in nanocrystalline aluminum [J]. Science, 2003, 300: 1275
pmid: 12714676
[1] 程磊, 张旭航, 韩盈, 程志诚, 余伟. 中间层材料FeNb对高强钛-钢复合管界面及剪切强度的影响[J]. 金属学报, 2024, 60(1): 117-128.
[2] 徐永生, 张卫刚, 徐凌超, 但文蛟. 铁素体晶间变形协调与硬化行为模拟研究[J]. 金属学报, 2023, 59(8): 1042-1050.
[3] 张海峰, 闫海乐, 方烽, 贾楠. FeMnCoCrNi高熵合金双晶微柱变形机制的分子动力学模拟[J]. 金属学报, 2023, 59(8): 1051-1064.
[4] 张禄, 余志伟, 张磊成, 江荣, 宋迎东. GH4169高温合金热机械疲劳循环损伤机理及数值模拟[J]. 金属学报, 2023, 59(7): 871-883.
[5] 梁凯, 姚志浩, 谢锡善, 姚凯俊, 董建新. 新型耐热合金SP2215组织与性能的关联性[J]. 金属学报, 2023, 59(6): 797-811.
[6] 万涛, 程钊, 卢磊. 组元占比对层状纳米孪晶Cu力学行为的影响[J]. 金属学报, 2023, 59(4): 567-576.
[7] 张哲峰, 李克强, 蔡拓, 李鹏, 张振军, 刘睿, 杨金波, 张鹏. 层错能对面心立方金属形变机制与力学性能的影响[J]. 金属学报, 2023, 59(4): 467-477.
[8] 张开元, 董文超, 赵栋, 李世键, 陆善平. 固态相变对Fe-Co-Ni超高强度钢长臂梁构件焊接-淬火过程应力和变形的影响[J]. 金属学报, 2023, 59(12): 1633-1643.
[9] 郑士建, 闫哲, 孔祥飞, 张瑞丰. 纳米金属层状材料强塑性的界面调控[J]. 金属学报, 2022, 58(6): 709-725.
[10] 张新房, 向思奇, 易坤, 郭敬东. 脉冲电流调控金属固体中的残余应力[J]. 金属学报, 2022, 58(5): 581-598.
[11] 高钰璧, 丁雨田, 李海峰, 董洪标, 张瑞尧, 李军, 罗全顺. 变形速率对GH3625合金弹-塑性变形行为的影响[J]. 金属学报, 2022, 58(5): 695-708.
[12] 李民, 李昊泽, 王继杰, 马颖澈, 刘奎. 稀土Ce对薄带连铸无取向6.5%Si钢组织、高温拉伸性能和断裂模式的影响[J]. 金属学报, 2022, 58(5): 637-648.
[13] 郭祥如, 申俊杰. 孪生诱发软化与强化效应的Cu晶体塑性行为模拟[J]. 金属学报, 2022, 58(3): 375-384.
[14] 王韬, 龙弟均, 余黎明, 刘永长, 李会军, 王祖敏. 超高压烧结制备14Cr-ODS钢及微观组织与力学性能[J]. 金属学报, 2022, 58(2): 184-192.
[15] 任少飞, 张健杨, 张新房, 孙明月, 徐斌, 崔传勇. 新型Ni-Co基高温合金塑性变形连接中界面组织演化及愈合机制[J]. 金属学报, 2022, 58(2): 129-140.