Please wait a minute...
金属学报  2023, Vol. 59 Issue (6): 797-811    DOI: 10.11900/0412.1961.2022.00539
  研究论文 本期目录 | 过刊浏览 |
新型耐热合金SP2215组织与性能的关联性
梁凯, 姚志浩(), 谢锡善, 姚凯俊, 董建新
北京科技大学 材料科学与工程学院 北京 100083
Correlation Between Microstructure and Properties of New Heat-Resistant Alloy SP2215
LIANG Kai, YAO Zhihao(), XIE Xishan, YAO Kaijun, DONG Jianxin
School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
引用本文:

梁凯, 姚志浩, 谢锡善, 姚凯俊, 董建新. 新型耐热合金SP2215组织与性能的关联性[J]. 金属学报, 2023, 59(6): 797-811.
Kai LIANG, Zhihao YAO, Xishan XIE, Kaijun YAO, Jianxin DONG. Correlation Between Microstructure and Properties of New Heat-Resistant Alloy SP2215[J]. Acta Metall Sin, 2023, 59(6): 797-811.

全文: PDF(7109 KB)   HTML
摘要: 

针对新型SP2215耐热合金,通过一系列持久及冲击实验,研究了其在不同温度和时间时效处理后组织与性能之间的关联性。结果表明,SP2215合金具有优良的高温组织稳定性,在时效过程中会析出富Cu相、MX相、NbCrN相和M23C6等多种纳米级析出相。在时效早期,随着时效温度升高和时效时间的延长,析出相迅速增多,由于析出相的强化作用,合金的强度迅速增加;同时,合金的冲击韧性显著降低,并发生沿晶断裂,JMA相变动力学模型定量计算表明其主要与M23C6碳化物在晶界的连续析出与长大有关。在时效后期,析出相逐渐保持稳定,无有害相析出,晶粒度始终保持在4.5~5级,优异的高温组织稳定性使得SP2215耐热合金在时效后期具有稳定的力学性能,650和700℃的1 × 105 h持久强度分别达到120和70 MPa级别,可实现对HR3C、Super304H等同类耐热合金的国产替代。

关键词 SP2215耐热合金长期时效析出相持久强度性能    
Abstract

With the improvement of the steam parameters of thermal power units, the requirements put forward for the stress rupture strength and structural stability of heat-resistant materials for boiler superheater/reheater pipes become higher. SP2215, as a new heat-resistant alloy, is an excellent candidate for 620-650°C ultra-supercritical boiler superheater/reheater. In this study, the correlation between microstructure evolution and properties of the SP2215 heat-resistant alloy aging at different temperatures and time was studied via a series of creep and impact tests. The results show that the SP2215 alloy has excellent microstructure stability in high-temperature condition. Moreover, various nanoscale precipitations such as Cu-rich, MX, NbCrN, and M23C6 phases occur during aging. In the early period of aging, with the increase in aging temperature and aging time, the precipitations increase rapidly, improving the strength of the material; however, the impact toughness of the SP2215 alloy decreases considerably, with substantial intergranular fracture caused by the continuous precipitation and growth of M23C6 at the boundary, as shown with the quantitative calculation using the JMA model. In the late period of aging, the precipitations gradually stabilize, and the grain size remains in the range of 4.5-5 grade. As a result, the 1 × 105 h stress rupture strength of the SP2215 alloy at 650 and 700oC still remain more than 120 and 70 MPa, respectively. Hence, the alloy can be used as a domestic replacement for foreign HR3C, Super304H, and other similar heat-resistant alloys.

Key wordsSP2215 heat-resistant alloy    long term aging    precipitation    stress rupture strength    property
收稿日期: 2022-10-24     
ZTFLH:  TG132.3  
基金资助:国家自然科学基金项目(51771017);国家自然科学基金项目(52271087)
通讯作者: 姚志浩,zhihaoyao@ustb.edu.cn,主要从事先进高温结构材料研究
Corresponding author: YAO Zhihao, professor, Tel:(010)62332884, E-mail: zhihaoyao@ustb.edu.cn
作者简介: 梁 凯,男,1998年生,硕士生
图1  时效过程中不同时效温度和时间下SP2215耐热合金的晶粒度变化
图2  650℃时效500 h后SP2215耐热合金的微观组织的OM像
图3  时效过程中富Cu相演变的TEM像
图4  图3b中白色球形颗粒及基体的EDS分析
t / h650oC700oC
5005.9718.95
200011.5138.36
600018.4048.37
1000020.2853.73
表1  时效过程中富Cu相平均尺寸变化 (nm)
图5  SP2215耐热合金时效过程中晶界及其附近析出相演变的SEM像
图6  650℃时效6000 h后晶界析出相的EDS面扫结果
图7  M23C6含量随时效时间的变化曲线
图8  SP2215耐热合金在不同时效温度下lnln[1 / (1 - f)]与lnt的关系曲线
图9  不同时效温度下SP2215合金中M23C6的JMA动力学曲线
图10  在孪晶界、晶内和晶界处析出的M23C6碳化物SEM像及其EDS面扫元素分布图
图11  650℃时效500 h的MX相、6000 h的NbCrN相,及700℃时效6000 h的NbCrN相的TEM像
ElementMatrix (500 h)MX
500 h2000 h6000 h10000 h
Nb0.061.408.444.086.10
Cr11.9713.1116.9918.2233.15
N5.958.7124.9312.44-
C33.1732.0219.7222.36-
表2  650℃时效过程中基体和MX相主要成分含量变化 (atomic fraction / %)
ElementMatrix (500 h)MX
500 h2000 h6000 h10000 h
Nb0.062.026.357.4111.79
Cr11.9718.1718.8922.6241.26
N5.9510.8820.5026.1012.61
C33.1721.2327.9218.75-
表3  700℃时效过程中基体和MX相的主要成分含量变化 (atomic fraction / %)
图12  650℃时效过程中NbCrN相EDS面扫结果
图13  椭球状NbCrN相的TEM像及其选区电子衍射(SAED)花样
图14  SP2215耐热合金在不同温度下的直线外推曲线
图15  C值的拟合计算
图16  SP2215耐热合金的Larson-Miller曲线
图17  高温短时拉伸性能随温度变化曲线
图18  时效过程中SP2215合金硬度随时效时间的变化
Steel650oC700oCRef.
SP221516.512.5This work
HR3C4.74[30]
Super304H17.5-[6]
表4  650和700℃长期时效后SP2215、HR3C[30]和Super304H[6]耐热合金冲击功对比 (J)
图19  700℃时效过程中SP2215合金冲击功随时效时间的变化
图20  SP2215合金的V型冲击断口宏观形貌
图21  SP2215合金冲击断口微观形貌
图22  M23C6含量对SP2215合金冲击功的影响
1 Kloc L, Dymáček P, Sklenička V. High temperature creep of Sanicro 25 austenitic steel at low stresses [J]. Mater. Sci. Eng., 2018, A722: 88
2 Liu Z D, Chen Z Z, He X K, et al. Systematical innovation of heat resistant materials used for 630-700oC advanced ultra-supercritical fossil fired boilers [J]. Acta Metall. Sin., 2020, 56: 539
2 刘正东, 陈正宗, 何西扣, 等. 630~700℃超超临界燃煤电站耐热管及其制造技术进展 [J]. 金属学报, 2020, 56: 539
doi: 10.11900/0412.1961.2019.00419
3 Xie X S, Yu H Y, Chi C Y, et al. A composite reinforced 22/15 chromium-nickel type high-strength anti-corrosion austenitic heat-resistant steel [P]. Chin Pat, 201310719141.4, 2016
3 谢锡善, 于鸿垚, 迟成宇 等. 一种复合强化 22/15铬镍型高强抗蚀奥氏体耐热钢 [P]. 中国专利, 201310719141.4, 2016
4 Liu C, Yao Z H, Guo J, et al. Microstructure evolution behavior of powder superalloy FGH4720Li at near service temperature [J]. Acta Metall. Sin., 2021, 57: 1549
doi: 10.11900/0412.1961.2021.00140
4 刘 超, 姚志浩, 郭 婧 等. 粉末高温合金 FGH4720Li 在近服役温度下的组织演变规律 [J]. 金属学报, 2021, 57: 1549
5 Zieliński A, Golański G, Sroka M. Evolution of the microstructure and mechanical properties of HR3C austenitic stainless steel after ageing for up to 30,000 h at 650-750 oC [J]. Mater. Sci. Eng., 2020, A796: 139944
6 Jin X, Xia X, Li Y, et al. Quantitative study of microstructure evolution and the effect on mechanical properties of Super304H during aging [J]. Mater. High Temp., 2019, 36: 459
doi: 10.1080/09603409.2019.1632508
7 Jiang J, Zhu L. Strengthening mechanisms of precipitates in S30432 heat-resistant steel during short-term aging [J]. Mater. Sci. Eng., 2012, A539: 170
8 Du J K. Microstructure evolution and mechanical properties of a new austenitic heat-resistant steel SP2215 after high temperature aging [D]. Beijing: University of Science and Technology Beijing, 2018
8 杜吉康. 新型奥氏体耐热钢SP2215高温时效后组织演变与力学性能研究 [D]. 北京: 北京科技大学, 2018
9 Ai Z Q. An Investigation on the high temperature stress rupture strength and structure stability of a new stainless steel SP2215 [D]. Beijing: University of Science and Technology Beijing, 2017
9 艾卓群. 新型耐热钢 SP2215 的高温持久和组织稳定性研究 [D]. 北京: 北京科技大学, 2017
10 Xie X S, Ai Z Q, Chi C Y, et al. R & D of the new type SP2215 austenitic heat-resistant steel for servicing 620-650oC boiler super heater/reheater [J]. Steel Pipe, 2018, 47(1): 23
10 谢锡善, 艾卓群, 迟成宇 等. 620~650℃锅炉过热器/再热器用新型奥氏体耐热钢SP2215的研发 [J]. 钢管, 2018, 47(1): 23
11 Golański G, Zieliński A, Sroka M, et al. The effect of service on microstructure and mechanical properties of HR3C heat-resistant austenitic stainless steel [J]. Materials, 2020, 13: 1297
doi: 10.3390/ma13061297
12 Xiao J M. Alloy Phase and Phase Transition [M]. Beijing: Metallurgical Industry Press, 1987: 250
12 肖纪美. 合金相与相变 [M]. 北京: 冶金工业出版社, 1987: 250
13 Zhang Y J, Zhu L H, Qi A F, et al. Microstructural evolution and the effect on mechanical properties of S30432 heat-resistant steel during aging at 650oC [J]. ISIJ Int., 2010, 50: 596
doi: 10.2355/isijinternational.50.596
14 Ghosh A, Mishra B, Das S, et al. An ultra low carbon Cu bearing steel: Influence of thermomechanical processing and aging heat treatment on structure and properties [J]. Mater. Sci. Eng., 2004, A374: 43
15 Zhou R, Zhu L. Growth behavior and strengthening mechanism of Cu-rich particles in sanicro 25 austenitic heat-resistant steel after aging at 973 K [J]. Mater. Sci. Eng., 2020, A796: 139973
16 Du J K, Zhang Y F, Wang S L, et al. Multiphase strengthening of nanosized precipitates in a cost-effective austenitic heat-resistant steel [J]. Steel Res. Int., 2020, 91: 2000122
doi: 10.1002/srin.v91.9
17 Roncery L M, Weber S, Theisen W. Nucleation and precipitation kinetics of M23C6 and M2N in an Fe-Mn-Cr-C-N austenitic matrix and their relationship with the sensitization phenomenon [J]. Acta Mater., 2011, 59: 6275
doi: 10.1016/j.actamat.2011.06.038
18 Ren W, Wang L. Precipitation behavior of M23C6 in high nitrogen austenitic heat-resistant steel [J]. J. Alloys Compd., 2022, 905: 164013
doi: 10.1016/j.jallcom.2022.164013
19 Zhou Y H, Liu Y C, Zhou X S, et al. Precipitation and hot deformation behavior of austenitic heat-resistant steels: A review [J]. J. Mater. Sci. Technol., 2017, 33: 1448
doi: 10.1016/j.jmst.2017.01.025
20 Golański G, Zieliński A, Purzyńska H. Precipitation processes in creep-resistant austenitic steels [A]. Austenitic Stainless Steels—New Aspects [M]. London: IntechOpen, 2017: 93
21 Wang X, Li Y, Chen D X, et al. Precipitate evolution during the aging of Super304H steel and its influence on impact toughness [J]. Mater. Sci. Eng., 2019, A754: 238
22 Hu G D, Wang P, Li D Z, et al. Precipitate evolution in a modified 25Cr-20Ni austenitic heat resistant stainless steel during creep rupture test at 750oC [J]. Acta Metall. Sin., 2018, 54: 1705
22 胡国栋, 王 培, 李殿中 等. 新型25Cr-20Ni奥氏体耐热不锈钢750℃持久实验过程中析出相演变 [J]. 金属学报, 2018, 54: 1705
doi: 10.11900/0412.1961.2018.00361
23 Yang Y H, Zhu L H, Wang Q J, et al. Microstructural evolution and the effect on hardness and plasticity of S31042 heat-resistant steel during creep [J]. Mater. Sci. Eng., 2014, A608: 164
24 Zhu C Z, Yuan Y, Bai J M, et al. Impact toughness of a modified HR3C austenitic steel after long-term thermal exposure at 650oC [J]. Mater. Sci. Eng., 2019, A740-741: 71
25 Zhou Q W, Ping S B, Meng X B, et al. Precipitation kinetics of M23C6 carbides in the Super304H austenitic heat-resistant steel [J]. J. Mater. Eng. Perform., 2017, 26: 6130
doi: 10.1007/s11665-017-2982-2
26 Santella M L, Tortorelli P F, Render M, et al. Effects of applied stress and grain size on creep-rupture lifetime prediction for Haynes 282 alloy [J]. Mater. Sci. Eng., 2022, A838: 142785
27 Yao Z H, Zhang M C, Dong J X. Stress rupture fracture model and microstructure evolution for Waspaloy [J]. Metall. Mater. Trans., 2013, 44A: 3084
28 Ou P, Xing H, Wang X L, et al. Tensile yield behavior and precipitation strengthening mechanism in Super304H steel [J]. Mater. Sci. Eng., 2014, A600: 171
29 Nguyen T T, Jeong T M, Erten D T, et al. Creep deformation and rupture behaviour of service-exposed Super304H steel boiler tubes [J]. Mater. High Temp., 2021, 38: 61
doi: 10.1080/09603409.2020.1830609
30 Zheng Z J. The reason analysis of HR3C steel pipe aging impact toughness decreased greatly [J]. Boiler Technol., 2011, 42(04): 46
30 郑子杰. HR3C钢管时效冲击韧性大幅降低的原因分析 [J]. 锅炉技术, 2011, 42(04): 46
31 Kaneko K, Fukunaga T, Yamada K, et al. Formation of M23C6-type precipitates and chromium-depleted zones in austenite stainless stee l [J]. Scr. Mater., 2011, 65: 509
doi: 10.1016/j.scriptamat.2011.06.010
32 Qi Y, Wu Z, Zhang X, et al. Microstructure and phases of deposited metal of SUPER304H steel under high temperature persistent stress [J]. Sci. Rep., 2018, 8: 2618
doi: 10.1038/s41598-018-20594-9 pmid: 29422605
33 Liu P, Chu Z K, Yuan Y, et al. Microstructures and mechanical properties of a newly developed austenitic heat resistant steel [J]. Acta. Metall. Sin. (Engl. Lett.), 2019, 32: 517
doi: 10.1007/s40195-018-0770-0
34 Wei L, Hao W, Cheng Y, et al. Isothermal aging embrittlement in an Fe-22Cr-25Ni alloy [J]. Mater. Sci. Eng., 2018, A737: 40
[1] 郑亮, 张强, 李周, 张国庆. /降氧过程对高温合金粉末表面特性和合金性能的影响:粉末存储到脱气处理[J]. 金属学报, 2023, 59(9): 1265-1278.
[2] 王磊, 刘梦雅, 刘杨, 宋秀, 孟凡强. 镍基高温合金表面冲击强化机制及应用研究进展[J]. 金属学报, 2023, 59(9): 1173-1189.
[3] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[4] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[5] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[6] 刘伟, 陈婉琦, 马梦晗, 李恺伦. 聚变堆用W在等离子体作用下的辐照损伤行为研究进展[J]. 金属学报, 2023, 59(8): 986-1000.
[7] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[8] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[9] 丁桦, 张宇, 蔡明晖, 唐正友. 奥氏体基Fe-Mn-Al-C轻质钢的研究进展[J]. 金属学报, 2023, 59(8): 1027-1041.
[10] 司永礼, 薛金涛, 王幸福, 梁驹华, 史子木, 韩福生. Cr添加对孪生诱发塑性钢腐蚀行为的影响[J]. 金属学报, 2023, 59(7): 905-914.
[11] 袁江淮, 王振玉, 马冠水, 周广学, 程晓英, 汪爱英. Cr2AlC涂层相结构演变对力学性能的影响[J]. 金属学报, 2023, 59(7): 961-968.
[12] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[13] 刘俊鹏, 陈浩, 张弛, 杨志刚, 张勇, 戴兰宏. 高熵合金的低温塑性变形机制及强韧化研究进展[J]. 金属学报, 2023, 59(6): 727-743.
[14] 张德印, 郝旭, 贾宝瑞, 吴昊阳, 秦明礼, 曲选辉. Y2O3 含量对燃烧合成Fe-Y2O3 纳米复合粉末性能的影响[J]. 金属学报, 2023, 59(6): 757-766.
[15] 郭福, 杜逸晖, 籍晓亮, 王乙舒. 微电子互连用锡基合金及复合钎料热-机械可靠性研究进展[J]. 金属学报, 2023, 59(6): 744-756.