Please wait a minute...
金属学报  2023, Vol. 59 Issue (6): 829-840    DOI: 10.11900/0412.1961.2021.00250
  研究论文 本期目录 | 过刊浏览 |
弹性拉应力下Q235碳钢在5%NaCl盐雾中的成锈行为及其机理
李谦, 刘凯, 赵天亮()
上海大学 材料科学与工程学院 省部共建高品质特殊钢冶金与制备国家重点实验室 上海 200444
Rust Formation Behavior and Mechanism of Q235 Carbon Steel in 5%NaCl Salt Spray Under Elastic Tensile Stress
LI Qian, LIU Kai, ZHAO Tianliang()
State Key Laboratory of Advanced Special Steel, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China
引用本文:

李谦, 刘凯, 赵天亮. 弹性拉应力下Q235碳钢在5%NaCl盐雾中的成锈行为及其机理[J]. 金属学报, 2023, 59(6): 829-840.
Qian LI, Kai LIU, Tianliang ZHAO. Rust Formation Behavior and Mechanism of Q235 Carbon Steel in 5%NaCl Salt Spray Under Elastic Tensile Stress[J]. Acta Metall Sin, 2023, 59(6): 829-840.

全文: PDF(3122 KB)   HTML
摘要: 

结合中性盐雾实验和四点弯曲法研究Q235碳钢在弹性拉应力作用下的预腐蚀成锈行为,采用SEM、XRD和电化学阻抗谱等手段研究了锈层的成分、结构以及电化学特性。结果表明,弹性拉应力通过加速阳极溶解促进锈层中γ-FeOOH物相的生成,且由于γ-FeOOH是在液相中生成,而γ-FeOOH向α-FeOOH和Fe3O4/γ-Fe2O3转化是在固-液界面进行,γ-FeOOH的生成速率比其转化速率快,导致锈层中γ-FeOOH的质量分数随应力水平提高而增加,α-FeOOH和Fe3O4/γ-Fe2O3的质量分数相应减少。随着应力由0增大至0.95σs (σs为屈服强度),Fe3O4/γ-Fe2O3的质量分数由53%减小至约46%,α-FeOOH的质量分数由约30%减小至约23%,γ-FeOOH的质量分数由不到17%增大至约31%,这种物相成分变化导致锈层的致密性降低,厚度增加。此外,弹性拉应力通过加速阳极溶解促进了锈层的生长,进一步增加了锈层的厚度。锈层的厚度增加提高了离子在锈层中电迁移的阻力,锈层的致密性降低减弱了锈层内侧微环境的闭塞性,2者的共同作用使得锈层的保护性随应力水平的提高呈增强趋势。

关键词 弹性拉应力碳钢物相成分结构保护机制    
Abstract

As a structural steel material, carbon steel bears a certain extent of elastic tensile stress in actual service. Elastic tensile stress on steel is supposed to impact the electrochemical process and corrosion behavior, which may further influence the rusting behavior and the phase composition and structure of the formed rust layer. However, stresses on the steel substrate slightly influence the rust layer of carbon steel because no intrinsic change exists in the corrosion mechanism. Here, a remarkable effect of elastic tensile stress on Q235 carbon steel was found on the phase composition and structure of the rust layer formed in 5%NaCl salt spray. The effect on the rust layer was studied using SEM, XRD, and electrochemical impedance spectroscopy. The neutral salt spray test with four-point bending was used to preform the rust layer of Q235 steel under various stress levels. The results show that the elastic tensile stress accelerates the anodic dissolution, thereby promoting the generation of γ-FeOOH, which occurs faster in the electrolyte than the transformation of γ-FeOOH to α-FeOOH and Fe3O4/γ-Fe2O3 in the solid-liquid interface. Consequently, the mass fraction of γ-FeOOH in the rust layer increases as the stress level increases, whereas the mass fraction of α-FeOOH and Fe3O4/γ-Fe2O3 decreases accordingly. As the stress increases from 0 to 0.95σs (σs is yield strength), the mass fraction of Fe3O4/γ-Fe2O3 decreases from 53% to ~46%, the mass fraction of α-FeOOH decreases from ~30% to ~23%, and the mass fraction of γ-FeOOH increases from less than 17% to ~31%. Meanwhile, the phase composition change decreases the density and increases the thickness of the rust layer. Additionally, the acceleration of the anodic dissolution induced by the elastic tensile stress promotes the growth of the rust layer, which further increases the thickness of the rust layer. The increase in thickness and decrease in compactness of the rust layer jointly enhance the protective capability of the rust layer. The former increases the resistance to the electromigration of ions through the rust layer, and the latter mitigates the occlusion effect under the rust layer.

Key wordselastic tensile stress    carbon steel    phase composition    structure    protection mechanism
收稿日期: 2021-06-18     
ZTFLH:  TG172.3  
基金资助:国家重点研发计划项目(2017YFB0702100);上海市青年科技英才扬帆计划项目(20YF1412900)
通讯作者: 赵天亮,tlzhao@shu.edu.com,主要从事钢铁材料腐蚀和应力腐蚀行为研究
Corresponding author: ZHAO Tianliang, associate professor, Tel:15090998966, E-mail: tlzhao@shu.edu.com
作者简介: 李 谦,男,1975年生,教授
图1  四点弯曲加载装置示意图
图2  不同弹性拉应力水平下Q235碳钢在5%NaCl盐雾中的质量损失随时间的变化
Stress levelabR2
0σs0.02000.91540.9987
0.5σs0.02280.90310.9981
0.8σs0.02530.88350.9962
0.95σs0.03080.83680.9898
表1  不同弹性拉应力水平下Q235碳钢在5%NaCl盐雾中的腐蚀动力学拟合结果
图3  不同弹性拉应力水平下Q235碳钢在5%NaCl盐雾中暴露不同时间后的表面宏观形貌
图4  不同弹性拉应力水平下Q235碳钢在5%NaCl盐雾中暴露15 d后的锈层截面形貌和元素分布(a) 0σs (b) 0.5σs (c) 0.8σs (d) 0.95σs
图5  Q235碳钢在5%NaCl盐雾中暴露15 d后锈层的厚度随钢基体所受弹性拉应力水平的变化
图6  不同弹性拉应力水平下Q235碳钢在5%NaCl盐雾中暴露15 d后锈层的XRD谱和物相组成
图7  Q235碳钢在5%NaCl盐雾中暴露15 d后锈层的单位面积质量和密度随钢基体所受弹性拉应力水平的变化
图8  加载方式A和B下Q235碳钢在5%NaCl盐雾中暴露15 d后测得的开路电位随钢基体所受弹性拉应力水平的变化
图9  不同弹性拉应力水平的加载方式A和B下Q235碳钢在5%NaCl盐雾中暴露15 d后的EIS
ModeStressRsQrust (Y0)nrustRrustQct (Y0)nctRctWχ2
levelΩ·cm210-2 Ω-1·cm-2·s nΩ·cm210-2 Ω-1·cm-2·s nΩ·cm210-2 Ω-1·cm-2·s0.510-4
A0σs11.601.050.5210.510.170.6853.216.887.21
0.5σs9.590.520.4911.250.620.6046.286.521.91
0.8σs10.830.240.4312.591.380.6232.985.984.61
0.95σs9.940.140.3714.462.360.5729.045.462.01
B0σs11.601.050.5210.510.170.6853.216.887.21
0.5σs8.760.360.519.941.460.5435.436.641.78
0.8σs10.190.320.489.072.680.4821.626.243.16
0.95σs12.160.510.478.832.780.4416.486.132.08
表2  不同弹性拉应力水平的加载方式A和B下Q235碳钢在5%NaCl盐雾中暴露15 d后EIS的拟合结果
图10  Q235碳钢在5%NaCl盐雾中暴露15 d后锈层界面的等效电路图
图11  加载方式A和B下等效电路中电荷转移电阻(Rct)、锈层电阻(Rrust)与电容弥散系数(nrust)、扩散阻抗(W)随弹性拉应力水平的变化趋势
图12  锈层中r2 / r1、(r2 + r3) / r1和锈层密度随钢基体所受弹性拉应力水平的变化
1 Pan C, Cui Y, Liu L, et al. Effect of temperature on corrosion behavior of low-alloy steel exposed to a simulated marine atmospheric environment [J]. J. Mater. Eng. Perform., 2020, 29: 1400
doi: 10.1007/s11665-020-04649-5
2 Gao X L, Han Y, Fu G Q, et al. Evolution of the rust layers formed on carbon and weathering steels in environment containing chloride ions [J]. Acta Metall. Sin. (Engl. Lett.), 2016, 29: 1025
doi: 10.1007/s40195-016-0472-4
3 Guo M X, Tang J R, Gu T Z, et al. Corrosion behavior of 316L stainless steels exposed to salt lake atmosphere of Western China for 8 years [J]. Acta Metall. Sin. (Engl. Lett.), 2021, 34: 555
doi: 10.1007/s40195-020-01127-8
4 Alcántara J, de la Fuente D, Chico B, et al. Marine atmospheric corrosion of carbon steel: A review [J]. Materials, 2017, 10: 406
doi: 10.3390/ma10040406
5 Zhang X, Yang S W, Zhang W H, et al. Influence of outer rust layers on corrosion of carbon steel and weathering steel during wet-dry cycles [J]. Corros. Sci., 2014, 82: 165
doi: 10.1016/j.corsci.2014.01.016
6 Lair V, Antony H, Legrand L, et al. Electrochemical reduction of ferric corrosion products and evaluation of galvanic coupling with iron [J]. Corros. Sci., 2006, 48: 2050
doi: 10.1016/j.corsci.2005.06.013
7 Pan C, Han W, Wang Z Y, et al. Evolution of initial atmospheric corrosion of carbon steel in an industrial atmosphere [J]. J. Mater. Eng. Perform., 2016, 25: 5382
doi: 10.1007/s11665-016-2312-0
8 Wang C, Cao G W, Pan C, et al. Atmospheric corrosion of carbon steel and weathering steel in three environments [J]. J. Chin. Soc. Corros. Prot., 2016, 36: 39
8 汪 川, 曹公旺, 潘 辰 等. 碳钢、耐候钢在3种典型大气环境中的腐蚀规律研究 [J]. 中国腐蚀与防护学报, 2016, 36: 39
9 Pan C, Guo M X, Han W, et al. Study of corrosion evolution of carbon steel exposed to an industrial atmosphere [J]. Corros. Eng., Sci. Technol., 2019, 54: 241
10 Tiamiyu A, Eduok U, Odeshi A G, et al. Effect of prior plastic deformation and deformation rate on the corrosion resistance of AISI 321 austenitic stainless steel [J]. Mater. Sci. Eng., 2019, A745: 1
11 Zhao J J, Liu X B, Hu S, et al. Effect of Cl- concentration on the SCC behavior of 13Cr stainless steel in high-pressure CO2 environment [J]. Acta Metall. Sin. (Engl. Lett.), 2019, 32: 1459
doi: 10.1007/s40195-019-00923-1
12 Hao W K, Liu Z Y, Wu W, et al. Electrochemical characterization and stress corrosion cracking of E690 high strength steel in wet-dry cyclic marine environments [J]. Mater. Sci. Eng., 2018, A710: 318
13 Evans U R. The Corrosion and Oxidation of Metals: Scientific Principles and Practical Applications [M]. London: Edward Arnold Publishers Ltd., 1960: 1
14 Kim K M, Park J H, Kim H S, et al. Effect of plastic deformation on the corrosion resistance of ferritic stainless steel as a bipolar plate for polymer electrolyte membrane fuel cells [J]. Int. J. Hydrogen Energy, 2012, 37: 8459
doi: 10.1016/j.ijhydene.2012.02.127
15 Kim S J, Yun D W, Jung H G, et al. Numerical study on hydrogen permeation of ferritic steel evaluated under constant load [J]. Mater. Sci. Technol., 2017, 33: 149
doi: 10.1080/02670836.2016.1162001
16 Gao K, Li D, Pang X, et al. Corrosion behaviour of low-carbon bainitic steel under a constant elastic load [J]. Corros. Sci., 2010, 52: 3428
doi: 10.1016/j.corsci.2010.06.021
17 Zhao T L, Liu K, Li Q, et al. Elastic stress impacting on the rust layer of S450EW weathering steel through magnetomechanical effect [J]. Corros. Sci., 2021, 181: 109242
doi: 10.1016/j.corsci.2021.109242
18 Guo M X, Pan C, Wang Z Y, et al. A study on the initial corrosion behavior of carbon steel exposed to a simulated coastal-industrial atmosphere [J]. Acta Metall. Sin., 2018, 54: 65
doi: 10.11900/0412.1961.2017.00142
18 郭明晓, 潘 晨, 王振尧 等. 碳钢在模拟海洋工业大气环境中初期腐蚀行为研究 [J]. 金属学报, 2018, 54: 65
doi: 10.11900/0412.1961.2017.00142
19 Song X X, Huang S P, Wang C, et al. The initial corrosion behavior of carbon steel exposed to the coastal-industrial atmosphere in Hongyanhe [J]. Acta Metall. Sin., 2020, 56: 1355
19 宋学鑫, 黄松鹏, 汪 川 等. 碳钢在红沿河海洋工业大气环境中的初期腐蚀行为 [J]. 金属学报, 2020, 56: 1355
20 Fan Y M, Liu W, Sun Z T, et al. Effect of chloride ion on corrosion resistance of Ni-advanced weathering steel in simulated tropical marine atmosphere [J]. Constr. Build. Mater., 2021, 266: 120937
doi: 10.1016/j.conbuildmat.2020.120937
21 Hubbard C R, Snyder R L. RIR-measurement and use in quantitative XRD [J]. Powder Diffr., 1988, 3: 74
doi: 10.1017/S0885715600013257
22 Wu W, Dai Z Y, Liu Z Y, et al. Synergy of Cu and Sb to enhance the resistance of 3%Ni weathering steel to marine atmospheric corrosion [J]. Corros. Sci., 2021, 183: 109353
doi: 10.1016/j.corsci.2021.109353
23 Jüttner K. Electrochemical impedance spectroscopy (EIS) of corrosion processes on inhomogeneous surfaces [J]. Electrochim. Acta, 1990, 35: 1501
doi: 10.1016/0013-4686(90)80004-8
24 Li D G, Wang J D, Chen D R, et al. Influences of pH value, temperature, chloride ions and sulfide ions on the corrosion behaviors of 316L stainless steel in the simulated cathodic environment of proton exchange membrane fuel cell [J]. J. Power Sources, 2014, 272: 448
doi: 10.1016/j.jpowsour.2014.06.121
25 Freire L, Carmezim M J, Ferreira M G S, et al. The electrochemical behaviour of stainless steel AISI 304 in alkaline solutions with different pH in the presence of chlorides [J]. Electrochim. Acta, 2011, 56: 5280
doi: 10.1016/j.electacta.2011.02.094
26 Thee C, Hao L, Dong J H, et al. Numerical approach for atmospheric corrosion monitoring based on EIS of a weathering steel [J]. Acta Metall. Sin. (Engl. Lett.), 2015, 28: 261
doi: 10.1007/s40195-014-0193-5
27 Wu W, Cheng X Q, Zhao J B, et al. Benefit of the corrosion product film formed on a new weathering steel containing 3% nickel under marine atmosphere in Maldives [J]. Corros. Sci., 2020, 165: 108416
doi: 10.1016/j.corsci.2019.108416
28 Gao X L, Fu G Q, Zhu M Y. Effect of nickel on ion-selective property of rust formed on low-alloying weathering steel [J]. Acta Metall. Sin. (Engl. Lett.), 2012, 25: 295
29 Chen Y Y, Tzeng H J, Wei L I, et al. Corrosion resistance and mechanical properties of low-alloy steels under atmospheric conditions [J]. Corros. Sci., 2005, 47: 1001
doi: 10.1016/j.corsci.2004.04.009
30 Li S X, Hihara L H. In situ Raman spectroscopic identification of rust formation in Evans' droplet experiments [J]. Electrochem. Commun., 2012, 18: 48
doi: 10.1016/j.elecom.2012.02.014
31 Yamashita M, Konishi H, Kozakura T, et al. In situ observation of initial rust formation process on carbon steel under Na2SO4 and NaCl solution films with wet/dry cycles using synchrotron radiation X-rays [J]. Corros. Sci., 2005, 47: 2492
doi: 10.1016/j.corsci.2004.10.021
32 Jia J H, Cheng X Q, Yang X J, et al. A study for corrosion behavior of a new-type weathering steel used in harsh marine environment [J]. Constr. Build. Mater., 2020, 259: 119760
doi: 10.1016/j.conbuildmat.2020.119760
33 Morcillo M, Díaz I, Chico B, et al. Weathering steels: From empirical development to scientific design. A review [J]. Corros. Sci., 2014, 83: 6
doi: 10.1016/j.corsci.2014.03.006
34 Gutman E M, Solovioff G, Eliezer D. The mechanochemical behavior of type 316L stainless steel [J]. Corros. Sci., 1996, 38: 1141
doi: 10.1016/0010-938X(96)00008-X
35 Zhao T L, Wang S Q, Liu Z Y, et al. Effect of cathodic polarisation on stress corrosion cracking behaviour of a Ni(Fe, Al)-maraging steel in artificial seawater [J]. Corros. Sci., 2021, 179: 109176
doi: 10.1016/j.corsci.2020.109176
36 Morcillo M, González-Calbet J M, Jiménez J A, et al. Environmental conditions for akaganeite formation in marine atmosphere mild steel corrosion products and its characterization [J]. Corrosion, 2015, 71: 872
doi: 10.5006/1672
37 Liu Y W, Zhao H T, Wang Z Y. Initial corrosion behavior of carbon steel and weathering steel in Nansha marine atmosphere [J]. Acta Metall. Sin., 2020, 56: 1247
37 刘雨薇, 赵洪涛, 王振尧. 碳钢和耐候钢在南沙海洋大气环境中的初期腐蚀行为 [J]. 金属学报, 2020, 56: 1247
38 Dillmann P, Mazaudier F, Hœrlé S. Advances in understanding atmospheric corrosion of iron. I. Rust characterisation of ancient ferrous artefacts exposed to indoor atmospheric corrosion [J]. Corros. Sci., 2004, 46: 1401
doi: 10.1016/j.corsci.2003.09.027
39 Yamashita M, Misawa T. Recent progress in the study of protective rust-layer formation on weathering steel [A]. Corrosion 98 [C]. San Diego, California: NACE International, 1998
40 Sun M H, Yang X J, Du C W, et al. Distinct beneficial effect of Sn on the corrosion resistance of Cr-Mo low alloy steel [J]. J. Mater. Sci. Technol., 2021, 81: 175
doi: 10.1016/j.jmst.2020.12.014
41 Wei Y W, Zhang J, Lu X, et al. Effect of metal cations on corrosion behavior and surface structure of carbon steel in chloride ion atmosphere [J]. Acta Metall. Sin. (Engl. Lett.), 2020, 33: 1302
doi: 10.1007/s40195-020-01032-0
[1] 李小涵, 曹公望, 郭明晓, 彭云超, 马凯军, 王振尧. 低碳钢Q235、管线钢L415和压力容器钢16MnNi在湛江高湿高辐照海洋工业大气环境下的初期腐蚀行为[J]. 金属学报, 2023, 59(7): 884-892.
[2] 袁江淮, 王振玉, 马冠水, 周广学, 程晓英, 汪爱英. Cr2AlC涂层相结构演变对力学性能的影响[J]. 金属学报, 2023, 59(7): 961-968.
[3] 王周头, 袁清, 张庆枭, 刘升, 徐光. 冷轧中碳梯度马氏体钢的组织与力学性能[J]. 金属学报, 2023, 59(6): 821-828.
[4] 张德印, 郝旭, 贾宝瑞, 吴昊阳, 秦明礼, 曲选辉. Y2O3 含量对燃烧合成Fe-Y2O3 纳米复合粉末性能的影响[J]. 金属学报, 2023, 59(6): 757-766.
[5] 王寒玉, 李彩, 赵璨, 曾涛, 王祖敏, 黄远. 基于纳米活性结构的不互溶W-Cu体系直接合金化及其热力学机制[J]. 金属学报, 2023, 59(5): 679-692.
[6] 刘满平, 薛周磊, 彭振, 陈昱林, 丁立鹏, 贾志宏. 后时效对超细晶6061铝合金微观结构与力学性能的影响[J]. 金属学报, 2023, 59(5): 657-667.
[7] 邵晓宏, 彭珍珍, 靳千千, 马秀良. 镁合金LPSO/SFs结构间{10ˉ12}孪晶交汇机制的原子尺度研究[J]. 金属学报, 2023, 59(4): 556-566.
[8] 刘来娣, 丁彪, 任维丽, 钟云波, 王晖, 王秋良. DZ445镍基高温合金高温长时间氧化形成的多层膜结构[J]. 金属学报, 2023, 59(3): 387-398.
[9] 李谦, 孙璇, 罗群, 刘斌, 吴成章, 潘复生. 镁基材料中储氢相及其界面与储氢性能的调控[J]. 金属学报, 2023, 59(3): 349-370.
[10] 高晗, 刘力, 周笑宇, 周心怡, 蔡汶君, 周泓伶. Ti6Al4V表面微纳结构的制备及生物活性[J]. 金属学报, 2023, 59(11): 1466-1474.
[11] 彭治强, 柳前, 郭东伟, 曾子航, 曹江海, 侯自兵. 基于大数据挖掘的连铸结晶器传热独立变化规律[J]. 金属学报, 2023, 59(10): 1389-1400.
[12] 杨超, 卢海洲, 马宏伟, 蔡潍锶. 选区激光熔化NiTi形状记忆合金研究进展[J]. 金属学报, 2023, 59(1): 55-74.
[13] 韩冬, 张炎杰, 李小武. 短程有序对高层错能Cu-Mn合金拉-拉疲劳变形行为及损伤机制的影响[J]. 金属学报, 2022, 58(9): 1208-1220.
[14] 解磊鹏, 孙文瑶, 陈明辉, 王金龙, 王福会. 制备工艺对FGH4097高温合金微观组织与性能的影响[J]. 金属学报, 2022, 58(8): 992-1002.
[15] 刘志愿, 王永贵, 赵成玉, 杨婷, 夏爱林. p型方钴矿热电材料纳米-介观尺度微结构调控[J]. 金属学报, 2022, 58(8): 979-991.