Please wait a minute...
金属学报  2023, Vol. 59 Issue (10): 1311-1323    DOI: 10.11900/0412.1961.2022.00161
  研究论文 本期目录 | 过刊浏览 |
热输入对电弧增材制造船用高强钢组织与力学性能的影响
侯旭儒1,2, 赵琳2(), 任淑彬1, 彭云2(), 马成勇2, 田志凌2
1.北京科技大学 新材料技术研究院 北京 100083
2.钢铁研究总院 北京 100081
Effect of Heat Input on Microstructure and Mechanical Properties of Marine High Strength Steel Fabricated by Wire Arc Additive Manufacturing
HOU Xuru1,2, ZHAO Lin2(), REN Shubin1, PENG Yun2(), MA Chengyong2, TIAN Zhiling2
1.Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
2.Central Iron and Steel Research Institute, Beijing 100081, China
引用本文:

侯旭儒, 赵琳, 任淑彬, 彭云, 马成勇, 田志凌. 热输入对电弧增材制造船用高强钢组织与力学性能的影响[J]. 金属学报, 2023, 59(10): 1311-1323.
Xuru HOU, Lin ZHAO, Shubin REN, Yun PENG, Chengyong MA, Zhiling TIAN. Effect of Heat Input on Microstructure and Mechanical Properties of Marine High Strength Steel Fabricated by Wire Arc Additive Manufacturing[J]. Acta Metall Sin, 2023, 59(10): 1311-1323.

全文: PDF(7229 KB)   HTML
摘要: 

采用冷金属过渡(CMT)技术+脉冲(P)电弧增材制造工艺制备了不同热输入的590 MPa (屈服强度)级船用高强钢构件,利用OM、SEM、EBSD和TEM等方法研究了热输入对成形构件组织与力学性能的影响。结果表明,热输入为5.6 kJ/cm时,构件显微组织主要为上贝氏体和粒状贝氏体,马氏体-奥氏体(M-A)组元面积分数约为14.82%,有效大角度晶界(晶界角度α > 45°)长度占比为36.3%,构件在横向和纵向的抗拉强度分别达到843和858 MPa,平均硬度为286 HV,但其-50℃冲击吸收功分别仅为15和16 J;而当热输入增加至13.5 kJ/cm时,低冷却速率和高有效夹杂物(夹杂物尺寸d > 0.4 μm)含量促使增材制造构件组织中形成大量针状铁素体,同时还出现了板条贝氏体和少量粒状贝氏体,M-A组元面积分数降低至4.21%,有效大角度晶界长度占比增至52.4%,构件在横向和纵向的抗拉强度分别降低至723和705 MPa,与此同时,构件平均硬度也降低至258 HV,但其低温冲击吸收功大幅提高,分别达到了109和127 J,约是低热输入条件下构件低温冲击吸收功的7~8倍,冲击断裂特征也由准解理断裂转变为典型的韧性断裂。

关键词 船用高强钢电弧增材制造热输入针状铁素体马氏体-奥氏体组元力学性能    
Abstract

Marine-grade high strength steel (yield strength = 590 MPa) is a low-carbon, low-alloy steel characterized by high strength and toughness, excellent weldability, and seawater corrosion resistance. Thus, it is suitable for structural applications and widely used in the shipbuilding industry. Recently, wire arc additive manufacturing (WAAM) has attracted significant attention worldwide because of its high deposition rates and material utilization ratios, low material and equipment costs, and good structural integrity. However, the research on WAAM of 590 MPa marine-grade high strength steel is limited. In this work, 590 MPa marine-grade high strength steel components were produced by cold metal transfer and pulse-arc additive manufacturing (CMT + P-WAAM). The effect of the heat input on the microstructures and mechanical properties of the developed steel were investigated using several techniques, including OM, SEM, EBSD, and TEM. The results indicate that at a heat input of 5.6 kJ/cm, the microstructures of the WAAM deposited metals are mainly upper bainite and granular bainite, the area fraction of the martensite-austenite (M-A) constituents accounts for about 14.82%, the length ratio of the effective high-angle grain boundary (grain boundary angle α > 45°) is 36.3%, the tensile strength of the deposited metals are 843 and 858 MPa in the horizontal and vertical directions, respectively, and the average microhardness is about 286 HV. However, its impact absorbed energy at -50oC is only 15 and 16 J in the horizontal and vertical directions, respectively. At a heat input of 13.5 kJ/cm, the low cooling rate and the high inclusion (inclusion size d > 0.4 μm) content promote the formation of a large quantity of acicular ferrites with lath bainites and a small amount of granular bainites. The area fraction of the M-A constituents is reduced to 4.21%, and the length ratio of the effective high-angle grain boundary is increased to 52.4%. The tensile strength of the deposited metals in the horizontal and vertical directions is reduced to 723 and 705 MPa, respectively. Similarly, the average microhardness is also reduced to 258 HV, but the low-temperature impact absorbed energy is greatly improved, reaching 109 and 127 J, respectively, which is 7-8 times that of the WAAM deposited metal at a low heat input. The impact fracture characteristics also changed from a quasi-cleavage fracture to a typical ductile fracture.

Key wordsmarine high strength steel    wire arc additive manufacturing    heat input    acicular ferrite    martensite-austenite (M-A) constituent    mechanical property
收稿日期: 2022-04-08     
ZTFLH:  TG40  
基金资助:基础加强计划重点基础研究项目(2021-JCJQ-ZD-075-11);钢铁研究总院自主投入研发专项项目(21H62630B)
通讯作者: 赵 琳,hhnds@aliyun.com,主要从事激光加工、增材制造和先进焊接研究;
彭 云,pengyun@cisri.com.cn,主要从事激光材料加工、材料焊接、焊接材料和材料加工过程计算机模拟研究
Corresponding author: ZHAO Lin, professor, Tel: (010)62182946, E-mail: hhnds@aliyun.com;
PENG Yun, professor, Tel: (010)62185578, E-mail: pengyun@cisri.com.cn
作者简介: 侯旭儒,男,1993年生,博士生
MaterialCCrSiMnMoNiTiCuVNbPSFe
Substrate0.180.0440.271.260.0090.260.0020.180.0030.0130.0030.0011Bal.
Wire≤ 0.05≤ 0.20.621.400.272.29< 0.10---0.00620.0015Bal.
表1  丝材与基板的化学成分 (mass fraction / %)
图1  590 MPa级船用高强钢电弧增材制造(WAAM)系统、成形路径及取样位置示意图
图2  拉伸试样、冲击试样及其断口EBSD样品示意图
图3  WAAM构件A的显微组织
图4  WAAM构件B的显微组织
图5  590 MPa级高强钢成形金属连续冷却转变(CCT)曲线
图6  2种热输入下WAAM构件夹杂物的OM像、粒径分布、构件B夹杂物的TEM明场像及其EDS分析
图7  2种热输入下WAAM构件硬度测试区及硬度分布
SampleRm / MPaRp0.2 / MPaA / %KV2 (-50oC) / J
A-H8436262215
A-V8585992116
B-H72365618109
B-V70563222127
表2  2种热输入下WAAM 590 MPa级船用高强钢构件的力学性能
图8  WAAM构件A和B的冲击断口形貌
图9  WAAM构件A和B中M-A组元分布的OM像
图10  WAAM构件A和B中不同角度晶界的EBSD像
图11  WAAM构件A和B冲击断口表面下方的EBSD像
1 Wu B T, Pan Z X, Ding D H, et al. A review of the wire arc additive manufacturing of metals: Properties, defects and quality improvement [J]. J. Manuf. Process., 2018, 35: 127
doi: 10.1016/j.jmapro.2018.08.001
2 Tian C L, Chen J L, Dong P, et al. Current state and future development of the wire arc additive manufacture technology abroad [J]. Aeros. Manuf. Technol., 2015, (2): 57
2 田彩兰, 陈济轮, 董 鹏 等. 国外电弧增材制造技术的研究现状及展望 [J]. 航天制造技术, 2015, (2): 57
3 Li F Z. Research on development path of additive manufacturing industry in China [J]. Adv. Mater. Indus., 2017, (1): 5
3 李方正. 我国增材制造产业发展路径探究 [J]. 新材料产业, 2017, (1): 5
4 Xiong J, Xue Y G, Chen H, et al. Status and development prospects of forming control technology in arc-based additive manufacturing [J]. Elect. Weld. Mach., 2015, 45(9): 45
4 熊 俊, 薛永刚, 陈 辉 等. 电弧增材制造成形控制技术的研究现状与展望 [J]. 电焊机, 2015, 45(9): 45
5 Spencer J D, Dickens P M, Wykes C M. Rapid prototyping of metal parts by three-dimensional welding [J]. Proc. Inst. Mech. Eng., 1998, 212B: 175
6 Yan X, Gu P. A review of rapid prototyping technologies and systems [J]. Comput. Aided Des., 1996, 28: 307
doi: 10.1016/0010-4485(95)00035-6
7 Debroy T, Wei H L, Zuback J S, et al. Additive manufacturing of metallic components—Process, structure and properties [J]. Prog. Mater. Sci., 2018, 92: 112
doi: 10.1016/j.pmatsci.2017.10.001
8 Williams S W, Martina F, Addison A C, et al. Wire + arc additive manufacturing [J]. Mater. Sci. Technol., 2015, 32: 641
doi: 10.1179/1743284715Y.0000000073
9 Derekar K S. A review of wire arc additive manufacturing and advances in wire arc additive manufacturing of aluminium [J]. Mater. Sci. Technol., 2018, 34: 895
doi: 10.1080/02670836.2018.1455012
10 Kazanas P, Deherkar P, Almeida P, et al. Fabrication of geometrical features using wire and arc additive manufacture [J]. Proc. Inst. Mech. Eng., 2012, 226B: 1042
11 Bermingham M J, Thomson-Larkins J, St John D H, et al. Sensitivity of Ti-6Al-4V components to oxidation during out of chamber wire + arc additive manufacturing [J]. J. Mater. Process. Technol., 2018, 258: 29
doi: 10.1016/j.jmatprotec.2018.03.014
12 Dhinakaran V, Ajith J, Fahmidha A F Y, et al. Wire arc additive manufacturing (WAAM) process of nickel based superalloys—A review [J]. Mater. Today: Proc., 2020, 21: 920
13 Zhou L Z, Liu S H, Ding D P. Rapid prototyping technology based on three-dimensional welding deposition [J]. Electr. Mould, 2004, (4): 1
13 周龙早, 刘顺洪, 丁冬平. 基于三维焊接熔敷的快速成形技术 [J]. 电加工与模具, 2004, (4): 1
14 Liu S G, Zheng L, Xie R, et al. Additive manufacturing technology for high strength steel ship structures [J]. Hot Work. Technol., 2018, 47(22): 110
14 刘水根, 郑 磊, 谢 锐 等. 高强钢船体结构的增材制造技术 [J]. 热加工工艺, 2018, 47(22): 110
15 Nemani A V, Ghaffari M, Nasiri A. Comparison of microstructural characteristics and mechanical properties of shipbuilding steel plates fabricated by conventional rolling versus wire arc additive manufacturing [J]. Add. Manuf., 2020, 32: 101086
16 Guo C, Ma M L, Hu R Z, et al. Microstructure and properties of 10CrNi3MoV high strength steel for naval ship made by wire and arc additive manufacturing [J]. Mater. Rev., 2019, 33(): 455
16 郭 纯, 马明亮, 胡瑞章 等. 电弧增材制造舰船用高强钢10CrNi3MoV的组织及性能 [J]. 材料导报, 2019, 33():455
17 Zhou H L, Song C B, Liu Y S, et al. Development and application of 590 MPa grade 3D-printed surfacing wire material [J]. Weld. Technol., 2019, 48(8): 66
17 周海龙, 宋昌宝, 刘玉双 等. 590 MPa级3D打印堆熔丝材的研制与应用 [J]. 焊接技术, 2019, 48(8): 66
18 Huda N, Midawi A R H, Gianetto J, et al. Influence of martensite-austenite (MA) on impact toughness of X80 line pipe steels [J]. Mater. Sci. Eng., 2016, A662: 481
19 Moeinifar S, Kokabi A H, Hosseini H R M. Effect of tandem submerged arc welding process and parameters of Gleeble simulator thermal cycles on properties of the intercritically reheated heat affected zone [J]. Mater. Des., 2011, 32: 869
doi: 10.1016/j.matdes.2010.07.005
20 Matsuda F, Ikeuchi K, Fukada Y, et al. Review of mechanical and metallurgical investigations of M-A constituent in welded joint in Japan [J]. Trans. JWRI, 1995, 24: 1
21 Zhong Y, Xiao F R, Zhang J W, et al. In situ TEM study of the effect of M/A films at grain boundaries on crack propagation in an ultra-fine acicular ferrite pipeline steel [J]. Acta Mater., 2006, 54: 435
doi: 10.1016/j.actamat.2005.09.015
22 Zhang D Q. Study on the acicular ferrite formation mechanism of weld metal in microalloyed steel [D]. Tianjin: Tianjin University, 2000
22 张德勤. 微合金钢焊缝金属中针状铁素体形成机理的研究 [D]. 天津: 天津大学, 2000
23 Gourgues A F, Flower H M, Lindley T C. Electron backscattering diffraction study of acicular ferrite, bainite, and martensite steel microstructures [J]. Mater. Sci. Technol., 2000, 16: 26
doi: 10.1179/026708300773002636
24 Daz-Fuentes M, Iza-Mendia A, Gutiérrez I. Analysis of different acicular ferrite microstructures in low-carbon steels by electron backscattered diffraction. Study of their toughness behavior [J]. Metall. Mater. Trans., 2003, 34A: 2505
25 Zeng L. Welding Engineering [M]. Beijing: New Era Press, 1986: 123
25 曾 乐. 焊接工程学 [M]. 北京: 新时代出版社, 1986: 123
26 Cao R, Feng W, Peng Y, et al. Analysis on impact property of welded joint HAZ of 980 MPa high strength steel [J]. Trans. China Weld. Inst., 2010, 31(8): 93
26 曹 睿, 冯 伟, 彭 云 等. 980 MPa级高强钢焊接接头HAZ冲击性能的分析 [J]. 焊接学报, 2010, 31(8): 93
27 Ricks R A, Howell P R, Barritte G S. The nature of acicular ferrite in HSLA steel weld metals [J]. J. Mater. Sci., 1982, 17: 732
doi: 10.1007/BF00540369
28 Han S C. Physical metallurgy of acicular ferrite (Continued) [J]. Dev. Appl. Mater., 1995, 10(6): 2
28 韩顺昌. 针状铁素体的物理冶金学(续) [J]. 材料开发与应用, 1995, 10(6): 2
29 Barbaro F J, Krauklis P, Easterling K E. Formation of acicular ferrite at oxide particles in steels [J]. Mater. Sci. Technol., 1989, 5: 1057
doi: 10.1179/mst.1989.5.11.1057
30 Lee T K, Kim H J, Kang B Y, et al. Effect of inclusion size on the nucleation of acicular ferrite in welds [J]. ISIJ Int., 2000, 40: 1260
doi: 10.2355/isijinternational.40.1260
31 Liu Z C, Ji Y P, Ren H P. Morphology and substructure of bainite in steel (2) [J]. Heat Treat. Technol. Equip., 2016, 37(4): 1
31 刘宗昌, 计云萍, 任慧平. 钢中贝氏体组织形态和亚结构(二) [J]. 热处理技术与装备, 2016, 37(4): 1
32 Zhang Y Q, Zhang R J, Su H, et al. Effect of granular bainite on mechanical properties of microalloyed 10MnNiCr steel [J]. Iron Steel, 2003, 38(11): 45
doi: 10.1179/030192310X12700328926029
32 张永权, 张荣久, 苏 航 等. 粒状贝氏体对10MnNiCr微合金钢力学性能的影响 [J]. 钢铁, 2003, 38(11): 45
33 Davis C L, King J E. Effect of cooling rate on intercritically reheated microstructure and toughness in high strength low alloy steel [J]. Mater. Sci. Technol., 1993, 9: 8
doi: 10.1179/mst.1993.9.1.8
34 Li Y, Crowther D N, Green M J W, et al. The effect of vanadium and niobium on the properties and microstructure of the intercritically reheated coarse grained heat affected zone in low carbon microalloyed steels [J]. ISIJ Int., 2001, 41: 46
doi: 10.2355/isijinternational.41.46
35 Lee S, Kim B C, Kwon D. Fracture toughness analysis of heat-affected zones in high-strength low-alloy steel welds [J]. Metall. Mater. Trans., 1993, 24A: 1133
36 Li X D, Shang C J, Han C C, et al. Influence of necklace-type M-A constituent on impact toughness and fracture mechanism in the heat affected zone of X100 pipeline steel [J]. Acta Metall. Sin., 2016, 52: 1025
36 李学达, 尚成嘉, 韩昌柴 等. X100管线钢焊接热影响区中链状M-A组元对冲击韧性和断裂机制的影响 [J]. 金属学报, 2016, 52: 1025
doi: 10.11900/0412.1961.2015.00610
37 Davis C L, King J E. Cleavage initiation in the intercritically reheated coarse-grained heat-affected zone: Part I. Fractographic evidence [J]. Metall. Mater. Trans., 1994, 25A: 563
[1] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[2] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[3] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[4] 郑亮, 张强, 李周, 张国庆. /降氧过程对高温合金粉末表面特性和合金性能的影响:粉末存储到脱气处理[J]. 金属学报, 2023, 59(9): 1265-1278.
[5] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[6] 丁桦, 张宇, 蔡明晖, 唐正友. 奥氏体基Fe-Mn-Al-C轻质钢的研究进展[J]. 金属学报, 2023, 59(8): 1027-1041.
[7] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[8] 袁江淮, 王振玉, 马冠水, 周广学, 程晓英, 汪爱英. Cr2AlC涂层相结构演变对力学性能的影响[J]. 金属学报, 2023, 59(7): 961-968.
[9] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[10] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[11] 侯娟, 代斌斌, 闵师领, 刘慧, 蒋梦蕾, 杨帆. 尺寸设计对选区激光熔化304L不锈钢显微组织与性能的影响[J]. 金属学报, 2023, 59(5): 623-635.
[12] 刘满平, 薛周磊, 彭振, 陈昱林, 丁立鹏, 贾志宏. 后时效对超细晶6061铝合金微观结构与力学性能的影响[J]. 金属学报, 2023, 59(5): 657-667.
[13] 李述军, 侯文韬, 郝玉琳, 杨锐. 3D打印医用钛合金多孔材料力学性能研究进展[J]. 金属学报, 2023, 59(4): 478-488.
[14] 吴欣强, 戎利建, 谭季波, 陈胜虎, 胡小锋, 张洋鹏, 张兹瑜. Pb-Bi腐蚀Si增强型铁素体/马氏体钢和奥氏体不锈钢的研究进展[J]. 金属学报, 2023, 59(4): 502-512.
[15] 王虎, 赵琳, 彭云, 蔡啸涛, 田志凌. 激光熔化沉积TiB2 增强TiAl基合金涂层的组织及力学性能[J]. 金属学报, 2023, 59(2): 226-236.