|
|
新型耐热合金SP2215组织与性能的关联性 |
梁凯, 姚志浩( ), 谢锡善, 姚凯俊, 董建新 |
北京科技大学 材料科学与工程学院 北京 100083 |
|
Correlation Between Microstructure and Properties of New Heat-Resistant Alloy SP2215 |
LIANG Kai, YAO Zhihao( ), XIE Xishan, YAO Kaijun, DONG Jianxin |
School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China |
引用本文:
梁凯, 姚志浩, 谢锡善, 姚凯俊, 董建新. 新型耐热合金SP2215组织与性能的关联性[J]. 金属学报, 2023, 59(6): 797-811.
Kai LIANG,
Zhihao YAO,
Xishan XIE,
Kaijun YAO,
Jianxin DONG.
Correlation Between Microstructure and Properties of New Heat-Resistant Alloy SP2215[J]. Acta Metall Sin, 2023, 59(6): 797-811.
1 |
Kloc L, Dymáček P, Sklenička V. High temperature creep of Sanicro 25 austenitic steel at low stresses [J]. Mater. Sci. Eng., 2018, A722: 88
|
2 |
Liu Z D, Chen Z Z, He X K, et al. Systematical innovation of heat resistant materials used for 630-700oC advanced ultra-supercritical fossil fired boilers [J]. Acta Metall. Sin., 2020, 56: 539
|
2 |
刘正东, 陈正宗, 何西扣, 等. 630~700℃超超临界燃煤电站耐热管及其制造技术进展 [J]. 金属学报, 2020, 56: 539
doi: 10.11900/0412.1961.2019.00419
|
3 |
Xie X S, Yu H Y, Chi C Y, et al. A composite reinforced 22/15 chromium-nickel type high-strength anti-corrosion austenitic heat-resistant steel [P]. Chin Pat, 201310719141.4, 2016
|
3 |
谢锡善, 于鸿垚, 迟成宇 等. 一种复合强化 22/15铬镍型高强抗蚀奥氏体耐热钢 [P]. 中国专利, 201310719141.4, 2016
|
4 |
Liu C, Yao Z H, Guo J, et al. Microstructure evolution behavior of powder superalloy FGH4720Li at near service temperature [J]. Acta Metall. Sin., 2021, 57: 1549
doi: 10.11900/0412.1961.2021.00140
|
4 |
刘 超, 姚志浩, 郭 婧 等. 粉末高温合金 FGH4720Li 在近服役温度下的组织演变规律 [J]. 金属学报, 2021, 57: 1549
|
5 |
Zieliński A, Golański G, Sroka M. Evolution of the microstructure and mechanical properties of HR3C austenitic stainless steel after ageing for up to 30,000 h at 650-750 oC [J]. Mater. Sci. Eng., 2020, A796: 139944
|
6 |
Jin X, Xia X, Li Y, et al. Quantitative study of microstructure evolution and the effect on mechanical properties of Super304H during aging [J]. Mater. High Temp., 2019, 36: 459
doi: 10.1080/09603409.2019.1632508
|
7 |
Jiang J, Zhu L. Strengthening mechanisms of precipitates in S30432 heat-resistant steel during short-term aging [J]. Mater. Sci. Eng., 2012, A539: 170
|
8 |
Du J K. Microstructure evolution and mechanical properties of a new austenitic heat-resistant steel SP2215 after high temperature aging [D]. Beijing: University of Science and Technology Beijing, 2018
|
8 |
杜吉康. 新型奥氏体耐热钢SP2215高温时效后组织演变与力学性能研究 [D]. 北京: 北京科技大学, 2018
|
9 |
Ai Z Q. An Investigation on the high temperature stress rupture strength and structure stability of a new stainless steel SP2215 [D]. Beijing: University of Science and Technology Beijing, 2017
|
9 |
艾卓群. 新型耐热钢 SP2215 的高温持久和组织稳定性研究 [D]. 北京: 北京科技大学, 2017
|
10 |
Xie X S, Ai Z Q, Chi C Y, et al. R & D of the new type SP2215 austenitic heat-resistant steel for servicing 620-650oC boiler super heater/reheater [J]. Steel Pipe, 2018, 47(1): 23
|
10 |
谢锡善, 艾卓群, 迟成宇 等. 620~650℃锅炉过热器/再热器用新型奥氏体耐热钢SP2215的研发 [J]. 钢管, 2018, 47(1): 23
|
11 |
Golański G, Zieliński A, Sroka M, et al. The effect of service on microstructure and mechanical properties of HR3C heat-resistant austenitic stainless steel [J]. Materials, 2020, 13: 1297
doi: 10.3390/ma13061297
|
12 |
Xiao J M. Alloy Phase and Phase Transition [M]. Beijing: Metallurgical Industry Press, 1987: 250
|
12 |
肖纪美. 合金相与相变 [M]. 北京: 冶金工业出版社, 1987: 250
|
13 |
Zhang Y J, Zhu L H, Qi A F, et al. Microstructural evolution and the effect on mechanical properties of S30432 heat-resistant steel during aging at 650oC [J]. ISIJ Int., 2010, 50: 596
doi: 10.2355/isijinternational.50.596
|
14 |
Ghosh A, Mishra B, Das S, et al. An ultra low carbon Cu bearing steel: Influence of thermomechanical processing and aging heat treatment on structure and properties [J]. Mater. Sci. Eng., 2004, A374: 43
|
15 |
Zhou R, Zhu L. Growth behavior and strengthening mechanism of Cu-rich particles in sanicro 25 austenitic heat-resistant steel after aging at 973 K [J]. Mater. Sci. Eng., 2020, A796: 139973
|
16 |
Du J K, Zhang Y F, Wang S L, et al. Multiphase strengthening of nanosized precipitates in a cost-effective austenitic heat-resistant steel [J]. Steel Res. Int., 2020, 91: 2000122
doi: 10.1002/srin.v91.9
|
17 |
Roncery L M, Weber S, Theisen W. Nucleation and precipitation kinetics of M23C6 and M2N in an Fe-Mn-Cr-C-N austenitic matrix and their relationship with the sensitization phenomenon [J]. Acta Mater., 2011, 59: 6275
doi: 10.1016/j.actamat.2011.06.038
|
18 |
Ren W, Wang L. Precipitation behavior of M23C6 in high nitrogen austenitic heat-resistant steel [J]. J. Alloys Compd., 2022, 905: 164013
doi: 10.1016/j.jallcom.2022.164013
|
19 |
Zhou Y H, Liu Y C, Zhou X S, et al. Precipitation and hot deformation behavior of austenitic heat-resistant steels: A review [J]. J. Mater. Sci. Technol., 2017, 33: 1448
doi: 10.1016/j.jmst.2017.01.025
|
20 |
Golański G, Zieliński A, Purzyńska H. Precipitation processes in creep-resistant austenitic steels [A]. Austenitic Stainless Steels—New Aspects [M]. London: IntechOpen, 2017: 93
|
21 |
Wang X, Li Y, Chen D X, et al. Precipitate evolution during the aging of Super304H steel and its influence on impact toughness [J]. Mater. Sci. Eng., 2019, A754: 238
|
22 |
Hu G D, Wang P, Li D Z, et al. Precipitate evolution in a modified 25Cr-20Ni austenitic heat resistant stainless steel during creep rupture test at 750oC [J]. Acta Metall. Sin., 2018, 54: 1705
|
22 |
胡国栋, 王 培, 李殿中 等. 新型25Cr-20Ni奥氏体耐热不锈钢750℃持久实验过程中析出相演变 [J]. 金属学报, 2018, 54: 1705
doi: 10.11900/0412.1961.2018.00361
|
23 |
Yang Y H, Zhu L H, Wang Q J, et al. Microstructural evolution and the effect on hardness and plasticity of S31042 heat-resistant steel during creep [J]. Mater. Sci. Eng., 2014, A608: 164
|
24 |
Zhu C Z, Yuan Y, Bai J M, et al. Impact toughness of a modified HR3C austenitic steel after long-term thermal exposure at 650oC [J]. Mater. Sci. Eng., 2019, A740-741: 71
|
25 |
Zhou Q W, Ping S B, Meng X B, et al. Precipitation kinetics of M23C6 carbides in the Super304H austenitic heat-resistant steel [J]. J. Mater. Eng. Perform., 2017, 26: 6130
doi: 10.1007/s11665-017-2982-2
|
26 |
Santella M L, Tortorelli P F, Render M, et al. Effects of applied stress and grain size on creep-rupture lifetime prediction for Haynes 282 alloy [J]. Mater. Sci. Eng., 2022, A838: 142785
|
27 |
Yao Z H, Zhang M C, Dong J X. Stress rupture fracture model and microstructure evolution for Waspaloy [J]. Metall. Mater. Trans., 2013, 44A: 3084
|
28 |
Ou P, Xing H, Wang X L, et al. Tensile yield behavior and precipitation strengthening mechanism in Super304H steel [J]. Mater. Sci. Eng., 2014, A600: 171
|
29 |
Nguyen T T, Jeong T M, Erten D T, et al. Creep deformation and rupture behaviour of service-exposed Super304H steel boiler tubes [J]. Mater. High Temp., 2021, 38: 61
doi: 10.1080/09603409.2020.1830609
|
30 |
Zheng Z J. The reason analysis of HR3C steel pipe aging impact toughness decreased greatly [J]. Boiler Technol., 2011, 42(04): 46
|
30 |
郑子杰. HR3C钢管时效冲击韧性大幅降低的原因分析 [J]. 锅炉技术, 2011, 42(04): 46
|
31 |
Kaneko K, Fukunaga T, Yamada K, et al. Formation of M23C6-type precipitates and chromium-depleted zones in austenite stainless stee l [J]. Scr. Mater., 2011, 65: 509
doi: 10.1016/j.scriptamat.2011.06.010
|
32 |
Qi Y, Wu Z, Zhang X, et al. Microstructure and phases of deposited metal of SUPER304H steel under high temperature persistent stress [J]. Sci. Rep., 2018, 8: 2618
doi: 10.1038/s41598-018-20594-9
pmid: 29422605
|
33 |
Liu P, Chu Z K, Yuan Y, et al. Microstructures and mechanical properties of a newly developed austenitic heat resistant steel [J]. Acta. Metall. Sin. (Engl. Lett.), 2019, 32: 517
doi: 10.1007/s40195-018-0770-0
|
34 |
Wei L, Hao W, Cheng Y, et al. Isothermal aging embrittlement in an Fe-22Cr-25Ni alloy [J]. Mater. Sci. Eng., 2018, A737: 40
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|