|
|
冷轧中碳梯度马氏体钢的组织与力学性能 |
王周头1,2, 袁清1,2, 张庆枭1,2, 刘升1,2, 徐光1,2( ) |
1武汉科技大学 耐火材料与冶金国家重点实验室 武汉 430081 2武汉科技大学 钢铁冶金及资源利用省部共建教育部重点实验室 武汉 430081 |
|
Microstructure and Mechanical Properties of a Cold Rolled Gradient Medium-Carbon Martensitic Steel |
WANG Zhoutou1,2, YUAN Qing1,2, ZHANG Qingxiao1,2, LIU Sheng1,2, XU Guang1,2( ) |
1State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China 2Key Laboratory for Ferrous Metallurgy and Resources Utilization of Ministry of Education, Wuhan University of Science and Technology, Wuhan 430081, China |
引用本文:
王周头, 袁清, 张庆枭, 刘升, 徐光. 冷轧中碳梯度马氏体钢的组织与力学性能[J]. 金属学报, 2023, 59(6): 821-828.
Zhoutou WANG,
Qing YUAN,
Qingxiao ZHANG,
Sheng LIU,
Guang XU.
Microstructure and Mechanical Properties of a Cold Rolled Gradient Medium-Carbon Martensitic Steel[J]. Acta Metall Sin, 2023, 59(6): 821-828.
1 |
Nuckowski P M, Snopiński P, Wróbel T. Influence of plastic strain accumulation in continuous ingots during ECAP on structure and recrystallization temperature of AlCu4MgSi alloy [J]. Materials, 2020, 13: 576
doi: 10.3390/ma13030576
|
2 |
Pei Y B, Gui Y W, Huang T, et al. Microstructure and corrosion behaviors of AZ63 magnesium alloy fabricated by accumulative roll bonding process [J]. Mater. Res. Express, 2020, 7: 066525
|
3 |
Krywopusk N M, Williams C L, Kecskes L J, et al. Characterization of spalled AZ31B processed by ECAE [J]. Mater. Sci. Eng., 2019, A767: 138298
|
4 |
Zhang L Y, Yang G, Huang C X, et al. High strength and high toughness heat-resistant martensitic steel produced by ECAP [J]. Acta Metall. Sin., 2008, 44: 409
|
4 |
张凌义, 杨 钢, 黄崇湘 等. ECAP制备高强高韧马氏体耐热钢 [J]. 金属学报, 2008, 44: 409
|
5 |
Mroz S, Wierzba A, Stefanik A, et al. Effect of asymmetric accumulative roll-bonding process on the microstructure and strength evolution of the AA1050/AZ31/AA1050 multilayered composite materials [J]. Materials, 2020, 13: 5401
doi: 10.3390/ma13235401
|
6 |
Al-Fadhalah K J, Alyazidi M K, Rafiq M. Effect of microstructure refinement on hardness homogeneity of aluminum alloy 1100 processed by accumulative roll bonding [J]. J. Mater. Eng. Perform., 2019, 28: 4693
doi: 10.1007/s11665-019-04228-3
|
7 |
Loucif A, Figueiredo R B, Baudin T, et al. Ultrafine grains and the Hall-Petch relationship in an Al-Mg-Si alloy processed by high-pressure torsion [J]. Mater. Sci. Eng., 2012, A532: 139
|
8 |
Fujita I, Edalati K, Sauvage X, et al. Grain growth in nanograined aluminum oxide by high-pressure torsion: Phase transformation and plastic strain effects [J]. Scr. Mater., 2018, 152: 11
doi: 10.1016/j.scriptamat.2018.04.003
|
9 |
Roy A, Tiwari M, Sahu S, et al. Microstructure, texture and mechanical properties of Al-Mg-Si Alloy processed by multiaxial compression [J]. J. Mater. Eng. Perform., 2020, 29: 3876
doi: 10.1007/s11665-020-04917-4
|
10 |
Ramesh S, Anne G, Nayaka H S, et al. Effects of combined multiaxial forging and rolling process on microstructure, mechanical properties and corrosion behavior of a Cu-Ti alloys [J]. Mater. Res. Express, 2019, 6: 056559
|
11 |
Feng G, Shi L J, Lv J, et al. Investigation of surface nanocrystallization of a low carbon steel induced by ultrasonic shot peening [J]. Acta Metall. Sin., 2000, 36: 300
|
11 |
冯 淦, 石连捷, 吕 坚 等. 低碳钢超声喷丸表面纳米化的研究 [J]. 金属学报, 2000, 36: 300
|
12 |
Mansoor P, Dasharath S M. Microstructural and mechanical properties of magnesium alloy processed by severe plastic deformation (SPD)—A review [J]. Mater. Today Proc., 2020, 20: 145
|
13 |
Huang J Y, Zhu Y T, Jiang H, et al. Microstructures and dislocation configurations in nanostructured Cu processed by repetitive corrugation and straightening [J]. Acta Mater., 2001, 49: 1497
doi: 10.1016/S1359-6454(01)00069-6
|
14 |
Song R, Ponge D, Raabe D. Mechanical properties of an ultrafine grained C-Mn steel processed by warm deformation and annealing [J]. Acta Mater., 2005, 53: 4881
doi: 10.1016/j.actamat.2005.07.009
|
15 |
Lin P C, Pang Y H, Sun Q, et al. 3D-SPD rolling method of 45 steel ultrafine grained bar with bulk size [J]. Acta Metall. Sin., 2021, 57: 605
doi: 10.11900/0412.1961.2020.00247
|
15 |
林鹏程, 庞玉华, 孙 琦 等. 45钢块体超细晶棒材3D-SPD轧制法 [J]. 金属学报, 2021, 57: 605
doi: 10.11900/0412.1961.2020.00247
|
16 |
Ueji R, Tsuji N, Minamino Y, et al. Ultragrain refinement of plain low carbon steel by cold-rolling and annealing of martensite [J]. Acta Mater., 2002, 50: 4177
doi: 10.1016/S1359-6454(02)00260-4
|
17 |
Lan H F, Liu W J, Liu X H. Ultrafine ferrite grains produced by tempering cold-rolled martensite in low carbon and microalloyed steels [J]. ISIJ Int., 2007, 47: 1652
doi: 10.2355/isijinternational.47.1652
|
18 |
Yuan Q, Xu G, Liu S, et al. Effect of rolling reduction on microstructure and property of ultrafine grained low-carbon steel processed by cryorolling martensite [J]. Metals, 2018, 8: 518
doi: 10.3390/met8070518
|
19 |
Ashrafi H, Najafizadeh A. Fabrication of the ultrafine grained low carbon steel by cold compression and annealing of martensite [J]. Trans. Indian Inst. Met., 2016, 69: 1467
doi: 10.1007/s12666-015-0714-6
|
20 |
Huang X, Morito S, Hansen N, et al. Ultrafine structure and high strength in cold-rolled martensite [J]. Metall. Mater. Trans., 2012, 43A: 3517
|
21 |
Morito S, Ohba T, Maki T. Comparison of deformation structure of lath martensite in low carbon and ultra-low carbon steels [J]. Mater. Sci. Forum., 2007, 558-559: 933
doi: 10.4028/www.scientific.net/MSF.558-559
|
22 |
Krauss G. Martensite in steel: Strength and structure [J]. Mater. Sci. Eng., 1999, A273-275: 40
|
23 |
Lee J C, Kang U G, Oh C S, et al. Effects of deformation strains and annealing temperatures on mechanical properties of martensitic steels [J]. Mater. Sci. Forum., 2010, 654-656: 218
doi: 10.4028/www.scientific.net/MSF.654-656
|
24 |
Wu X L, Jiang P, Chen L, et al. Synergetic strengthening by gradient structure [J]. Mater. Res. Lett., 2014, 2: 185
doi: 10.1080/21663831.2014.935821
|
25 |
Ueji R, Tsuji N, Minamino Y, et al. Effect of rolling reduction on ultrafine grained structure and mechanical properties of low-carbon steel thermomechanically processed from martensite starting structure [J]. Sci. Technol. Adv. Mater., 2004, 5: 153
doi: 10.1016/j.stam.2003.10.017
|
26 |
Zhao X, Jing T F, Gao Y W, et al. Annealing behavior of nano-layered steel produced by heavy cold-rolling of lath martensite [J]. Mater. Sci. Eng., 2005, A397: 117
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|