Please wait a minute...
金属学报  2023, Vol. 59 Issue (6): 812-820    DOI: 10.11900/0412.1961.2022.00454
  研究论文 本期目录 | 过刊浏览 |
Al掺杂Mg/Mg2Sn合金界面的第一性原理计算
王福容1, 张永梅1, 柏国宁2, 郭庆伟2, 赵宇宏2,3()
1中北大学 半导体与物理学院 太原 030051
2中北大学 材料科学与工程学院 太原 030051
3北京科技大学 北京材料基因工程高精尖创新中心 北京 100083
First Principles Calculation of Al-Doped Mg/Mg2Sn Alloy Interface
WANG Furong1, ZHANG Yongmei1, BAI Guoning2, GUO Qingwei2, ZHAO Yuhong2,3()
1School of Semiconductors and Physics, North University of China, Taiyuan 030051, China
2School of Materials Science and Engineering, North University of China, Taiyuan 030051, China
3Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, China
引用本文:

王福容, 张永梅, 柏国宁, 郭庆伟, 赵宇宏. Al掺杂Mg/Mg2Sn合金界面的第一性原理计算[J]. 金属学报, 2023, 59(6): 812-820.
Furong WANG, Yongmei ZHANG, Guoning BAI, Qingwei GUO, Yuhong ZHAO. First Principles Calculation of Al-Doped Mg/Mg2Sn Alloy Interface[J]. Acta Metall Sin, 2023, 59(6): 812-820.

全文: PDF(2070 KB)   HTML
摘要: 

为研究Mg-Sn合金中Al掺杂Mg基体与Mg2Sn相不同取向以及Al元素在界面处的分布位置,基于密度泛函理论计算了Al元素掺杂Mg/Mg2Sn不同指数面的界面黏附功、界面能以及界面掺杂能来寻找较稳定的掺杂位置。采用态密度和晶体轨道重叠布居分析了Al元素掺杂对Mg(0001)/Mg2Sn(022)界面电子特性的影响。结果表明,界面处添加Al元素后只有部分掺杂位置有益于加强Mg/Mg2Sn界面的稳定性。添加Al元素后,Mg(0001)/Mg2Sn(001)界面处Sn端黏附功均高于Mg端,而Mg(0001)/Mg2Sn(111)界面正好相反。Al掺杂后的Mg(0001)/Mg2Sn(022)界面能降低了0.07 eV/nm。添加Al元素后,Mg(0001)/Mg2Sn(022)界面位置Ⅳ比较容易掺杂,该位置处的电子结构分析表明掺杂Al元素后Al的s轨道和Sn的p轨道存在明显交互作用,在界面处Al—Sn键占主导地位。

关键词 Mg/Mg2SnAl界面第一性原理掺杂    
Abstract

Mg-Sn alloy is a high temperature-creep resistant magnesium alloy that has potential applications in lightweight automobiles. The addition of Sn to Mg can reduce the overall cost of the alloy as Sn is cheaper than rare earth elements. Sn and Mg form Mg2Sn phase on the grain boundary, and this Mg2Sn phase has an excellent precipitation hardening effect. However, coarsened Mg2Sn phase can reduce the age hardening effect of the alloy. Previous experimental studies have showed that the addition of Al element can considerably improve the age hardening effect of Mg-Sn alloy as it segregated at the interface between the Mg matrix and Mg2Sn phase. However, there is a lack of research on the different orientations of Al-doped Mg matrix and Mg2Sn phase and the distribution position of Al element at the interface. Therefore, in this study, the interface adhesion energy, interface energy, and interface doping energy of Al-doped Mg/Mg2Sn with different index surfaces were calculated based on density functional theory to determine more stable doping positions. The effects of Al doping on the electronic structure of Mg(0001)/Mg2Sn(022) interface were analyzed using the density of states and crystal orbital Hamilton population. The results demonstrate that only a part of the Al-doping positions is beneficial in strengthening the stability of Mg/Mg2Sn interface. After the addition of Al, the adhesion energy of Sn termination at Mg(0001)/Mg2Sn(001) interface is higher than that of Mg termination, but the adhesion energy of Sn termination at Mg(0001)/Mg2Sn(111) interface is lower than that of Mg termination. In addition, the interface energy of Mg(0001)/Mg2Sn(022) interface doped with Al decreased by 0.07 eV/nm compared to that of Mg(0001)/Mg2Sn(022) interface. The addition of Al element to Mg(0001)/Mg2Sn(022) facilitates the doping of a special position, which shows an obvious interaction between the s orbital of Al and the p orbital of Sn after Al doping. Moreover, the Al—Sn bonding is found to be dominant at the interface.

Key wordsMg/Mg2Sn    Al    interface    first principle    doping
收稿日期: 2022-09-15     
ZTFLH:  TG146.2  
基金资助:国家自然科学基金项目(52074246);国家自然科学基金项目(22008224);国家自然科学基金项目(52275390);国家自然科学基金项目(52205429);国家自然科学基金项目(52201146);国防基础科研项目(JCKY20204-08B002);国防基础科研项目(WDZC2022-12);山西省重点研发计划项目(202102050-201011);中央引导地方计划项目(YDZJSX-2022A025);中央引导地方计划项目(YDZJSX2021A027)
通讯作者: 赵宇宏,zhaoyuhong@nuc.edu.cn,主要从事合金多尺度设计及液态成型工艺优化研究
Corresponding author: ZHAO Yuhong, professor, Tel:15035172958, E-mail: zhaoyuhong@nuc.edu.cn
作者简介: 王福容,女,1998年生,硕士生
Interface structureInterface spacing / nmInterface energy / (eV·nm-1)Mismatch degree (δ) / %
Mg(0001)/Mg2Sn(001)-Mg0.35018.146.34
Mg(0001)/Mg2Sn(001)-Sn0.35031.526.34
Mg(0001)/Mg2Sn(022)0.25014.583.05
Mg(0001)/Mg2Sn(111)-Mg0.19017.562.56
Mg(0001)/Mg2Sn(111)-Sn0.19027.292.56
表1  Mg/Mg2Sn界面间距以及界面能和晶格错配度
图1  Al元素掺杂不同界面取向的不同位置的Mg/Mg2Sn界面模型示意图
图2  Mg/Mg2Sn界面不同位置掺杂Al元素的黏附功(a) Mg(0001)/Mg2Sn(001) interface(b) Mg(0001)/Mg2Sn(022) interface(c) Mg(0001)/Mg2Sn(111) interface
PositionInterface spacing / nmInterface energy / (J·m-2)Interface doping energy / (J·m-2)
25.840.418-5.031
23.640.143-5.070
23.200.140-5.076
22.830.091-5.079
23.220.149-5.075
23.270.152-5.075
表2  Al掺杂Mg(0001)/Mg2Sn(022)界面的界面间距、界面能和掺杂能
图3  Mg(0001)/Mg2Sn(022)界面位置Ⅳ掺杂Al元素前后的界面能
图4  Mg(0001)/Mg2Sn(022)界面位置IV掺杂Al元素前后的分波态密度(PDOS)曲线
图5  Mg(0001)/Mg2Sn(022)界面位置IV掺杂Al元素前后的差分电荷密度图的侧视图和俯视图
图6  hcp结构Mg和fcc结构Mg2Sn,Mg(0001)/Mg2Sn(022)界面处的Mg—Mg和Mg—Sn原子,以及掺杂Al后的Mg(0001)/Mg2Sn(022)界面处的Mg—Al和Al—Sn原子的投影晶体轨道Hamilton布居(pCOHP)曲线
1 Xin T Z, Zhao Y H, Mahjoub R, et al. Ultrahigh specific strength in a magnesium alloy strengthened by spinodal decomposition [J]. Sci. Adv., 2021, 7: eabf3039
doi: 10.1126/sciadv.abf3039
2 Xin T Z, Tang S, Ji F, et al. Phase transformations in an ultralight BCC Mg alloy during anisothermal ageing [J]. Acta Mater., 2022, 239: 118248
doi: 10.1016/j.actamat.2022.118248
3 Zhang W Z, Sun Z P, Zhang J Y, et al. A near row matching approach to prediction of multiple precipitation crystallography of compound precipitates and its application to a Mg/Mg2Sn system [J]. J. Mater. Sci., 2017, 52: 4253
doi: 10.1007/s10853-016-0680-3
4 Jo S M, Kim S D, Kim T H, et al. Sequential precipitation behavior of Mg17Al12 and Mg2Sn in Mg-8Al-2Sn-1Zn alloys [J]. J. Alloys Compd., 2018, 749: 794
doi: 10.1016/j.jallcom.2018.03.380
5 Cheng W L, Park S S, You B S, et al. Microstructure and mechanical properties of binary Mg-Sn alloys subjected to indirect extrusion [J]. Mater. Sci. Eng., 2010, A527: 4650
6 Jung I C, Kim Y K, Cho T H, et al. Suppression of discontinuous precipitation in AZ91 by addition of Sn [J]. Met. Mater. Int., 2014, 20: 99
doi: 10.1007/s12540-013-6008-9
7 Huang S, Wang J F, Hou F, et al. Effect of Sn on the formation of the long period stacking ordered phase and mechanical properties of Mg-RE-Zn alloy [J]. Mater. Lett., 2014, 137: 143
doi: 10.1016/j.matlet.2014.08.145
8 Zhou D W, Xu S H, Zhang F Q, et al. First-principle study on structural stability of Sn alloying MgZn2 phase and Mg2Sn phase [J]. Chin. J. Nonferrous Met., 2010, 20: 914
8 周惦武, 徐少华, 张福全 等. Sn合金化MgZn2相及Mg2Sn相结构稳定性的第一原理研究 [J]. 中国有色金属学报, 2010, 20: 914
9 Liu C Q, Chen H W, Wilson N C, et al. Zn segregation in interface between Mg17Al12 precipitate and Mg matrix in Mg-Al-Zn alloys [J]. Scr. Mater., 2019, 163: 91
doi: 10.1016/j.scriptamat.2019.01.001
10 Elsayed F R, Sasaki T T, Mendis C L, et al. Compositional optimization of Mg-Sn-Al alloys for higher age hardening response [J]. Mater. Sci. Eng., 2013, A566: 22
11 Sasaki T T, Oh-ishi K, Ohkubo T, et al. Enhanced age hardening response by the addition of Zn in Mg-Sn alloys [J]. Scr. Mater., 2006, 55: 251
doi: 10.1016/j.scriptamat.2006.04.005
12 Mendis C L, Bettles C J, Gibson M A, et al. Refinement of precipitate distributions in an age-hardenable Mg-Sn alloy through microalloying [J]. Philos. Mag. Lett., 2006, 86: 443
doi: 10.1080/09500830600871186
13 Pan H C, Qin G W, Xu M, et al. Enhancing mechanical properties of Mg-Sn alloys by combining addition of Ca and Zn [J]. Mater. Des., 2015, 83: 736
doi: 10.1016/j.matdes.2015.06.032
14 Tian S K, Guo X F. Microstructure and mechanical properties of as-cast Mg-Sn-Al-Zn alloy [J]. Hot Work. Technol., 2014, 43(4): 64
14 田树科, 郭学锋. 铸态Mg-Sn-Al-Zn合金组织和力学性能 [J]. 热加工工艺, 2014, 43(4): 64
15 Kim S H, Park S H. Underlying mechanisms of drastic reduction in yield asymmetry of extruded Mg-Sn-Zn alloy by Al addition [J]. Mater. Sci. Eng., 2018, A733: 285
16 Luo Y X, Chen Y, Ran L, et al. Effects of Zn/Al mass ratio on microstructure evolution and mechanical properties of Mg-Sn based alloys [J]. Mater. Sci. Eng., 2021, A815: 141307
17 Xu X X. Microstructural characterization of aged Mg-Sn-Al alloy [D]. Chongqing: Chongqing University, 2019
17 徐孝新. 时效Mg-Sn-Al合金的微观结构研究 [D]. 重庆: 重庆大学, 2019
18 Bai G N, Tian J Z, Guo Q W, et al. First-principle study on Mg2 X (X = Si, Ge, Sn) intermetallics by Bi micro-alloying [J]. Crystals, 2021, 11: 142
doi: 10.3390/cryst11020142
19 Wang S, Zhao Y H, Deng S J, et al. First-principle studies on the mechanical, thermodynamic and electronic properties of β″-Mg3Gdand β'-Mg7Gd alloys under pressure [J]. J. Phys. Chem. Solids, 2019, 125: 115
doi: 10.1016/j.jpcs.2018.10.020
20 Hou H, Pan Y, Bai G N, et al. High-throughput computing for hydrogen transport properties in ε-ZrH2 [J]. Adv. Compos. Hybrid Mater., 2022, 5: 1350
doi: 10.1007/s42114-022-00454-x
21 Chen L Q, Zhao Y H. From classical thermodynamics to phase-field method [J]. Prog. Mater. Sci., 2022, 124: 100868
doi: 10.1016/j.pmatsci.2021.100868
22 Liu B, Gu M, Liu X L, et al. First-principles study of fluorine-doped zinc oxide [J]. Appl. Phys. Lett., 2010, 97: 122101
doi: 10.1063/1.3492444
23 Li R W, Chen Q C, Ouyang L, et al. Insight into the strengthening mechanism of α-Al2O3/γ-Fe ceramic-metal interface doped with Cr, Ni, Mg, and Ti [J]. Ceram. Int., 2021, 47: 22810
doi: 10.1016/j.ceramint.2021.05.001
24 Li R W, Chen Q C, Ji M X, et al. Exploring failure mode and enhancement mechanism of doped rare-earth elements iron-based/alumina-ceramic interface [J]. Ceram. Int., 2022, 48: 7827
doi: 10.1016/j.ceramint.2021.11.330
25 Wang X H, Zhang C L, Hu X P, et al. First principle study on alloying effect of Al and Zn doping on Mg-Li phase interface [J]. Rare Met. Mater. Eng., 2014, 43: 1661
25 王小宏, 张彩丽, 户秀萍 等. Al、Zn对Mg-Li相界合金化效应的第一性原理研究 [J]. 稀有金属材料与工程, 2014, 43: 1661
26 Liu P, Wang X Y, Chen D F, et al. Interface structure characterization and elements doping on interface bonding strength and tensile failure mechanism of NiCo coating/Cu matrix [J]. Results Phys., 2021, 30: 104883
doi: 10.1016/j.rinp.2021.104883
27 Zhang D L, Wang J, Kong Y, et al. First-principles investigation on stability and electronic structure of Sc-doped θ'/Al interface in Al-Cu alloys [J]. Trans. Nonferrous Met. Soc. China, 2021, 31: 3342
doi: 10.1016/S1003-6326(21)65733-3
28 Zhao Y H. Stability of phase boundary between L12-Ni3Al phases: A phase field study [J]. Intermetallics, 2022, 144: 107528
doi: 10.1016/j.intermet.2022.107528
29 Zhao Y H, Liu K X, Hou H, et al. Role of interfacial energy anisotropy in dendrite orientation in Al-Zn alloys: A phase field study [J]. Mater. Des., 2022, 216: 110555
doi: 10.1016/j.matdes.2022.110555
30 Tsuru T, Somekawa H, Chrzan D C. Interfacial segregation and fracture in Mg-based binary alloys: Experimental and first-principles perspective [J]. Acta Mater., 2018, 151: 78
doi: 10.1016/j.actamat.2018.03.061
31 Jin Y R, Feng Z Z, Ye L Y, et al. Mg2Sn: A potential mid-temperature thermoelectric material [J]. RSC Adv., 2016, 6: 48728
doi: 10.1039/C6RA04986A
32 Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set [J]. Phys. Rev., 1996, 54B: 11169
33 Xiao J B, Yao J P. First-principle study on the influence of alloy elements on the stability of TiC/Mg interface [J]. Spec. Cast. Nonferrous Alloys, 2020, 40: 1152
33 肖江波, 尧军平. 合金元素对TiC/Mg界面稳定性影响的第一性原理研究 [J]. 特种铸造及有色合金, 2020, 40: 1152
doi: 10.15980/j.tzzz.2020.10.024
34 Xie H N, Chen Y T, Zhang T B, et al. Adhesion, bonding and mechanical properties of Mo doped diamond/Al (Cu) interfaces: A first principles study [J]. Appl. Surf. Sci., 2020, 527: 146817
doi: 10.1016/j.apsusc.2020.146817
35 Wang S, Zhang C, Li X, et al. First-principle investigation on the interfacial structure evolution of the δ'/θ'/δ' composite precipitates in Al-Cu-Li alloys [J]. J. Mater. Sci. Technol., 2020, 58: 205
doi: 10.1016/j.jmst.2020.03.065
36 Wen Z Q, Zhao Y H, Hou H, et al. A first-principles study on interfacial properties of Ni(001)/Ni3Nb(001) [J]. Trans. Nonferrous Met. Soc. China, 2014, 24: 1500
doi: 10.1016/S1003-6326(14)63218-0
37 Wang C Q, Chen W G, Xie J P. Effects of transition element additions on the interfacial interaction and electronic structure of Al(111)/6H-SiC(0001) interface: A first-principles study [J]. Materials, 2021, 14: 630
doi: 10.3390/ma14030630
38 Deringer V L, Tchougréeff A L, Dronskowski R. Crystal orbital Hamilton population (COHP) analysis as projected from plane-wave basis sets [J]. J. Phys. Chem., 2011, 115A: 5461
[1] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[2] 丁桦, 张宇, 蔡明晖, 唐正友. 奥氏体基Fe-Mn-Al-C轻质钢的研究进展[J]. 金属学报, 2023, 59(8): 1027-1041.
[3] 袁江淮, 王振玉, 马冠水, 周广学, 程晓英, 汪爱英. Cr2AlC涂层相结构演变对力学性能的影响[J]. 金属学报, 2023, 59(7): 961-968.
[4] 王宗谱, 王卫国, Rohrer Gregory S, 陈松, 洪丽华, 林燕, 冯小铮, 任帅, 周邦新. 不同温度轧制Al-Zn-Mg-Cu合金再结晶后的{111}/{111}近奇异晶界[J]. 金属学报, 2023, 59(7): 947-960.
[5] 孙蓉蓉, 姚美意, 王皓瑜, 张文怀, 胡丽娟, 仇云龙, 林晓冬, 谢耀平, 杨健, 董建新, 成国光. Fe22Cr5Al3Mo-xY合金在模拟LOCA下的高温蒸汽氧化行为[J]. 金属学报, 2023, 59(7): 915-925.
[6] 冯艾寒, 陈强, 王剑, 王皞, 曲寿江, 陈道伦. 低密度Ti2AlNb基合金热轧板微观组织的热稳定性[J]. 金属学报, 2023, 59(6): 777-786.
[7] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[8] 刘满平, 薛周磊, 彭振, 陈昱林, 丁立鹏, 贾志宏. 后时效对超细晶6061铝合金微观结构与力学性能的影响[J]. 金属学报, 2023, 59(5): 657-667.
[9] 李谦, 孙璇, 罗群, 刘斌, 吴成章, 潘复生. 镁基材料中储氢相及其界面与储氢性能的调控[J]. 金属学报, 2023, 59(3): 349-370.
[10] 王迪, 贺莉丽, 王栋, 王莉, 张思倩, 董加胜, 陈立佳, 张健. Pt-Al涂层对DD413合金高温拉伸性能的影响[J]. 金属学报, 2023, 59(3): 424-434.
[11] 夏大海, 计元元, 毛英畅, 邓成满, 祝钰, 胡文彬. 2024铝合金在模拟动态海水/大气界面环境中的局部腐蚀机制[J]. 金属学报, 2023, 59(2): 297-308.
[12] 李昕, 江河, 姚志浩, 董建新. O原子对高温合金基体NiCoNiCr晶界作用的理论计算分析[J]. 金属学报, 2023, 59(2): 309-318.
[13] 王虎, 赵琳, 彭云, 蔡啸涛, 田志凌. 激光熔化沉积TiB2 增强TiAl基合金涂层的组织及力学性能[J]. 金属学报, 2023, 59(2): 226-236.
[14] 李斗, 徐长江, 李旭光, 李双明, 钟宏. La掺杂PCeyFe3CoSb12 热电材料及涂层的热电性能[J]. 金属学报, 2023, 59(2): 237-247.
[15] 朱智浩, 陈志鹏, 刘田雨, 张爽, 董闯, 王清. 基于不同 α / β 团簇式比例的Ti-Al-V合金的铸态组织和力学性能[J]. 金属学报, 2023, 59(12): 1581-1589.