|
|
拉伸-扭转复合加载对镍基高温合金GH4169力学性能与变形机理的影响 |
杨俊杰, 张昌盛( ), 李洪佳, 谢雷, 王虹, 孙光爱 |
中国工程物理研究院核物理与化学研究所 中子物理学重点实验室 绵阳 621999 |
|
Effect of Tension-Torsion Coupled Loading on the Mechanical Properties and Deformation Mechanism of GH4169 Superalloys |
YANG Junjie, ZHANG Changsheng( ), LI Hongjia, XIE Lei, WANG Hong, SUN Guang'ai |
Key Laboratory for Neutron Physics, Institute of Nuclear Physics and Chemistry, Chinese Academy of Engineering Physics, Mianyang 621999, China |
引用本文:
杨俊杰, 张昌盛, 李洪佳, 谢雷, 王虹, 孙光爱. 拉伸-扭转复合加载对镍基高温合金GH4169力学性能与变形机理的影响[J]. 金属学报, 2024, 60(1): 30-42.
Junjie YANG,
Changsheng ZHANG,
Hongjia LI,
Lei XIE,
Hong WANG,
Guang'ai SUN.
Effect of Tension-Torsion Coupled Loading on the Mechanical Properties and Deformation Mechanism of GH4169 Superalloys[J]. Acta Metall Sin, 2024, 60(1): 30-42.
1 |
Cui C Y, Zhang R, Zhou Y Z, et al. Portevin-Le Châtelier effect in wrought Ni-based superalloys: Experiments and mechanisms [J]. J. Mater. Sci. Technol., 2020, 51: 16
doi: 10.1016/j.jmst.2020.03.023
|
2 |
Sun X F, Song W, Liang J J, et al. Research and development in materials and processes of superalloy fabricated by laser additive manufacturing [J]. Acta Metall. Sin., 2021, 57: 1471
doi: 10.11900/0412.1961.2021.00371
|
2 |
孙晓峰, 宋 巍, 梁静静 等. 激光增材制造高温合金材料与工艺研究进展 [J]. 金属学报, 2021, 57: 1471
doi: 10.11900/0412.1961.2021.00371
|
3 |
Wagner J N, Hofmann M, van Petegem S, et al. Comparison of intergranular strain formation of conventional and newly developed nickel based superalloys [J]. Mater. Sci. Eng., 2016, A662: 303
|
4 |
Ma S, Seetharaman V, Majumdar B S. CRSS of γ /γ ′ phases from in situ neutron diffraction of a directionally solidified superalloy tension tested at 900℃ [J]. Acta Mater., 2008, 56: 4102
doi: 10.1016/j.actamat.2008.04.057
|
5 |
Daymond M R, Preuss M, Clausen B. Evidence of variation in slip mode in a polycrystalline nickel-base superalloy with change in temperature from neutron diffraction strain measurements [J]. Acta Mater., 2007, 55: 3089
doi: 10.1016/j.actamat.2007.01.013
|
6 |
Wang X G, Han G M, Cui C Y, et al. On the γ ′ precipitates of the normal and inverse Portevin-Le Châtelier effect in a wrought Ni-base superalloy [J]. J. Mater. Sci. Technol., 2019, 35: 84
doi: 10.1016/j.jmst.2018.09.014
|
7 |
Sun J Y, Yuan H. Life assessment of multiaxial thermomechanical fatigue of a nickel-based superalloy Inconel 718 [J]. Int. J. Fatigue, 2019, 120: 228
doi: 10.1016/j.ijfatigue.2018.11.018
|
8 |
Böcker M, Babu H R, Henkel S, et al. Planar-biaxial low-cycle fatigue behavior of the nickel-base alloy Inconel 718 at elevated temperatures under selected loading conditions [J]. Fatigue Fract. Eng. Mater. Struct., 2022, 45: 1571
doi: 10.1111/ffe.v45.6
|
9 |
Ince A, Glinka G. A generalized fatigue damage parameter for multiaxial fatigue life prediction under proportional and non-proportional loadings [J]. Int. J. Fatigue, 2014, 62: 34
doi: 10.1016/j.ijfatigue.2013.10.007
|
10 |
le Graverend J B, Pettinari-Sturmel F, Cormier J, et al. Mechanical twinning in Ni-based single crystal superalloys during multiaxial creep at 1050℃ [J]. Mater. Sci. Eng., 2018, A722: 76
|
11 |
Lu X, Dunne F P E, Xu Y L. A crystal plasticity investigation of slip system interaction, GND density and stored energy in non-proportional fatigue in nickel-based superalloy [J]. Int. J. Fatigue, 2020, 139: 105782
doi: 10.1016/j.ijfatigue.2020.105782
|
12 |
Wang J J, Guo W G, Guo J, et al. The effects of stress triaxiality, temperature and strain rate on the fracture characteristics of a nickel-base superalloy [J]. J. Mater. Eng. Perform., 2016, 25: 2043
doi: 10.1007/s11665-016-2049-9
|
13 |
Aliha M R M, Kalantari M H, Ghoreishi S M N, et al. Mixed mode I/II crack growth investigation for bi-metal FSW aluminum alloy AA7075-T6/pure copper joints [J]. Theor. Appl. Fract. Mech., 2019, 103: 102243
doi: 10.1016/j.tafmec.2019.102243
|
14 |
Kale C, Rajagopalan M, Turnage S, et al. On the roles of stress-triaxiality and strain-rate on the deformation behavior of AZ31 magnesium alloys [J]. Mater. Res. Lett., 2018, 6: 152
doi: 10.1080/21663831.2017.1417923
|
15 |
Ekambaram R, Thamburaja P, Yang H, et al. The multi-axial deformation behavior of bulk metallic glasses at high homologous temperatures [J]. Int. J. Solids Struct., 2010, 47: 678
doi: 10.1016/j.ijsolstr.2009.11.008
|
16 |
Nicholson D E, Padula S A II, Benafan O, et al. Mapping of texture and phase fractions in heterogeneous stress states during multiaxial loading of biomedical superelastic NiTi [J]. Adv. Mater., 2021, 33: 2005092
doi: 10.1002/adma.v33.5
|
17 |
Yang C, Liu H M, Yang B C, et al. The effect of pre-twinning on the mechanical behavior of free-end torsion for an extruded AZ31 magnesium alloy [J]. Mater. Sci. Eng., 2018, A743: 391
|
18 |
Polatidis E, Šmíd M, Hsu W N, et al. The interplay between deformation mechanisms in austenitic 304 steel during uniaxial and equibiaxial loading [J]. Mater. Sci. Eng., 2019, A764: 138222
|
19 |
Shi Y D, Li B, Gao F, et al. An outstanding synergy of high strength and ductility in gradient structured low-carbon steel [J]. Materialia, 2019, 5: 100181
doi: 10.1016/j.mtla.2018.100181
|
20 |
Lei S, Shi Y D, Wang L N, et al. Enhancing the mechanical properties of low-carbon steel by a graded dislocation microstructure [J]. Mater. Sci. Technol., 2018, 34: 1854
doi: 10.1080/02670836.2018.1494529
|
21 |
Cheng Z L. Effect of torsion deformation on microstructure and mechanical properties of twin induced plasticity (TWIP) steel in Fe-Mn-Al-Si system [D]. Taiyuan: North University of China, 2021
|
21 |
程泽亮. 扭转变形对Fe-Mn-Al-Si系TWIP钢微观组织及力学性能的影响 [D]. 太原: 中北大学, 2021
|
22 |
Chen G, Li L T, Qiao J W, et al. Gradient hierarchical grain structures of Al0.1CoCrFeNi high-entropy alloys through dynamic torsion [J]. Mater. Lett., 2019, 238: 163
doi: 10.1016/j.matlet.2018.11.176
|
23 |
Pan Q S, Zhang L X, Feng R, et al. Gradient cell-structured high-entropy alloy with exceptional strength and ductility [J]. Science, 2021, 374: 984
doi: 10.1126/science.abj8114
|
24 |
Ding J, Zhang M H, Liang Y F, et al. Enhanced high-temperature tensile property by gradient twin structure of duplex high-Nb-containing TiAl alloy [J]. Acta Mater., 2018, 161: 1
doi: 10.1016/j.actamat.2018.09.007
|
25 |
Gravell J D, Ryu I. Latent hardening/softening behavior in tension and torsion combined loadings of single crystal FCC micropillars [J]. Acta Mater., 2020, 190: 58
doi: 10.1016/j.actamat.2020.02.030
|
26 |
Dowling M E, translated by Jiang S Y, Zhang Y Q. Mechanical Behavior of Materials—Engineering Methods for Deformation, Fracture, and Fatigue [M]. Beijing: China Machine Press, 2016: 108
|
26 |
Dowling M E著, 江树勇, 张艳秋 译. 工程材料力学行为——变形、断裂与疲劳的工程方法 [M]. 北京: 机械工业出版社, 2016: 108
|
27 |
Xie L, Chen X P, Fang L M, et al. Fenghuang: High-intensity multi-section neutron powder diffractometer at CMRR [J]. Nucl. Instrum. Meth. Phys. Res., 2019, 915A: 31
|
28 |
Toby B H, Von Dreele R B. GSAS-II: The genesis of a modern open-source all purpose crystallography software package [J]. J. Appl. Cryst., 2013, 46: 544
doi: 10.1107/S0021889813003531
|
29 |
Li J, Wang H, Sun G G, et al. Neutron diffractometer RSND for residual stress analysis at CAEP [J]. Nucl. Instrum. Methods Phys. Res., 2015, 783A: 76
|
30 |
Ungár T, Borbély A. The effect of dislocation contrast on X-ray line broadening: A new approach to line profile analysis [J]. Appl. Phys. Lett., 1996, 69: 3173
doi: 10.1063/1.117951
|
31 |
Ungár T, Dragomir I, Révész Á, et al. The contrast factors of dislocations in cubic crystals: The dislocation model of strain anisotropy in practice [J]. J. Appl. Cryst., 1999, 32: 992
doi: 10.1107/S0021889899009334
|
32 |
Zhao X B, Ling G P, Qian G D. Properties of Materials [M]. Beijing: Higher Education Press, 2006: 190
|
32 |
赵新兵, 凌国平, 钱国栋. 材料的性能 [M]. 北京: 高等教育出版社, 2006: 190
|
33 |
Zhang J D, Huang Z Y, Rui W L, et al. Effect of combined torsion and tension on the microstructure and fracture behavior of 316L austenitic stainless steel [J]. J. Mater. Eng. Perform., 2019, 28: 5691
doi: 10.1007/s11665-019-04316-4
|
34 |
Huang C W, Zhao Y Q, Xin S W, et al. Effect of microstructure on torsion properties of Ti-5Al-5Mo-5V-3Cr-1Zr alloy [J]. Mater. Sci. Eng., 2017, A682: 202
|
35 |
Wildemann V E, Lomakin E V, Tretyakov M P. Postcritical deformation of steels in plane stress state [J]. Mech. Solids, 2014, 49: 18
doi: 10.3103/S0025654414010038
|
36 |
Li Y Z, Huang M X. A method to calculate the dislocation density of a TWIP steel based on neutron diffraction and synchrotron X-ray diffraction [J]. Acta Metall. Sin., 2020, 56: 487
|
36 |
李亦庄, 黄明欣. 基于中子衍射和同步辐射X射线衍射的TWIP钢位错密度计算方法 [J]. 金属学报, 2020, 56: 487
|
37 |
Prasad K, Obana M, Ito A, et al. Synchrotron diffraction characterization of dislocation density in additively manufactured in 718 superalloy [J]. Mater. Charact., 2021, 179: 111379
doi: 10.1016/j.matchar.2021.111379
|
38 |
Zhao Y Y, Cao H B, Liu S J. The dislocation-based fatigue deformation mechanism of a RAFM steel under multi-axial loadings [J]. J. Nucl. Mater., 2022, 558: 153324
doi: 10.1016/j.jnucmat.2021.153324
|
39 |
Wang C P, Li F G, Fan J K, et al. The effect of reverse strain on microstructure and strengthening of copper fabricated by severe plastic deformation of torsion process [J]. Mater. Sci., 2018, 24: 271
doi: 10.1007/BF00660966
|
40 |
Hu G X, Cai X, Rong Y H. Fundamentals of Materials Science [M]. 3rd Ed., Shanghai: Shanghai Jiao Tong University Press, 2010: 194
|
40 |
胡赓祥, 蔡 珣, 戎咏华. 材料科学基础 [M]. 第3版. 上海: 上海交通大学出版社, 2010: 194
|
41 |
Sun S J, Tian Y Z, Zhang Z F. Strengthening and toughening mechanisms of precipitation-hardened Fe53Mn15Ni15Cr10Al4Ti2C1 high-entropy alloy [J]. Acta Metall. Sin., 2022, 58: 54
|
41 |
孙士杰, 田艳中, 张哲峰. 析出强化Fe53Mn15Ni15Cr10Al4Ti2C1高熵合金强韧化机制 [J]. 金属学报, 2022, 58: 54
doi: 10.11900/0412.1961.2021.00242
|
42 |
Fan H D, Wang Q Y, El-Awady J A, et al. Strain rate dependency of dislocation plasticity [J]. Nat. Commun., 2021, 12: 1845
doi: 10.1038/s41467-021-21939-1
pmid: 33758183
|
43 |
Birosca S, Liu G, Ding R G, et al. The dislocation behaviour and GND development in a nickel based superalloy during creep [J]. Int. J. Plast., 2019, 118: 252
doi: 10.1016/j.ijplas.2019.02.015
|
44 |
Jiang J, Britton T B, Wilkinson A J. Evolution of dislocation density distributions in copper during tensile deformation [J]. Acta Mater., 2013, 61: 7227
doi: 10.1016/j.actamat.2013.08.027
|
45 |
Yin W H, Wang W G. Relationship between dislocation structure characteristics at triple junction and grain orientation in high pure copper [J]. Mater. Charact., 2021, 178: 111265
doi: 10.1016/j.matchar.2021.111265
|
46 |
Jiang F L, Takaki S, Masumura T, et al. Nonadditive strengthening functions for cold-worked cubic metals: Experiments and constitutive modeling [J]. Int. J. Plast., 2020, 129: 102700
doi: 10.1016/j.ijplas.2020.102700
|
47 |
Malashenko V V. Dependence of dynamic yield stress of binary alloys on the dislocation density under high-energy impacts [J]. Phys. Solid State, 2020, 62: 1886
doi: 10.1134/S1063783420100200
|
48 |
Zhu C Y, Harrington T, Gray G T, et al. Dislocation-type evolution in quasi-statically compressed polycrystalline nickel [J]. Acta Mater., 2018, 155: 104
doi: 10.1016/j.actamat.2018.05.022
|
49 |
Zhang J W. High pressure torsion deformation and strengthening models of aluminum alloys [D]. Dalian: Dalian University of Technology, 2011
|
49 |
张久文. 铝合金高压扭转变形及其强化模型 [D]. 大连: 大连理工大学, 2011
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|