Please wait a minute...
金属学报  2023, Vol. 59 Issue (2): 237-247    DOI: 10.11900/0412.1961.2021.00215
  研究论文 本期目录 | 过刊浏览 |
La掺杂PCeyFe3CoSb12 热电材料及涂层的热电性能
李斗, 徐长江, 李旭光, 李双明(), 钟宏
西北工业大学 凝固技术国家重点实验室 西安 710072
Thermoelectric Properties of P-Type CeyFe3CoSb12 Thermoelectric Materials and Coatings Doped with La
LI Dou, XU Changjiang, LI Xuguang, LI Shuangming(), ZHONG Hong
State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China
引用本文:

李斗, 徐长江, 李旭光, 李双明, 钟宏. La掺杂PCeyFe3CoSb12 热电材料及涂层的热电性能[J]. 金属学报, 2023, 59(2): 237-247.
Dou LI, Changjiang XU, Xuguang LI, Shuangming LI, Hong ZHONG. Thermoelectric Properties of P-Type CeyFe3CoSb12 Thermoelectric Materials and Coatings Doped with La[J]. Acta Metall Sin, 2023, 59(2): 237-247.

全文: PDF(4223 KB)   HTML
摘要: 

采用熔融-退火-放电等离子烧结工艺合成P型CoSb3基热电材料,研究Ce掺杂量对CoSb3基热电材料显微组织和热电性能的影响,以及La掺杂对解耦热电关系的作用。结果表明,掺杂元素La和Ce降低了热导率,使La0.1Ce0.8Fe3CoSb12在整个测温区间的热导率保持在1 W/(m·K)左右,对应的最高热电优值在723 K时达到0.45。以磁控溅射法制备Al-Ni涂层,通过对溅射Al-Ni防护涂层的P型La0.1Ce0.8Fe3CoSb12材料热电性能进行测试,发现涂层的介入并未造成材料热电性能的衰退,且涂层与基底结合良好,元素分布均匀。以钎料Ag40Cu60对P型热电元件La0.1Ce0.8Fe3CoSb12与电极片Mo50Cu50接头进行焊接行为研究,发现界面处宏观结合效果良好。

关键词 CoSb3热电材料Al-Ni涂层热导率电导率    
Abstract

During the use of fossil fuels, about two-thirds of the energy that is discharged into the environment in the form of waste heat are barely utilized and cause considerable environmental pollution and intense CO2 emission. Thermoelectric materials directly convert heat energy to electricity, thus, improving the utilization efficiency of fossil energy and reducing environmental pollution. Skutterudite CoSb3 has been widely studied as one of the materials for thermoelectric applications in the middle-temperature region. CoSb3-based skutterudites are narrow bandgap semiconductors with a high-electrical conductivity and Seebeck coefficient. Meanwhile, thermoelectric performance of bulk CoSb3 has been considerably improved via doping and design of nano structures. Herein, P-type CoSb3 was synthesized via melt-annealing-spark plasma sintering process. The effect of Ce-doping content on microstructure and thermoelectric properties of CoSb3 and the effect of La doping on decoupled thermoelectric performance were studied. Compared with Ce0.8Fe3CoSb12, the Seebeck coefficient of La0.1Ce0.8Fe3CoSb12 increased with temperature, electrical resistivity decreased from 25 μΩ·m to 15 μΩ·m at 300 K, and power factor simultaneously increased from 480 μW/(m·K2) to 642 μW/(m·K2) at 673 K. The La0.1Ce0.8Fe3CoSb12 thermal conductivity decreased with La or Ce doping to ~1 W/(m·K), and the corresponding thermoelectric figure of merit reached 0.45 at 723 K in the temperature range from 300 K to 723 K. Al-Ni coating was deposited on the sintered bulk skutterudite via magnetron sputtering method. It was demonstrated that the coating did not degrade the thermoelectric performance, while the coating elements were uniformly distributed across the sintered bulk La0.1Ce0.8Fe3CoSb12. The welding behavior of P-type La0.1Ce0.8Fe3CoSb12 was studied using a Ag40Cu60 solder and a Mo50Cu50 electrode sheet. The interface of this thermoelectric material was prone to cracking and pore formation, while the elements at the interface have not demonstrated remarkable diffusion. This indicates an efficiency of the interface bonding, which may be used in the fabrication technologies of thermoelectric devices.

Key wordsCoSb3    thermoelectric material    Al-Ni coating    thermal conductivity    electrical conductivity
收稿日期: 2021-05-19     
ZTFLH:  TQ174  
基金资助:国家自然科学基金项目(51774239)
作者简介: 李 斗,男,1993年生,博士生
图1  LaxCeyFe3CoSb12热电材料放电等离子烧结(SPS)前后的XRD谱
图2  La0.1Ce0.8Fe3CoSb12块体热电材料SPS后的SEM像和EDS面扫描图
PointCoSbFeCeLaTotal
11.5673.5524.770.120.00100
23.4368.5019.017.301.76100
36.4173.2616.672.940.72100
45.7371.9518.033.141.15100
表1  图2a中点1~4的EDS分析结果 (atomic fraction / %)
图3  LaxCeyFe3CoSb12块体热电材料的电性能测试曲线
CompoundHallCarrierCarrier
coefficientmobilityconcentration
10-2 cm·C-1cm2·V-1·s-11020 cm-3
Ce0.8Fe3CoSb121.636.133.83
Ce0.9Fe3CoSb122.5258.302.48
La0.1Ce0.8Fe3CoSb123.5824.301.74
表2  室温下LaxCeyFe3CoSb12块体热电材料的电学性质
图4  LaxCeyFe3CoSb12块体热电材料热输运性能曲线
图5  La0.1Ce0.8Fe3CoSb12块体热电材料TEM分析
图6  LaxCeyFe3CoSb12块体热电材料热电优值
图7  La0.1Ce0.8Fe3CoSb12块体热电材料添加Al-Ni涂层后的表征和分析
图8  La0.1Ce0.8Fe3CoSb12块体热电材料溅射Al-Ni涂层前后热电性能曲线
图9  La0.1Ce0.8Fe3CoSb12块体热电材料焊接后接头区域SEM像和元素分布的线扫描
图10  La0.1Ce0.8Fe3CoSb12块体热电材料焊接后焊接区域SEM像和元素面分布图
1 Suarez F, Parekh D P, Ladd C, et al. Flexible thermoelectric generator using bulk legs and liquid metal interconnects for wearable electronics[J]. Appl. Energy, 2017, 202: 736
doi: 10.1016/j.apenergy.2017.05.181
2 Siddique A R M, Rabari R, Mahmud S, et al. Thermal energy harvesting from the human body using flexible thermoelectric generator (FTEG) fabricated by a dispenser printing technique[J]. Energy, 2016, 115: 1081
doi: 10.1016/j.energy.2016.09.087
3 Kuroki T, Kabeya K, Makino K, et al. Thermoelectric generation using waste heat in steel works[J]. J. Electron. Mater., 2014, 43: 2405
doi: 10.1007/s11664-014-3094-5
4 Sun H Y, Li S M, Feng S K, et al. Microstructure and phase selection in directional solidification of Co-Sb alloy[J]. Acta Metall. Sin., 2013, 49: 682
doi: 10.3724/SP.J.1037.2012.00735
4 孙洪元, 李双明, 冯松科 等. Co-Sb合金定向凝固组织与相选择[J]. 金属学报, 2013, 49: 682
doi: 10.3724/SP.J.1037.2012.00735
5 Yang B, Li S M, Li X, et al. Ultralow thermal conductivity and enhanced thermoelectric properties of SnTe based alloys prepared by melt spinning technique[J]. J. Alloys Compd., 2020, 837: 155568
doi: 10.1016/j.jallcom.2020.155568
6 Zheng Z H, Li F, Luo J T, et al. Thermoelectric properties and micro-structure characteristics of nano-sized CoSb3 thin films prefabricating by co-sputtering[J]. J. Alloys Compd., 2018, 732: 958
doi: 10.1016/j.jallcom.2017.10.207
7 Tang Y L, Chen S W, Snyder G J. Temperature dependent solubility of Yb in Yb-CoSb3 skutterudite and its effect on preparation, optimization and lifetime of thermoelectrics[J]. J. Materiomics, 2015, 1: 75
doi: 10.1016/j.jmat.2015.03.008
8 Li X H, Zhang Q, Kang Y L, et al. High pressure synthesized Ca-filled CoSb3 skutterudites with enhanced thermoelectric properties[J]. J. Alloys Compd., 2016, 677: 61
doi: 10.1016/j.jallcom.2016.03.239
9 Tang Y L, Gibbs Z M, Agapito L A, et al. Convergence of multi-valley bands as the electronic origin of high thermoelectric performance in CoSb3 skutterudites[J]. Nat. Mater., 2015, 14: 1223
doi: 10.1038/nmat4430
10 Zhou Z X, Li J L, Fan Y C, et al. Uniform dispersion of SiC in Yb-filled skutterudite nanocomposites with high thermoelectric and mechanical performance[J]. Scr. Mater., 2019, 162: 166
doi: 10.1016/j.scriptamat.2018.11.015
11 Zhou X Y, Wang G W, Guo L J, et al. Hierarchically structured TiO2 for Ba-filled skutterudite with enhanced thermoelectric performance[J]. J. Mater. Chem., 2014, 2A: 20629
12 Tang Y L, Qiu Y T, Xi L L, et al. Phase diagram of In-Co-Sb system and thermoelectric properties of In-containing skutterudites[J]. Energy Environ. Sci., 2014, 7: 812
doi: 10.1039/C3EE43240H
13 Meng X F, Liu Z H, Cui B, et al. Grain boundary engineering for achieving high thermoelectric performance in n-type skutterudites[J]. Adv. Energy Mater., 2017, 7: 1602582
doi: 10.1002/aenm.201602582
14 Akasaka M, Iida T, Sakuragi G, et al. Effects of post-annealing on thermoelectric properties of p-type CoSb3 grown by the vertical Bridgman method[J]. J. Alloys Compd., 2005, 386: 228
doi: 10.1016/j.jallcom.2004.04.144
15 Furuyama S, Iida T, Matsui S, et al. Thermoelectric properties of undoped p-type CoSb3 prepared by vertical Bridgman crystal growth and spark plasma sintering[J]. J. Alloys Compd., 2006, 415: 251
doi: 10.1016/j.jallcom.2005.07.057
16 Yang L, Wu J S, Zhang L T. Study of grain growth and spark plasma sintering of a Skutterudite compound[J]. Acta Metall. Sin., 2003, 39: 785
16 杨 磊, 吴建生, 张澜庭. Skutterudite类化合物晶粒长大规律和放电等离子体烧结的研究[J]. 金属学报, 2003, 39: 785
17 Rogl G, Setman D, Schafler E, et al. High-pressure torsion, a new processing route for thermoelectrics of high ZTs by means of severe plastic deformation[J]. Acta Mater., 2012, 60: 2146
doi: 10.1016/j.actamat.2011.12.023
18 Ballikaya S, Uher C. Enhanced thermoelectric performance of optimized Ba, Yb filled and Fe substituted skutterudite compounds[J]. J. Alloys Compd., 2014, 585: 168
doi: 10.1016/j.jallcom.2013.09.124
19 Geng H Y, Ochi T, Suzuki S, et al. Thermoelectric properties of multifilled skutterudites with La as the main filler[J]. J. Electron. Mater., 2013, 42: 1999
doi: 10.1007/s11664-013-2501-7
20 Tan G J, Liu W, Wang S Y, et al. Rapid preparation of CeFe4Sb12 skutterudite by melt spinning: Rich nanostructures and high thermoelectric performance[J]. J. Mater. Chem., 2013, 1A: 12657
21 Tan G J, Zheng Y, Tang X F. High thermoelectric performance of nonequilibrium synthesized CeFe4Sb12 composite with multi-scaled nanostructures[J]. Appl. Phys. Lett., 2013, 103: 183904
doi: 10.1063/1.4827555
22 Rogl G, Grytsiv A, Rogl P, et al. Nanostructuring of p- and n-type skutterudites reaching figures of merit of approximately 1.3 and 1.6, respectively[J]. Acta Mater., 2014, 76: 434
doi: 10.1016/j.actamat.2014.05.051
23 Bae S H, Lee K H, Choi S M. Effective role of filling fraction control in p-type CexFe3CoSb12 skutterudite thermoelectric materials[J]. Intermetallics, 2019, 105: 44
doi: 10.1016/j.intermet.2018.11.010
24 Park K H, Lee S, Seo W S, et al. Thermoelectric properties of La-filled CoSb3 skutterudites[J]. J. Korean Phys. Soc., 2014, 64: 1004
doi: 10.3938/jkps.64.1004
25 Liu K G, Dong X, Zhang J X. The effects of La on thermoelectric properties of LaxCo4Sb12 prepared by MA-SPS[J]. Mater. Chem. Phys., 2006, 96: 371
doi: 10.1016/j.matchemphys.2005.07.068
26 Ballikaya S, Wang G Y, Sun K, et al. Thermoelectric properties of triple-filled BaxYby In zCo4Sb12 Skutterudites[J]. J. Electron. Mater., 2011, 40: 570
doi: 10.1007/s11664-010-1454-3
27 Shi X, Zhang W, Chen L D, et al. Filling fraction limit for intrinsic voids in crystals: Doping in skutterudites[J]. Phys. Rev. Lett., 2005, 95: 185503
doi: 10.1103/PhysRevLett.95.185503
28 Wojciechowski K T, Zybala R, Mania R. High temperature CoSb3-Cu junctions[J]. Microelectron. Reliab., 2011, 51: 1198
doi: 10.1016/j.microrel.2011.03.033
29 Feng H B, Zhang L X, Zhang J L, et al. Metallization and diffusion bonding of CoSb3-based thermoelectric materials[J]. Materials, 2020, 13: 1130
doi: 10.3390/ma13051130
[1] 刘志愿, 王永贵, 赵成玉, 杨婷, 夏爱林. p型方钴矿热电材料纳米-介观尺度微结构调控[J]. 金属学报, 2022, 58(8): 979-991.
[2] 曾小勤, 王杰, 应韬, 丁文江. 镁及其合金导热研究进展[J]. 金属学报, 2022, 58(4): 400-411.
[3] 周丽君, 位松, 郭敬东, 孙方远, 王新伟, 唐大伟. 基于飞秒激光时域热反射法的微尺度Cu-Sn金属间化合物热导率研究[J]. 金属学报, 2022, 58(12): 1645-1654.
[4] 赵立东, 王思宁, 肖钰. 热电材料的载流子迁移率优化[J]. 金属学报, 2021, 57(9): 1171-1183.
[5] 周洪宇, 冉珉瑞, 李亚强, 张卫冬, 刘俊友, 郑文跃. 颗粒尺寸对金刚石/Al封装基板热物性的影响[J]. 金属学报, 2021, 57(7): 937-947.
[6] 崔洋, 李寿航, 应韬, 鲍华, 曾小勤. 基于第一性原理的金属导热性能研究[J]. 金属学报, 2021, 57(3): 375-384.
[7] 宋贵宏,李贵鹏,刘倩男,杜昊,胡方. 溅射沉积Mg2(Sn, Si)薄膜组织结构与导电性能[J]. 金属学报, 2019, 55(11): 1469-1476.
[8] 张荻, 苑孟颖, 谭占秋, 熊定邦, 李志强. 金刚石/Cu复合界面导热改性及其纳米化研究进展[J]. 金属学报, 2018, 54(11): 1586-1596.
[9] 刘晓云,王文广,王东,肖伯律,倪丁瑞,陈礼清,马宗义. 片层石墨尺寸对片层石墨/Al复合材料的强度和热导率的影响[J]. 金属学报, 2017, 53(7): 869-878.
[10] 孙洪元,李双明,冯松科,傅恒志. Co-Sb合金定向凝固组织与相选择[J]. 金属学报, 2013, 49(6): 682-688.
[11] 项建英 陈树海 黄继华 赵兴科 张华. 等离子喷涂La2(Zr0.7Ce0.3)2O7热障涂层的抗热震性能[J]. 金属学报, 2012, 48(8): 965-970.
[12] 厉英,丁玉石,崔绍刚,王常珍. 掺杂Sc的CaZrO3的制备及电学性能[J]. 金属学报, 2012, 48(5): 575-578.
[13] 宋鲁男 刘嘉斌 黄六一 曾跃武 孟亮. 强变形对Cu-Cr合金组织性能的影响[J]. 金属学报, 2012, 48(12): 1459-1466.
[14] 厉英 马北越 王臻明 姜茂发. Na1.4Co2O4基热电材料的溶胶-凝胶法制备及表征[J]. 金属学报, 2011, 47(1): 109-114.
[15] 李贵茂 王恩刚 张林 左小伟 赫冀成. 强磁场对Cu-25%Ag合金析出相及性能的影响[J]. 金属学报, 2010, 46(9): 1128-1132.