Please wait a minute...
金属学报  2024, Vol. 60 Issue (1): 30-42    DOI: 10.11900/0412.1961.2022.00142
  研究论文 本期目录 | 过刊浏览 |
拉伸-扭转复合加载对镍基高温合金GH4169力学性能与变形机理的影响
杨俊杰, 张昌盛(), 李洪佳, 谢雷, 王虹, 孙光爱
中国工程物理研究院核物理与化学研究所 中子物理学重点实验室 绵阳 621999
Effect of Tension-Torsion Coupled Loading on the Mechanical Properties and Deformation Mechanism of GH4169 Superalloys
YANG Junjie, ZHANG Changsheng(), LI Hongjia, XIE Lei, WANG Hong, SUN Guang'ai
Key Laboratory for Neutron Physics, Institute of Nuclear Physics and Chemistry, Chinese Academy of Engineering Physics, Mianyang 621999, China
引用本文:

杨俊杰, 张昌盛, 李洪佳, 谢雷, 王虹, 孙光爱. 拉伸-扭转复合加载对镍基高温合金GH4169力学性能与变形机理的影响[J]. 金属学报, 2024, 60(1): 30-42.
Junjie YANG, Changsheng ZHANG, Hongjia LI, Lei XIE, Hong WANG, Guang'ai SUN. Effect of Tension-Torsion Coupled Loading on the Mechanical Properties and Deformation Mechanism of GH4169 Superalloys[J]. Acta Metall Sin, 2024, 60(1): 30-42.

全文: PDF(4304 KB)   HTML
摘要: 

研究镍基高温合金在近服役条件下的力学性能与内在变形机理具有重要意义,但现有研究主要集中于单轴加载下的力学行为,多轴加载相关研究报道较少。为此,本工作对比研究了单轴和复合加载下多晶镍基高温合金GH4169的力学性能变化规律及其微观变形机制差异。在25℃下对多晶镍基高温合金GH4169进行拉伸-扭转复合加载,结合SEM、TEM、EBSD和中子衍射研究了加载方式对其力学性能、微观组织以及变形机理的影响。结果表明,拉伸样品的屈服强度和极限强度均随预扭转角度增加而增大(增幅分别约为150%和13%);在20%预拉应变下,扭转样品的屈服强度和延伸率均有所增加(增幅分别约为31%和16%)。拉伸和扭转变形后样品中的位错密度明显增大;同时复合加载下位错密度相较于单轴加载略小,表明存在位错湮灭效应。预加载产生的位错强化效应提高了屈服强度,而随后复合加载下位错湮灭效应使预拉伸扭转样品的极限强度有所降低。预扭转形成梯度结构的力学强化作用一定程度上抵消了位错湮灭效应的影响。研究表明,多轴加载方式可调控材料微观结构和变形机制,进而实现材料强度和韧性的协调提升。

关键词 多晶镍基高温合金复合加载力学性能变形机理中子衍射    
Abstract

GH4169 superalloys are used in gas turbine engines and power plants owing to their excellent mechanical properties and corrosion resistance at temperatures exceeding 600oC. Because of their service condition, involving high temperature and complex stress, much attention has been attracted to the effect of temperature and loading mode on the mechanical properties and deformation mechanism. The effect of the loading mode, especially the multiaxial or coupled loading, on the mechanism of plastic deformation is still an outstanding open question despite numerous investigations on the effect of temperature on mechanical properties. In this study, the effect of tension-torsion coupled loading on deformation behavior was investigated, where the microstructures and underlying mechanism were revealed using SEM, TEM, EBSD, and neutron diffraction. It is found that the mechanical properties are dependent on the tension-torsion loading. For the tension specimens, the yield and ultimate strengths increase with the pretorsion angle; for instance, at the pretorsion angle of 720°, the increase rate is approximately 150% and 13%, respectively. At the pretension strain of 20%, the yield strength and elongation increase by approximately 31% and 16%, respectively. The density of dislocations increases in those samples after tensile and torsional deformations compared to the undeformed samples. Moreover, the density of dislocations for specimens deformed under the coupled loading is lower than those deformed under axial loading, indicating the dislocation annihilation effect. The yield strength is enhanced due to the strengthening effect of the initial dislocations produced during the preloading. The ultimate strength for the torsional specimens after pretension decreases because of the dislocation annihilation effect during the subsequent coupled loading. However, for the tensile specimens after pretorsion, such dislocation annihilation effect can be counteracted to some extent by the strengthening effect of the formed gradient structure by pretorsion on mechanical strength. These findings provide some insight into the regulation of the microdeformation mechanism process of materials through designing the coupled or multiaxial loading modes and the coordinated improvement of strength and toughness based on the achievement of gradient or hierarchical microstructure.

Key wordspolycrystalline nickel-based superalloy    coupled loading    mechanical property    deformation mechanism    neutron diffraction
收稿日期: 2022-03-27     
ZTFLH:  TG132.32  
基金资助:国家科技重大专项项目(2019-VII-0019-0161);国家自然科学基金项目(U1930121)
通讯作者: 张昌盛,johmzhangc@caep.cn,主要从事中子散射技术与应用研究
Corresponding author: ZHANG Changsheng, associate professor, Tel: (0816)2495141, E-mail: johmzhangc@caep.cn
作者简介: 杨俊杰,男,1997年生,硕士
图1  力学性能测试样品示意图
图2  拉伸和扭转样品的等效应力-应变曲线和力学性能
图3  拉伸和扭转样品的加工硬化率曲线
图4  拉伸和扭转系列断裂样品实物图
图5  拉伸和扭转断裂样品断口形貌的SEM像
图6  多轴加载下样品断裂与样品侧表面某点受力分析示意图
图7  变形前后拉伸和扭转样品的中子衍射全谱
SpecimenLattice parameter / nmDislocation density / (1014 m-2)
Undeformed0.359770.5 ± 0.2
PRTOR-00.359725.9 ± 0.9
PRTOR-3600.359844.6 ± 0.4
PRTEN-00.3598710.8 ± 0.7
PRTEN-200.359958.2 ± 0.8
表1  变形前后拉伸和扭转样品的晶格常数和位错密度
图8  变形前后拉伸和扭转样品的不同衍射峰对应(ΔK)2与K2C数据的线性拟合结果
图9  预拉伸扭转过程中试样(200)晶面衍射峰的动态变化
图10  单轴和预扭转拉伸样品的TEM像
图11  PRTOR-360样品不同区域的晶界和取向差分布图
图12  预扭转拉伸样品的Schmid因子分布图
图13  不同预加载方式下样品微观变形机理示意图
1 Cui C Y, Zhang R, Zhou Y Z, et al. Portevin-Le Châtelier effect in wrought Ni-based superalloys: Experiments and mechanisms [J]. J. Mater. Sci. Technol., 2020, 51: 16
doi: 10.1016/j.jmst.2020.03.023
2 Sun X F, Song W, Liang J J, et al. Research and development in materials and processes of superalloy fabricated by laser additive manufacturing [J]. Acta Metall. Sin., 2021, 57: 1471
doi: 10.11900/0412.1961.2021.00371
2 孙晓峰, 宋 巍, 梁静静 等. 激光增材制造高温合金材料与工艺研究进展 [J]. 金属学报, 2021, 57: 1471
doi: 10.11900/0412.1961.2021.00371
3 Wagner J N, Hofmann M, van Petegem S, et al. Comparison of intergranular strain formation of conventional and newly developed nickel based superalloys [J]. Mater. Sci. Eng., 2016, A662: 303
4 Ma S, Seetharaman V, Majumdar B S. CRSS of γ /γ ′ phases from in situ neutron diffraction of a directionally solidified superalloy tension tested at 900℃ [J]. Acta Mater., 2008, 56: 4102
doi: 10.1016/j.actamat.2008.04.057
5 Daymond M R, Preuss M, Clausen B. Evidence of variation in slip mode in a polycrystalline nickel-base superalloy with change in temperature from neutron diffraction strain measurements [J]. Acta Mater., 2007, 55: 3089
doi: 10.1016/j.actamat.2007.01.013
6 Wang X G, Han G M, Cui C Y, et al. On the γ ′ precipitates of the normal and inverse Portevin-Le Châtelier effect in a wrought Ni-base superalloy [J]. J. Mater. Sci. Technol., 2019, 35: 84
doi: 10.1016/j.jmst.2018.09.014
7 Sun J Y, Yuan H. Life assessment of multiaxial thermomechanical fatigue of a nickel-based superalloy Inconel 718 [J]. Int. J. Fatigue, 2019, 120: 228
doi: 10.1016/j.ijfatigue.2018.11.018
8 Böcker M, Babu H R, Henkel S, et al. Planar-biaxial low-cycle fatigue behavior of the nickel-base alloy Inconel 718 at elevated temperatures under selected loading conditions [J]. Fatigue Fract. Eng. Mater. Struct., 2022, 45: 1571
doi: 10.1111/ffe.v45.6
9 Ince A, Glinka G. A generalized fatigue damage parameter for multiaxial fatigue life prediction under proportional and non-proportional loadings [J]. Int. J. Fatigue, 2014, 62: 34
doi: 10.1016/j.ijfatigue.2013.10.007
10 le Graverend J B, Pettinari-Sturmel F, Cormier J, et al. Mechanical twinning in Ni-based single crystal superalloys during multiaxial creep at 1050℃ [J]. Mater. Sci. Eng., 2018, A722: 76
11 Lu X, Dunne F P E, Xu Y L. A crystal plasticity investigation of slip system interaction, GND density and stored energy in non-proportional fatigue in nickel-based superalloy [J]. Int. J. Fatigue, 2020, 139: 105782
doi: 10.1016/j.ijfatigue.2020.105782
12 Wang J J, Guo W G, Guo J, et al. The effects of stress triaxiality, temperature and strain rate on the fracture characteristics of a nickel-base superalloy [J]. J. Mater. Eng. Perform., 2016, 25: 2043
doi: 10.1007/s11665-016-2049-9
13 Aliha M R M, Kalantari M H, Ghoreishi S M N, et al. Mixed mode I/II crack growth investigation for bi-metal FSW aluminum alloy AA7075-T6/pure copper joints [J]. Theor. Appl. Fract. Mech., 2019, 103: 102243
doi: 10.1016/j.tafmec.2019.102243
14 Kale C, Rajagopalan M, Turnage S, et al. On the roles of stress-triaxiality and strain-rate on the deformation behavior of AZ31 magnesium alloys [J]. Mater. Res. Lett., 2018, 6: 152
doi: 10.1080/21663831.2017.1417923
15 Ekambaram R, Thamburaja P, Yang H, et al. The multi-axial deformation behavior of bulk metallic glasses at high homologous temperatures [J]. Int. J. Solids Struct., 2010, 47: 678
doi: 10.1016/j.ijsolstr.2009.11.008
16 Nicholson D E, Padula S A II, Benafan O, et al. Mapping of texture and phase fractions in heterogeneous stress states during multiaxial loading of biomedical superelastic NiTi [J]. Adv. Mater., 2021, 33: 2005092
doi: 10.1002/adma.v33.5
17 Yang C, Liu H M, Yang B C, et al. The effect of pre-twinning on the mechanical behavior of free-end torsion for an extruded AZ31 magnesium alloy [J]. Mater. Sci. Eng., 2018, A743: 391
18 Polatidis E, Šmíd M, Hsu W N, et al. The interplay between deformation mechanisms in austenitic 304 steel during uniaxial and equibiaxial loading [J]. Mater. Sci. Eng., 2019, A764: 138222
19 Shi Y D, Li B, Gao F, et al. An outstanding synergy of high strength and ductility in gradient structured low-carbon steel [J]. Materialia, 2019, 5: 100181
doi: 10.1016/j.mtla.2018.100181
20 Lei S, Shi Y D, Wang L N, et al. Enhancing the mechanical properties of low-carbon steel by a graded dislocation microstructure [J]. Mater. Sci. Technol., 2018, 34: 1854
doi: 10.1080/02670836.2018.1494529
21 Cheng Z L. Effect of torsion deformation on microstructure and mechanical properties of twin induced plasticity (TWIP) steel in Fe-Mn-Al-Si system [D]. Taiyuan: North University of China, 2021
21 程泽亮. 扭转变形对Fe-Mn-Al-Si系TWIP钢微观组织及力学性能的影响 [D]. 太原: 中北大学, 2021
22 Chen G, Li L T, Qiao J W, et al. Gradient hierarchical grain structures of Al0.1CoCrFeNi high-entropy alloys through dynamic torsion [J]. Mater. Lett., 2019, 238: 163
doi: 10.1016/j.matlet.2018.11.176
23 Pan Q S, Zhang L X, Feng R, et al. Gradient cell-structured high-entropy alloy with exceptional strength and ductility [J]. Science, 2021, 374: 984
doi: 10.1126/science.abj8114
24 Ding J, Zhang M H, Liang Y F, et al. Enhanced high-temperature tensile property by gradient twin structure of duplex high-Nb-containing TiAl alloy [J]. Acta Mater., 2018, 161: 1
doi: 10.1016/j.actamat.2018.09.007
25 Gravell J D, Ryu I. Latent hardening/softening behavior in tension and torsion combined loadings of single crystal FCC micropillars [J]. Acta Mater., 2020, 190: 58
doi: 10.1016/j.actamat.2020.02.030
26 Dowling M E, translated by Jiang S Y, Zhang Y Q. Mechanical Behavior of Materials—Engineering Methods for Deformation, Fracture, and Fatigue [M]. Beijing: China Machine Press, 2016: 108
26 Dowling M E著, 江树勇, 张艳秋 译. 工程材料力学行为——变形、断裂与疲劳的工程方法 [M]. 北京: 机械工业出版社, 2016: 108
27 Xie L, Chen X P, Fang L M, et al. Fenghuang: High-intensity multi-section neutron powder diffractometer at CMRR [J]. Nucl. Instrum. Meth. Phys. Res., 2019, 915A: 31
28 Toby B H, Von Dreele R B. GSAS-II: The genesis of a modern open-source all purpose crystallography software package [J]. J. Appl. Cryst., 2013, 46: 544
doi: 10.1107/S0021889813003531
29 Li J, Wang H, Sun G G, et al. Neutron diffractometer RSND for residual stress analysis at CAEP [J]. Nucl. Instrum. Methods Phys. Res., 2015, 783A: 76
30 Ungár T, Borbély A. The effect of dislocation contrast on X-ray line broadening: A new approach to line profile analysis [J]. Appl. Phys. Lett., 1996, 69: 3173
doi: 10.1063/1.117951
31 Ungár T, Dragomir I, Révész Á, et al. The contrast factors of dislocations in cubic crystals: The dislocation model of strain anisotropy in practice [J]. J. Appl. Cryst., 1999, 32: 992
doi: 10.1107/S0021889899009334
32 Zhao X B, Ling G P, Qian G D. Properties of Materials [M]. Beijing: Higher Education Press, 2006: 190
32 赵新兵, 凌国平, 钱国栋. 材料的性能 [M]. 北京: 高等教育出版社, 2006: 190
33 Zhang J D, Huang Z Y, Rui W L, et al. Effect of combined torsion and tension on the microstructure and fracture behavior of 316L austenitic stainless steel [J]. J. Mater. Eng. Perform., 2019, 28: 5691
doi: 10.1007/s11665-019-04316-4
34 Huang C W, Zhao Y Q, Xin S W, et al. Effect of microstructure on torsion properties of Ti-5Al-5Mo-5V-3Cr-1Zr alloy [J]. Mater. Sci. Eng., 2017, A682: 202
35 Wildemann V E, Lomakin E V, Tretyakov M P. Postcritical deformation of steels in plane stress state [J]. Mech. Solids, 2014, 49: 18
doi: 10.3103/S0025654414010038
36 Li Y Z, Huang M X. A method to calculate the dislocation density of a TWIP steel based on neutron diffraction and synchrotron X-ray diffraction [J]. Acta Metall. Sin., 2020, 56: 487
36 李亦庄, 黄明欣. 基于中子衍射和同步辐射X射线衍射的TWIP钢位错密度计算方法 [J]. 金属学报, 2020, 56: 487
37 Prasad K, Obana M, Ito A, et al. Synchrotron diffraction characterization of dislocation density in additively manufactured in 718 superalloy [J]. Mater. Charact., 2021, 179: 111379
doi: 10.1016/j.matchar.2021.111379
38 Zhao Y Y, Cao H B, Liu S J. The dislocation-based fatigue deformation mechanism of a RAFM steel under multi-axial loadings [J]. J. Nucl. Mater., 2022, 558: 153324
doi: 10.1016/j.jnucmat.2021.153324
39 Wang C P, Li F G, Fan J K, et al. The effect of reverse strain on microstructure and strengthening of copper fabricated by severe plastic deformation of torsion process [J]. Mater. Sci., 2018, 24: 271
doi: 10.1007/BF00660966
40 Hu G X, Cai X, Rong Y H. Fundamentals of Materials Science [M]. 3rd Ed., Shanghai: Shanghai Jiao Tong University Press, 2010: 194
40 胡赓祥, 蔡 珣, 戎咏华. 材料科学基础 [M]. 第3版. 上海: 上海交通大学出版社, 2010: 194
41 Sun S J, Tian Y Z, Zhang Z F. Strengthening and toughening mechanisms of precipitation-hardened Fe53Mn15Ni15Cr10Al4Ti2C1 high-entropy alloy [J]. Acta Metall. Sin., 2022, 58: 54
41 孙士杰, 田艳中, 张哲峰. 析出强化Fe53Mn15Ni15Cr10Al4Ti2C1高熵合金强韧化机制 [J]. 金属学报, 2022, 58: 54
doi: 10.11900/0412.1961.2021.00242
42 Fan H D, Wang Q Y, El-Awady J A, et al. Strain rate dependency of dislocation plasticity [J]. Nat. Commun., 2021, 12: 1845
doi: 10.1038/s41467-021-21939-1 pmid: 33758183
43 Birosca S, Liu G, Ding R G, et al. The dislocation behaviour and GND development in a nickel based superalloy during creep [J]. Int. J. Plast., 2019, 118: 252
doi: 10.1016/j.ijplas.2019.02.015
44 Jiang J, Britton T B, Wilkinson A J. Evolution of dislocation density distributions in copper during tensile deformation [J]. Acta Mater., 2013, 61: 7227
doi: 10.1016/j.actamat.2013.08.027
45 Yin W H, Wang W G. Relationship between dislocation structure characteristics at triple junction and grain orientation in high pure copper [J]. Mater. Charact., 2021, 178: 111265
doi: 10.1016/j.matchar.2021.111265
46 Jiang F L, Takaki S, Masumura T, et al. Nonadditive strengthening functions for cold-worked cubic metals: Experiments and constitutive modeling [J]. Int. J. Plast., 2020, 129: 102700
doi: 10.1016/j.ijplas.2020.102700
47 Malashenko V V. Dependence of dynamic yield stress of binary alloys on the dislocation density under high-energy impacts [J]. Phys. Solid State, 2020, 62: 1886
doi: 10.1134/S1063783420100200
48 Zhu C Y, Harrington T, Gray G T, et al. Dislocation-type evolution in quasi-statically compressed polycrystalline nickel [J]. Acta Mater., 2018, 155: 104
doi: 10.1016/j.actamat.2018.05.022
49 Zhang J W. High pressure torsion deformation and strengthening models of aluminum alloys [D]. Dalian: Dalian University of Technology, 2011
49 张久文. 铝合金高压扭转变形及其强化模型 [D]. 大连: 大连理工大学, 2011
[1] 郑雄, 赖玉香, 向雪梅, 陈江华. 稀土元素LaAlMgSi合金性能和微结构的影响[J]. 金属学报, 2024, 60(1): 107-116.
[2] 王秀琦, 李天瑞, 刘国怀, 郭瑞琪, 王昭东. 交叉包套轧制Ti-44Al-5Nb-1Mo-2V-0.2B合金的微观组织演化及力学性能[J]. 金属学报, 2024, 60(1): 95-106.
[3] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[4] 郑亮, 张强, 李周, 张国庆. /降氧过程对高温合金粉末表面特性和合金性能的影响:粉末存储到脱气处理[J]. 金属学报, 2023, 59(9): 1265-1278.
[5] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[6] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[7] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[8] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[9] 李时磊, 李阳, 王友康, 王胜杰, 何伦华, 孙光爱, 肖体乔, 王沿东. 基于中子与同步辐射技术的工程材料/部件多尺度残余应力评价[J]. 金属学报, 2023, 59(8): 1001-1014.
[10] 丁桦, 张宇, 蔡明晖, 唐正友. 奥氏体基Fe-Mn-Al-C轻质钢的研究进展[J]. 金属学报, 2023, 59(8): 1027-1041.
[11] 袁江淮, 王振玉, 马冠水, 周广学, 程晓英, 汪爱英. Cr2AlC涂层相结构演变对力学性能的影响[J]. 金属学报, 2023, 59(7): 961-968.
[12] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[13] 刘俊鹏, 陈浩, 张弛, 杨志刚, 张勇, 戴兰宏. 高熵合金的低温塑性变形机制及强韧化研究进展[J]. 金属学报, 2023, 59(6): 727-743.
[14] 侯娟, 代斌斌, 闵师领, 刘慧, 蒋梦蕾, 杨帆. 尺寸设计对选区激光熔化304L不锈钢显微组织与性能的影响[J]. 金属学报, 2023, 59(5): 623-635.
[15] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.