|
|
弹性拉应力下Q235碳钢在5%NaCl盐雾中的成锈行为及其机理 |
李谦, 刘凯, 赵天亮( ) |
上海大学 材料科学与工程学院 省部共建高品质特殊钢冶金与制备国家重点实验室 上海 200444 |
|
Rust Formation Behavior and Mechanism of Q235 Carbon Steel in 5%NaCl Salt Spray Under Elastic Tensile Stress |
LI Qian, LIU Kai, ZHAO Tianliang( ) |
State Key Laboratory of Advanced Special Steel, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China |
引用本文:
李谦, 刘凯, 赵天亮. 弹性拉应力下Q235碳钢在5%NaCl盐雾中的成锈行为及其机理[J]. 金属学报, 2023, 59(6): 829-840.
Qian LI,
Kai LIU,
Tianliang ZHAO.
Rust Formation Behavior and Mechanism of Q235 Carbon Steel in 5%NaCl Salt Spray Under Elastic Tensile Stress[J]. Acta Metall Sin, 2023, 59(6): 829-840.
1 |
Pan C, Cui Y, Liu L, et al. Effect of temperature on corrosion behavior of low-alloy steel exposed to a simulated marine atmospheric environment [J]. J. Mater. Eng. Perform., 2020, 29: 1400
doi: 10.1007/s11665-020-04649-5
|
2 |
Gao X L, Han Y, Fu G Q, et al. Evolution of the rust layers formed on carbon and weathering steels in environment containing chloride ions [J]. Acta Metall. Sin. (Engl. Lett.), 2016, 29: 1025
doi: 10.1007/s40195-016-0472-4
|
3 |
Guo M X, Tang J R, Gu T Z, et al. Corrosion behavior of 316L stainless steels exposed to salt lake atmosphere of Western China for 8 years [J]. Acta Metall. Sin. (Engl. Lett.), 2021, 34: 555
doi: 10.1007/s40195-020-01127-8
|
4 |
Alcántara J, de la Fuente D, Chico B, et al. Marine atmospheric corrosion of carbon steel: A review [J]. Materials, 2017, 10: 406
doi: 10.3390/ma10040406
|
5 |
Zhang X, Yang S W, Zhang W H, et al. Influence of outer rust layers on corrosion of carbon steel and weathering steel during wet-dry cycles [J]. Corros. Sci., 2014, 82: 165
doi: 10.1016/j.corsci.2014.01.016
|
6 |
Lair V, Antony H, Legrand L, et al. Electrochemical reduction of ferric corrosion products and evaluation of galvanic coupling with iron [J]. Corros. Sci., 2006, 48: 2050
doi: 10.1016/j.corsci.2005.06.013
|
7 |
Pan C, Han W, Wang Z Y, et al. Evolution of initial atmospheric corrosion of carbon steel in an industrial atmosphere [J]. J. Mater. Eng. Perform., 2016, 25: 5382
doi: 10.1007/s11665-016-2312-0
|
8 |
Wang C, Cao G W, Pan C, et al. Atmospheric corrosion of carbon steel and weathering steel in three environments [J]. J. Chin. Soc. Corros. Prot., 2016, 36: 39
|
8 |
汪 川, 曹公旺, 潘 辰 等. 碳钢、耐候钢在3种典型大气环境中的腐蚀规律研究 [J]. 中国腐蚀与防护学报, 2016, 36: 39
|
9 |
Pan C, Guo M X, Han W, et al. Study of corrosion evolution of carbon steel exposed to an industrial atmosphere [J]. Corros. Eng., Sci. Technol., 2019, 54: 241
|
10 |
Tiamiyu A, Eduok U, Odeshi A G, et al. Effect of prior plastic deformation and deformation rate on the corrosion resistance of AISI 321 austenitic stainless steel [J]. Mater. Sci. Eng., 2019, A745: 1
|
11 |
Zhao J J, Liu X B, Hu S, et al. Effect of Cl- concentration on the SCC behavior of 13Cr stainless steel in high-pressure CO2 environment [J]. Acta Metall. Sin. (Engl. Lett.), 2019, 32: 1459
doi: 10.1007/s40195-019-00923-1
|
12 |
Hao W K, Liu Z Y, Wu W, et al. Electrochemical characterization and stress corrosion cracking of E690 high strength steel in wet-dry cyclic marine environments [J]. Mater. Sci. Eng., 2018, A710: 318
|
13 |
Evans U R. The Corrosion and Oxidation of Metals: Scientific Principles and Practical Applications [M]. London: Edward Arnold Publishers Ltd., 1960: 1
|
14 |
Kim K M, Park J H, Kim H S, et al. Effect of plastic deformation on the corrosion resistance of ferritic stainless steel as a bipolar plate for polymer electrolyte membrane fuel cells [J]. Int. J. Hydrogen Energy, 2012, 37: 8459
doi: 10.1016/j.ijhydene.2012.02.127
|
15 |
Kim S J, Yun D W, Jung H G, et al. Numerical study on hydrogen permeation of ferritic steel evaluated under constant load [J]. Mater. Sci. Technol., 2017, 33: 149
doi: 10.1080/02670836.2016.1162001
|
16 |
Gao K, Li D, Pang X, et al. Corrosion behaviour of low-carbon bainitic steel under a constant elastic load [J]. Corros. Sci., 2010, 52: 3428
doi: 10.1016/j.corsci.2010.06.021
|
17 |
Zhao T L, Liu K, Li Q, et al. Elastic stress impacting on the rust layer of S450EW weathering steel through magnetomechanical effect [J]. Corros. Sci., 2021, 181: 109242
doi: 10.1016/j.corsci.2021.109242
|
18 |
Guo M X, Pan C, Wang Z Y, et al. A study on the initial corrosion behavior of carbon steel exposed to a simulated coastal-industrial atmosphere [J]. Acta Metall. Sin., 2018, 54: 65
doi: 10.11900/0412.1961.2017.00142
|
18 |
郭明晓, 潘 晨, 王振尧 等. 碳钢在模拟海洋工业大气环境中初期腐蚀行为研究 [J]. 金属学报, 2018, 54: 65
doi: 10.11900/0412.1961.2017.00142
|
19 |
Song X X, Huang S P, Wang C, et al. The initial corrosion behavior of carbon steel exposed to the coastal-industrial atmosphere in Hongyanhe [J]. Acta Metall. Sin., 2020, 56: 1355
|
19 |
宋学鑫, 黄松鹏, 汪 川 等. 碳钢在红沿河海洋工业大气环境中的初期腐蚀行为 [J]. 金属学报, 2020, 56: 1355
|
20 |
Fan Y M, Liu W, Sun Z T, et al. Effect of chloride ion on corrosion resistance of Ni-advanced weathering steel in simulated tropical marine atmosphere [J]. Constr. Build. Mater., 2021, 266: 120937
doi: 10.1016/j.conbuildmat.2020.120937
|
21 |
Hubbard C R, Snyder R L. RIR-measurement and use in quantitative XRD [J]. Powder Diffr., 1988, 3: 74
doi: 10.1017/S0885715600013257
|
22 |
Wu W, Dai Z Y, Liu Z Y, et al. Synergy of Cu and Sb to enhance the resistance of 3%Ni weathering steel to marine atmospheric corrosion [J]. Corros. Sci., 2021, 183: 109353
doi: 10.1016/j.corsci.2021.109353
|
23 |
Jüttner K. Electrochemical impedance spectroscopy (EIS) of corrosion processes on inhomogeneous surfaces [J]. Electrochim. Acta, 1990, 35: 1501
doi: 10.1016/0013-4686(90)80004-8
|
24 |
Li D G, Wang J D, Chen D R, et al. Influences of pH value, temperature, chloride ions and sulfide ions on the corrosion behaviors of 316L stainless steel in the simulated cathodic environment of proton exchange membrane fuel cell [J]. J. Power Sources, 2014, 272: 448
doi: 10.1016/j.jpowsour.2014.06.121
|
25 |
Freire L, Carmezim M J, Ferreira M G S, et al. The electrochemical behaviour of stainless steel AISI 304 in alkaline solutions with different pH in the presence of chlorides [J]. Electrochim. Acta, 2011, 56: 5280
doi: 10.1016/j.electacta.2011.02.094
|
26 |
Thee C, Hao L, Dong J H, et al. Numerical approach for atmospheric corrosion monitoring based on EIS of a weathering steel [J]. Acta Metall. Sin. (Engl. Lett.), 2015, 28: 261
doi: 10.1007/s40195-014-0193-5
|
27 |
Wu W, Cheng X Q, Zhao J B, et al. Benefit of the corrosion product film formed on a new weathering steel containing 3% nickel under marine atmosphere in Maldives [J]. Corros. Sci., 2020, 165: 108416
doi: 10.1016/j.corsci.2019.108416
|
28 |
Gao X L, Fu G Q, Zhu M Y. Effect of nickel on ion-selective property of rust formed on low-alloying weathering steel [J]. Acta Metall. Sin. (Engl. Lett.), 2012, 25: 295
|
29 |
Chen Y Y, Tzeng H J, Wei L I, et al. Corrosion resistance and mechanical properties of low-alloy steels under atmospheric conditions [J]. Corros. Sci., 2005, 47: 1001
doi: 10.1016/j.corsci.2004.04.009
|
30 |
Li S X, Hihara L H. In situ Raman spectroscopic identification of rust formation in Evans' droplet experiments [J]. Electrochem. Commun., 2012, 18: 48
doi: 10.1016/j.elecom.2012.02.014
|
31 |
Yamashita M, Konishi H, Kozakura T, et al. In situ observation of initial rust formation process on carbon steel under Na2SO4 and NaCl solution films with wet/dry cycles using synchrotron radiation X-rays [J]. Corros. Sci., 2005, 47: 2492
doi: 10.1016/j.corsci.2004.10.021
|
32 |
Jia J H, Cheng X Q, Yang X J, et al. A study for corrosion behavior of a new-type weathering steel used in harsh marine environment [J]. Constr. Build. Mater., 2020, 259: 119760
doi: 10.1016/j.conbuildmat.2020.119760
|
33 |
Morcillo M, Díaz I, Chico B, et al. Weathering steels: From empirical development to scientific design. A review [J]. Corros. Sci., 2014, 83: 6
doi: 10.1016/j.corsci.2014.03.006
|
34 |
Gutman E M, Solovioff G, Eliezer D. The mechanochemical behavior of type 316L stainless steel [J]. Corros. Sci., 1996, 38: 1141
doi: 10.1016/0010-938X(96)00008-X
|
35 |
Zhao T L, Wang S Q, Liu Z Y, et al. Effect of cathodic polarisation on stress corrosion cracking behaviour of a Ni(Fe, Al)-maraging steel in artificial seawater [J]. Corros. Sci., 2021, 179: 109176
doi: 10.1016/j.corsci.2020.109176
|
36 |
Morcillo M, González-Calbet J M, Jiménez J A, et al. Environmental conditions for akaganeite formation in marine atmosphere mild steel corrosion products and its characterization [J]. Corrosion, 2015, 71: 872
doi: 10.5006/1672
|
37 |
Liu Y W, Zhao H T, Wang Z Y. Initial corrosion behavior of carbon steel and weathering steel in Nansha marine atmosphere [J]. Acta Metall. Sin., 2020, 56: 1247
|
37 |
刘雨薇, 赵洪涛, 王振尧. 碳钢和耐候钢在南沙海洋大气环境中的初期腐蚀行为 [J]. 金属学报, 2020, 56: 1247
|
38 |
Dillmann P, Mazaudier F, Hœrlé S. Advances in understanding atmospheric corrosion of iron. I. Rust characterisation of ancient ferrous artefacts exposed to indoor atmospheric corrosion [J]. Corros. Sci., 2004, 46: 1401
doi: 10.1016/j.corsci.2003.09.027
|
39 |
Yamashita M, Misawa T. Recent progress in the study of protective rust-layer formation on weathering steel [A]. Corrosion 98 [C]. San Diego, California: NACE International, 1998
|
40 |
Sun M H, Yang X J, Du C W, et al. Distinct beneficial effect of Sn on the corrosion resistance of Cr-Mo low alloy steel [J]. J. Mater. Sci. Technol., 2021, 81: 175
doi: 10.1016/j.jmst.2020.12.014
|
41 |
Wei Y W, Zhang J, Lu X, et al. Effect of metal cations on corrosion behavior and surface structure of carbon steel in chloride ion atmosphere [J]. Acta Metall. Sin. (Engl. Lett.), 2020, 33: 1302
doi: 10.1007/s40195-020-01032-0
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|