Please wait a minute...
金属学报  2023, Vol. 59 Issue (6): 821-828    DOI: 10.11900/0412.1961.2021.00233
  研究论文 本期目录 | 过刊浏览 |
冷轧中碳梯度马氏体钢的组织与力学性能
王周头1,2, 袁清1,2, 张庆枭1,2, 刘升1,2, 徐光1,2()
1武汉科技大学 耐火材料与冶金国家重点实验室 武汉 430081
2武汉科技大学 钢铁冶金及资源利用省部共建教育部重点实验室 武汉 430081
Microstructure and Mechanical Properties of a Cold Rolled Gradient Medium-Carbon Martensitic Steel
WANG Zhoutou1,2, YUAN Qing1,2, ZHANG Qingxiao1,2, LIU Sheng1,2, XU Guang1,2()
1State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China
2Key Laboratory for Ferrous Metallurgy and Resources Utilization of Ministry of Education, Wuhan University of Science and Technology, Wuhan 430081, China
引用本文:

王周头, 袁清, 张庆枭, 刘升, 徐光. 冷轧中碳梯度马氏体钢的组织与力学性能[J]. 金属学报, 2023, 59(6): 821-828.
Zhoutou WANG, Qing YUAN, Qingxiao ZHANG, Sheng LIU, Guang XU. Microstructure and Mechanical Properties of a Cold Rolled Gradient Medium-Carbon Martensitic Steel[J]. Acta Metall Sin, 2023, 59(6): 821-828.

全文: PDF(3229 KB)   HTML
摘要: 

通过脱碳和冷轧工艺制备了表面低碳、芯部中碳成分梯度钢,对中碳马氏体实施等效应变为1.5的大压下轧制,试样表面无微裂纹产生。利用OM、SEM和拉伸实验等观察和测试了淬火后以及冷轧后梯度马氏体钢的微观组织和力学性能。结果表明,脱碳淬火工艺处理后得到成分梯度和板条尺寸梯度马氏体组织。淬火处理后,C梯度分布的中碳马氏体相比均质马氏体的强度由1700 MPa降低到1525 MPa,但其均匀延伸率相比均质马氏体提高了40%,相比未脱碳相当C含量均质马氏体钢具有更高的强塑积。芯部中碳马氏体提供强度,表层低碳马氏体可承担较大的塑性应变,梯度组织应变的不均匀性可以提供额外的加工硬化能力,使梯度组织有着更好的强塑性结合。

关键词 脱碳马氏体梯度中碳钢冷轧    
Abstract

Martensite is an attractive crystalline structure to fabricate ultrafine grain steels by cold rolling and annealing because of its low equivalent strain. However, the deformation resistance of martensite increases inevitably with the increase in the carbon content of the steel. Accordingly, cracks are easily initiated in martensite before it reaches the desired strain, restricting the application of cold rolling and annealing to ultra-low and low-carbon steels. Thus, to extend the application of these methods from low to medium-carbon steel, compositional gradient steel was prepared by decarburizing medium-carbon steel. The carbon content increased from the surface layer to core layer in the gradient steel. The decarburized medium-carbon martensite was successfully cold rolled under large deformation with an equivalent strain of 1.5 with no microcracks on the sample surface. The microstructure and mechanical properties of the quenched and cold rolled gradient component steel were characterized and studied via OM, SEM, and tensile test. The experimental results revealed the gradient size of martensite along with the gradient carbon content in the microstructure. Further, different diffusion rates of carbon atoms during decarburization and austenitization resulted in the gradient austenite grain, which restrained the size of martensite. Compared with homogenous martensite of the experimental medium-carbon steel, the steel with gradient distribution of carbon exhibited low tensile strength, which decreased from 1700 MPa to 1525 MPa, but high tensile uniform elongation, which is increased by 40%; moreover, the gradient steel showed higher product of strength and elongation than homogeneous martensite steel with similar average carbon content without decarburization. The good combination of strength and plasticity in the compositionally gradient steel was attributed to the high strength and good plasticity provided by the core layer and decarburized layer, respectively. Additionally, the heterogeneity in the strain distribution led to an extra strain-hardening; thus, the surface layer restrains further propagation of micro-shear bands from the core layer.

Key wordsdecarburization    martensite    gradient    medium-carbon steel    cold rolling
收稿日期: 2021-06-02     
ZTFLH:  TG142.1  
基金资助:国家自然科学基金项目(51874216);国家自然科学基金项目(52004193);河北钢铁集团重点研发项目(HG2019313);中国博士后科学基金项目(2020M682496)
通讯作者: 徐 光,xuguang@wust.edu.cn,主要从事金属加工工艺、金属材料组织和性能控制、金属材料强化机制等研究
Corresponding author: XU Guang, professor, Tel:15697180996, E-mail: xuguang@wust.edu.cn
作者简介: 王周头,女,1996年生,博士生
图1  脱碳实验工艺以及均质马氏体处理工艺
图2  淬火均质马氏体的微观组织
图3  脱碳淬火马氏体组织的SEM像
图4  脱碳淬火后试样的显微组织
图5  不同气氛下奥氏体化淬火后硬度随厚度方向的变化曲线
图6  轧制后试样总体形貌图
图7  脱碳淬火试样轧制梯度马氏体组织的SEM像
图8  硬度和C含量沿试样厚度方向分布图
图9  原始钢、C梯度马氏体钢、均质马氏体钢及冷轧C梯度马氏体钢试样工程应力-应变曲线
图10  轧制不同C含量马氏体等效应变对比图
图11  均质马氏体试样拉伸断口形貌
图12  脱碳淬火试样拉伸断口形貌
图13  轧制脱碳淬火马氏体拉伸断口形貌
1 Nuckowski P M, Snopiński P, Wróbel T. Influence of plastic strain accumulation in continuous ingots during ECAP on structure and recrystallization temperature of AlCu4MgSi alloy [J]. Materials, 2020, 13: 576
doi: 10.3390/ma13030576
2 Pei Y B, Gui Y W, Huang T, et al. Microstructure and corrosion behaviors of AZ63 magnesium alloy fabricated by accumulative roll bonding process [J]. Mater. Res. Express, 2020, 7: 066525
3 Krywopusk N M, Williams C L, Kecskes L J, et al. Characterization of spalled AZ31B processed by ECAE [J]. Mater. Sci. Eng., 2019, A767: 138298
4 Zhang L Y, Yang G, Huang C X, et al. High strength and high toughness heat-resistant martensitic steel produced by ECAP [J]. Acta Metall. Sin., 2008, 44: 409
4 张凌义, 杨 钢, 黄崇湘 等. ECAP制备高强高韧马氏体耐热钢 [J]. 金属学报, 2008, 44: 409
5 Mroz S, Wierzba A, Stefanik A, et al. Effect of asymmetric accumulative roll-bonding process on the microstructure and strength evolution of the AA1050/AZ31/AA1050 multilayered composite materials [J]. Materials, 2020, 13: 5401
doi: 10.3390/ma13235401
6 Al-Fadhalah K J, Alyazidi M K, Rafiq M. Effect of microstructure refinement on hardness homogeneity of aluminum alloy 1100 processed by accumulative roll bonding [J]. J. Mater. Eng. Perform., 2019, 28: 4693
doi: 10.1007/s11665-019-04228-3
7 Loucif A, Figueiredo R B, Baudin T, et al. Ultrafine grains and the Hall-Petch relationship in an Al-Mg-Si alloy processed by high-pressure torsion [J]. Mater. Sci. Eng., 2012, A532: 139
8 Fujita I, Edalati K, Sauvage X, et al. Grain growth in nanograined aluminum oxide by high-pressure torsion: Phase transformation and plastic strain effects [J]. Scr. Mater., 2018, 152: 11
doi: 10.1016/j.scriptamat.2018.04.003
9 Roy A, Tiwari M, Sahu S, et al. Microstructure, texture and mechanical properties of Al-Mg-Si Alloy processed by multiaxial compression [J]. J. Mater. Eng. Perform., 2020, 29: 3876
doi: 10.1007/s11665-020-04917-4
10 Ramesh S, Anne G, Nayaka H S, et al. Effects of combined multiaxial forging and rolling process on microstructure, mechanical properties and corrosion behavior of a Cu-Ti alloys [J]. Mater. Res. Express, 2019, 6: 056559
11 Feng G, Shi L J, Lv J, et al. Investigation of surface nanocrystallization of a low carbon steel induced by ultrasonic shot peening [J]. Acta Metall. Sin., 2000, 36: 300
11 冯 淦, 石连捷, 吕 坚 等. 低碳钢超声喷丸表面纳米化的研究 [J]. 金属学报, 2000, 36: 300
12 Mansoor P, Dasharath S M. Microstructural and mechanical properties of magnesium alloy processed by severe plastic deformation (SPD)—A review [J]. Mater. Today Proc., 2020, 20: 145
13 Huang J Y, Zhu Y T, Jiang H, et al. Microstructures and dislocation configurations in nanostructured Cu processed by repetitive corrugation and straightening [J]. Acta Mater., 2001, 49: 1497
doi: 10.1016/S1359-6454(01)00069-6
14 Song R, Ponge D, Raabe D. Mechanical properties of an ultrafine grained C-Mn steel processed by warm deformation and annealing [J]. Acta Mater., 2005, 53: 4881
doi: 10.1016/j.actamat.2005.07.009
15 Lin P C, Pang Y H, Sun Q, et al. 3D-SPD rolling method of 45 steel ultrafine grained bar with bulk size [J]. Acta Metall. Sin., 2021, 57: 605
doi: 10.11900/0412.1961.2020.00247
15 林鹏程, 庞玉华, 孙 琦 等. 45钢块体超细晶棒材3D-SPD轧制法 [J]. 金属学报, 2021, 57: 605
doi: 10.11900/0412.1961.2020.00247
16 Ueji R, Tsuji N, Minamino Y, et al. Ultragrain refinement of plain low carbon steel by cold-rolling and annealing of martensite [J]. Acta Mater., 2002, 50: 4177
doi: 10.1016/S1359-6454(02)00260-4
17 Lan H F, Liu W J, Liu X H. Ultrafine ferrite grains produced by tempering cold-rolled martensite in low carbon and microalloyed steels [J]. ISIJ Int., 2007, 47: 1652
doi: 10.2355/isijinternational.47.1652
18 Yuan Q, Xu G, Liu S, et al. Effect of rolling reduction on microstructure and property of ultrafine grained low-carbon steel processed by cryorolling martensite [J]. Metals, 2018, 8: 518
doi: 10.3390/met8070518
19 Ashrafi H, Najafizadeh A. Fabrication of the ultrafine grained low carbon steel by cold compression and annealing of martensite [J]. Trans. Indian Inst. Met., 2016, 69: 1467
doi: 10.1007/s12666-015-0714-6
20 Huang X, Morito S, Hansen N, et al. Ultrafine structure and high strength in cold-rolled martensite [J]. Metall. Mater. Trans., 2012, 43A: 3517
21 Morito S, Ohba T, Maki T. Comparison of deformation structure of lath martensite in low carbon and ultra-low carbon steels [J]. Mater. Sci. Forum., 2007, 558-559: 933
doi: 10.4028/www.scientific.net/MSF.558-559
22 Krauss G. Martensite in steel: Strength and structure [J]. Mater. Sci. Eng., 1999, A273-275: 40
23 Lee J C, Kang U G, Oh C S, et al. Effects of deformation strains and annealing temperatures on mechanical properties of martensitic steels [J]. Mater. Sci. Forum., 2010, 654-656: 218
doi: 10.4028/www.scientific.net/MSF.654-656
24 Wu X L, Jiang P, Chen L, et al. Synergetic strengthening by gradient structure [J]. Mater. Res. Lett., 2014, 2: 185
doi: 10.1080/21663831.2014.935821
25 Ueji R, Tsuji N, Minamino Y, et al. Effect of rolling reduction on ultrafine grained structure and mechanical properties of low-carbon steel thermomechanically processed from martensite starting structure [J]. Sci. Technol. Adv. Mater., 2004, 5: 153
doi: 10.1016/j.stam.2003.10.017
26 Zhao X, Jing T F, Gao Y W, et al. Annealing behavior of nano-layered steel produced by heavy cold-rolling of lath martensite [J]. Mater. Sci. Eng., 2005, A397: 117
[1] 王长胜, 付华栋, 张洪涛, 谢建新. 冷轧变形对高性能Cu-Ni-Si合金组织性能与析出行为的影响[J]. 金属学报, 2023, 59(5): 585-598.
[2] 王滨, 牛梦超, 王威, 姜涛, 栾军华, 杨柯. Cu马氏体时效不锈钢的组织与强韧性[J]. 金属学报, 2023, 59(5): 636-646.
[3] 吴欣强, 戎利建, 谭季波, 陈胜虎, 胡小锋, 张洋鹏, 张兹瑜. Pb-Bi腐蚀Si增强型铁素体/马氏体钢和奥氏体不锈钢的研究进展[J]. 金属学报, 2023, 59(4): 502-512.
[4] 万涛, 程钊, 卢磊. 组元占比对层状纳米孪晶Cu力学行为的影响[J]. 金属学报, 2023, 59(4): 567-576.
[5] 陈学双, 黄兴民, 刘俊杰, 吕超, 张娟. 一种含富锰偏析带的热轧临界退火中锰钢的组织调控及强化机制[J]. 金属学报, 2023, 59(11): 1448-1456.
[6] 姜江, 郝世杰, 姜大强, 郭方敏, 任洋, 崔立山. NiTi-Nb原位复合材料的准线性超弹性变形[J]. 金属学报, 2023, 59(11): 1419-1427.
[7] 于少霞, 王麒, 邓想涛, 王昭东. GH3600镍基高温合金极薄带的制备及尺寸效应[J]. 金属学报, 2023, 59(10): 1365-1375.
[8] 金鑫焱, 储双杰, 彭俊, 胡广魁. 露点对连续退火0.2%C-1.5%Si-2.5%Mn高强钢选择性氧化及脱碳的影响[J]. 金属学报, 2023, 59(10): 1324-1334.
[9] 侯旭儒, 赵琳, 任淑彬, 彭云, 马成勇, 田志凌. 热输入对电弧增材制造船用高强钢组织与力学性能的影响[J]. 金属学报, 2023, 59(10): 1311-1323.
[10] 李小琳, 刘林锡, 李雅婷, 杨佳伟, 邓想涛, 王海丰. 单一 MX 型析出相强化马氏体耐热钢力学性能及蠕变行为[J]. 金属学报, 2022, 58(9): 1199-1207.
[11] 李伟, 贾兴祺, 金学军. 高强韧QPT工艺的先进钢组织调控和强韧化研究进展[J]. 金属学报, 2022, 58(4): 444-456.
[12] 陈维, 陈洪灿, 王晨充, 徐伟, 罗群, 李谦, 周国治. Fe-C-Ni体系膨胀应变能对马氏体转变的影响[J]. 金属学报, 2022, 58(2): 175-183.
[13] 朱彬, 杨兰, 刘勇, 张宜生. 基于纳米压痕逆算法的热冲压马氏体/贝氏体双相组织的微观力学性能[J]. 金属学报, 2022, 58(2): 155-164.
[14] 郑椿, 刘嘉斌, 江来珠, 杨成, 姜美雪. 拉伸变形对高氮奥氏体不锈钢显微组织和耐腐蚀性能的影响[J]. 金属学报, 2022, 58(2): 193-205.
[15] 韩汝洋, 杨庚蔚, 孙新军, 赵刚, 梁小凯, 朱晓翔. 钒微合金化中锰马氏体耐磨钢奥氏体晶粒长大行为[J]. 金属学报, 2022, 58(12): 1589-1599.