|
|
Al掺杂Mg/Mg2Sn合金界面的第一性原理计算 |
王福容1, 张永梅1, 柏国宁2, 郭庆伟2, 赵宇宏2,3( ) |
1中北大学 半导体与物理学院 太原 030051 2中北大学 材料科学与工程学院 太原 030051 3北京科技大学 北京材料基因工程高精尖创新中心 北京 100083 |
|
First Principles Calculation of Al-Doped Mg/Mg2Sn Alloy Interface |
WANG Furong1, ZHANG Yongmei1, BAI Guoning2, GUO Qingwei2, ZHAO Yuhong2,3( ) |
1School of Semiconductors and Physics, North University of China, Taiyuan 030051, China 2School of Materials Science and Engineering, North University of China, Taiyuan 030051, China 3Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, China |
引用本文:
王福容, 张永梅, 柏国宁, 郭庆伟, 赵宇宏. Al掺杂Mg/Mg2Sn合金界面的第一性原理计算[J]. 金属学报, 2023, 59(6): 812-820.
Furong WANG,
Yongmei ZHANG,
Guoning BAI,
Qingwei GUO,
Yuhong ZHAO.
First Principles Calculation of Al-Doped Mg/Mg2Sn Alloy Interface[J]. Acta Metall Sin, 2023, 59(6): 812-820.
1 |
Xin T Z, Zhao Y H, Mahjoub R, et al. Ultrahigh specific strength in a magnesium alloy strengthened by spinodal decomposition [J]. Sci. Adv., 2021, 7: eabf3039
doi: 10.1126/sciadv.abf3039
|
2 |
Xin T Z, Tang S, Ji F, et al. Phase transformations in an ultralight BCC Mg alloy during anisothermal ageing [J]. Acta Mater., 2022, 239: 118248
doi: 10.1016/j.actamat.2022.118248
|
3 |
Zhang W Z, Sun Z P, Zhang J Y, et al. A near row matching approach to prediction of multiple precipitation crystallography of compound precipitates and its application to a Mg/Mg2Sn system [J]. J. Mater. Sci., 2017, 52: 4253
doi: 10.1007/s10853-016-0680-3
|
4 |
Jo S M, Kim S D, Kim T H, et al. Sequential precipitation behavior of Mg17Al12 and Mg2Sn in Mg-8Al-2Sn-1Zn alloys [J]. J. Alloys Compd., 2018, 749: 794
doi: 10.1016/j.jallcom.2018.03.380
|
5 |
Cheng W L, Park S S, You B S, et al. Microstructure and mechanical properties of binary Mg-Sn alloys subjected to indirect extrusion [J]. Mater. Sci. Eng., 2010, A527: 4650
|
6 |
Jung I C, Kim Y K, Cho T H, et al. Suppression of discontinuous precipitation in AZ91 by addition of Sn [J]. Met. Mater. Int., 2014, 20: 99
doi: 10.1007/s12540-013-6008-9
|
7 |
Huang S, Wang J F, Hou F, et al. Effect of Sn on the formation of the long period stacking ordered phase and mechanical properties of Mg-RE-Zn alloy [J]. Mater. Lett., 2014, 137: 143
doi: 10.1016/j.matlet.2014.08.145
|
8 |
Zhou D W, Xu S H, Zhang F Q, et al. First-principle study on structural stability of Sn alloying MgZn2 phase and Mg2Sn phase [J]. Chin. J. Nonferrous Met., 2010, 20: 914
|
8 |
周惦武, 徐少华, 张福全 等. Sn合金化MgZn2相及Mg2Sn相结构稳定性的第一原理研究 [J]. 中国有色金属学报, 2010, 20: 914
|
9 |
Liu C Q, Chen H W, Wilson N C, et al. Zn segregation in interface between Mg17Al12 precipitate and Mg matrix in Mg-Al-Zn alloys [J]. Scr. Mater., 2019, 163: 91
doi: 10.1016/j.scriptamat.2019.01.001
|
10 |
Elsayed F R, Sasaki T T, Mendis C L, et al. Compositional optimization of Mg-Sn-Al alloys for higher age hardening response [J]. Mater. Sci. Eng., 2013, A566: 22
|
11 |
Sasaki T T, Oh-ishi K, Ohkubo T, et al. Enhanced age hardening response by the addition of Zn in Mg-Sn alloys [J]. Scr. Mater., 2006, 55: 251
doi: 10.1016/j.scriptamat.2006.04.005
|
12 |
Mendis C L, Bettles C J, Gibson M A, et al. Refinement of precipitate distributions in an age-hardenable Mg-Sn alloy through microalloying [J]. Philos. Mag. Lett., 2006, 86: 443
doi: 10.1080/09500830600871186
|
13 |
Pan H C, Qin G W, Xu M, et al. Enhancing mechanical properties of Mg-Sn alloys by combining addition of Ca and Zn [J]. Mater. Des., 2015, 83: 736
doi: 10.1016/j.matdes.2015.06.032
|
14 |
Tian S K, Guo X F. Microstructure and mechanical properties of as-cast Mg-Sn-Al-Zn alloy [J]. Hot Work. Technol., 2014, 43(4): 64
|
14 |
田树科, 郭学锋. 铸态Mg-Sn-Al-Zn合金组织和力学性能 [J]. 热加工工艺, 2014, 43(4): 64
|
15 |
Kim S H, Park S H. Underlying mechanisms of drastic reduction in yield asymmetry of extruded Mg-Sn-Zn alloy by Al addition [J]. Mater. Sci. Eng., 2018, A733: 285
|
16 |
Luo Y X, Chen Y, Ran L, et al. Effects of Zn/Al mass ratio on microstructure evolution and mechanical properties of Mg-Sn based alloys [J]. Mater. Sci. Eng., 2021, A815: 141307
|
17 |
Xu X X. Microstructural characterization of aged Mg-Sn-Al alloy [D]. Chongqing: Chongqing University, 2019
|
17 |
徐孝新. 时效Mg-Sn-Al合金的微观结构研究 [D]. 重庆: 重庆大学, 2019
|
18 |
Bai G N, Tian J Z, Guo Q W, et al. First-principle study on Mg2 X (X = Si, Ge, Sn) intermetallics by Bi micro-alloying [J]. Crystals, 2021, 11: 142
doi: 10.3390/cryst11020142
|
19 |
Wang S, Zhao Y H, Deng S J, et al. First-principle studies on the mechanical, thermodynamic and electronic properties of β″-Mg3Gdand β'-Mg7Gd alloys under pressure [J]. J. Phys. Chem. Solids, 2019, 125: 115
doi: 10.1016/j.jpcs.2018.10.020
|
20 |
Hou H, Pan Y, Bai G N, et al. High-throughput computing for hydrogen transport properties in ε-ZrH2 [J]. Adv. Compos. Hybrid Mater., 2022, 5: 1350
doi: 10.1007/s42114-022-00454-x
|
21 |
Chen L Q, Zhao Y H. From classical thermodynamics to phase-field method [J]. Prog. Mater. Sci., 2022, 124: 100868
doi: 10.1016/j.pmatsci.2021.100868
|
22 |
Liu B, Gu M, Liu X L, et al. First-principles study of fluorine-doped zinc oxide [J]. Appl. Phys. Lett., 2010, 97: 122101
doi: 10.1063/1.3492444
|
23 |
Li R W, Chen Q C, Ouyang L, et al. Insight into the strengthening mechanism of α-Al2O3/γ-Fe ceramic-metal interface doped with Cr, Ni, Mg, and Ti [J]. Ceram. Int., 2021, 47: 22810
doi: 10.1016/j.ceramint.2021.05.001
|
24 |
Li R W, Chen Q C, Ji M X, et al. Exploring failure mode and enhancement mechanism of doped rare-earth elements iron-based/alumina-ceramic interface [J]. Ceram. Int., 2022, 48: 7827
doi: 10.1016/j.ceramint.2021.11.330
|
25 |
Wang X H, Zhang C L, Hu X P, et al. First principle study on alloying effect of Al and Zn doping on Mg-Li phase interface [J]. Rare Met. Mater. Eng., 2014, 43: 1661
|
25 |
王小宏, 张彩丽, 户秀萍 等. Al、Zn对Mg-Li相界合金化效应的第一性原理研究 [J]. 稀有金属材料与工程, 2014, 43: 1661
|
26 |
Liu P, Wang X Y, Chen D F, et al. Interface structure characterization and elements doping on interface bonding strength and tensile failure mechanism of NiCo coating/Cu matrix [J]. Results Phys., 2021, 30: 104883
doi: 10.1016/j.rinp.2021.104883
|
27 |
Zhang D L, Wang J, Kong Y, et al. First-principles investigation on stability and electronic structure of Sc-doped θ'/Al interface in Al-Cu alloys [J]. Trans. Nonferrous Met. Soc. China, 2021, 31: 3342
doi: 10.1016/S1003-6326(21)65733-3
|
28 |
Zhao Y H. Stability of phase boundary between L12-Ni3Al phases: A phase field study [J]. Intermetallics, 2022, 144: 107528
doi: 10.1016/j.intermet.2022.107528
|
29 |
Zhao Y H, Liu K X, Hou H, et al. Role of interfacial energy anisotropy in dendrite orientation in Al-Zn alloys: A phase field study [J]. Mater. Des., 2022, 216: 110555
doi: 10.1016/j.matdes.2022.110555
|
30 |
Tsuru T, Somekawa H, Chrzan D C. Interfacial segregation and fracture in Mg-based binary alloys: Experimental and first-principles perspective [J]. Acta Mater., 2018, 151: 78
doi: 10.1016/j.actamat.2018.03.061
|
31 |
Jin Y R, Feng Z Z, Ye L Y, et al. Mg2Sn: A potential mid-temperature thermoelectric material [J]. RSC Adv., 2016, 6: 48728
doi: 10.1039/C6RA04986A
|
32 |
Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set [J]. Phys. Rev., 1996, 54B: 11169
|
33 |
Xiao J B, Yao J P. First-principle study on the influence of alloy elements on the stability of TiC/Mg interface [J]. Spec. Cast. Nonferrous Alloys, 2020, 40: 1152
|
33 |
肖江波, 尧军平. 合金元素对TiC/Mg界面稳定性影响的第一性原理研究 [J]. 特种铸造及有色合金, 2020, 40: 1152
doi: 10.15980/j.tzzz.2020.10.024
|
34 |
Xie H N, Chen Y T, Zhang T B, et al. Adhesion, bonding and mechanical properties of Mo doped diamond/Al (Cu) interfaces: A first principles study [J]. Appl. Surf. Sci., 2020, 527: 146817
doi: 10.1016/j.apsusc.2020.146817
|
35 |
Wang S, Zhang C, Li X, et al. First-principle investigation on the interfacial structure evolution of the δ'/θ'/δ' composite precipitates in Al-Cu-Li alloys [J]. J. Mater. Sci. Technol., 2020, 58: 205
doi: 10.1016/j.jmst.2020.03.065
|
36 |
Wen Z Q, Zhao Y H, Hou H, et al. A first-principles study on interfacial properties of Ni(001)/Ni3Nb(001) [J]. Trans. Nonferrous Met. Soc. China, 2014, 24: 1500
doi: 10.1016/S1003-6326(14)63218-0
|
37 |
Wang C Q, Chen W G, Xie J P. Effects of transition element additions on the interfacial interaction and electronic structure of Al(111)/6H-SiC(0001) interface: A first-principles study [J]. Materials, 2021, 14: 630
doi: 10.3390/ma14030630
|
38 |
Deringer V L, Tchougréeff A L, Dronskowski R. Crystal orbital Hamilton population (COHP) analysis as projected from plane-wave basis sets [J]. J. Phys. Chem., 2011, 115A: 5461
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|