Please wait a minute...
金属学报  2023, Vol. 59 Issue (10): 1324-1334    DOI: 10.11900/0412.1961.2021.00262
  研究论文 本期目录 | 过刊浏览 |
露点对连续退火0.2%C-1.5%Si-2.5%Mn高强钢选择性氧化及脱碳的影响
金鑫焱1,2(), 储双杰1, 彭俊1, 胡广魁1
1.宝山钢铁股份有限公司 上海 201999
2.汽车用钢开发与应用技术国家重点实验室(宝钢) 上海 201999
Effect of Dew Point on Selective Oxidation and Decarburization of 0.2%C-1.5%Si-2.5%Mn High Strength Steel Sheet During Continuous Annealing
JIN Xinyan1,2(), CHU Shuangjie1, PENG Jun1, HU Guangkui1
1.Baoshan Iron and Steel Co., Ltd., Shanghai 201999, China
2.State Key Laboratory of Development and Application Technology of Automotive Steels, Baosteel, Shanghai 201999, China
引用本文:

金鑫焱, 储双杰, 彭俊, 胡广魁. 露点对连续退火0.2%C-1.5%Si-2.5%Mn高强钢选择性氧化及脱碳的影响[J]. 金属学报, 2023, 59(10): 1324-1334.
Xinyan JIN, Shuangjie CHU, Jun PENG, Guangkui HU. Effect of Dew Point on Selective Oxidation and Decarburization of 0.2%C-1.5%Si-2.5%Mn High Strength Steel Sheet During Continuous Annealing[J]. Acta Metall Sin, 2023, 59(10): 1324-1334.

全文: PDF(4432 KB)   HTML
摘要: 

以成分为0.2%C-1.5%Si-2.5%Mn (质量分数)的先进高强钢为研究对象,采用连续退火模拟实验研究了露点对钢板表面Si、Mn选择性氧化以及次表层脱碳的影响。使用辉光放电发射光谱(GD-OES)分析了退火试样表面元素深度分布,使用SEM、OM观察了试样截面内氧化层及脱碳层深度,使用TEM观察了FIB制备的截面试样上Si、Mn内外氧化层的微观结构。结果表明,提高连续退火加热段和均热段的气氛露点可以促使Si、Mn由外氧化转变成内氧化,但露点过高会引起钢板次表层发生明显的脱碳,形成次表层显微硬度显著降低的铁素体层。当露点提高到临界值后,继续提高露点对进一步减少外氧化的效果有限,但是内氧化层和脱碳层的厚度会继续显著增加,因此在退火时需要选择兼顾外氧化和脱碳层控制的合适的露点范围。

关键词 高强钢露点选择性氧化脱碳连续退火    
Abstract

The use of advanced high strength steel (AHSS) sheets has been acknowledged as an important solution for vehicle weight reduction, and thus, carbon dioxide emission reduction. The development of third-generation AHSS has become one of the steel industry's most prominent concerns in recent years. However, the selective oxidation of alloy components such as silicon and manganese makes obtaining high-quality hot-dipped galvanized steel sheets extremely difficult. To determine an optimal process window for controlling the surface microstructure of AHSS, the effect of dew point on selective oxidation of silicon and manganese, and decarburization in a 0.2%C-1.5%Si-2.5%Mn (mass fraction) steel sheet was studied by performing continuous annealing simulation experiments. Glow discharge optical emission spectrometry (GD-OES) was used to determine the depth profiles of alloy elements, and SEM and OM were used to determine the depths of internal oxidation and decarburization zones in the subsurface. The surface and internal oxides' precise microstructures were studied using TEM on a FIB-prepared cross-sectional specimen. The increasing dew point of the atmosphere through the heating and soaking section portion of continuous annealing results in the transformation of external oxidation of silicon and manganese to internal oxidation. When the steel was annealed in an environment with a dew point of -40oC, a continuous silicon, manganese external oxidation layer with an average thickness of 40-50 nm covered the surface. When the dew point was elevated to +10oC, a subsurface oxidation layer approximately 5-μm thick formed. Due to the substantially lower oxygen pressure required for the Si/SiO2 equilibrium, the internal oxides exhibited a core-shell structure consisting of a Si-rich oxide core and a surrounding Mn-Si mixed oxide shell. A higher dew point results in the formation of an obvious decarburization layer in the subsurface, which is visible as a layer of ferrite grains with significantly decreased microhardness. When the dew point was increased from -40oC to +10oC, the thickness of the decarburized zone increased from 0 μm to 45 μm, and the C content of the decarburized zone decreased from 0.18% to 0.01%. External oxidation can no longer be decreased further by increasing the dew point, yet the depth of internal oxidation and decarburization in the subsurface continues to increase. Therefore, maintaining an appropriate dew point range for the annealing atmosphere is necessary to manage external oxidation and decarburization. The optimal dew point should be adjusted between -20oC and -10oC when annealed at 870oC for 120 s in 5%H2-N2 atmosphere.

Key wordshigh strength steel    dew point    selective oxidation    decarburization    continuous annealing
收稿日期: 2021-06-29     
ZTFLH:  TG156.2  
通讯作者: 金鑫焱,jinxinyan@baosteel.com,主要从事热镀锌产品及工艺技术研究
Corresponding author: JIN Xinyan, senior engineer, Tel: (021)26646116, E-mail: jinxinyan@baosteel.com
作者简介: 金鑫焱,男,1979年生,高级工程师
图1  模拟退火实验温度曲线
图2  露点-40℃退火试样表面Fe、Mn、Si、O元素深度分布曲线
图3  不同露点退火试样Mn、Si元素深度分布
图4  露点对Mn、Si内外氧化的影响
图5  不同露点退火试样截面组织SEM像
图6  聚焦离子束(FIB)制备的露点为-40℃退火试样截面组织TEM像
图7  露点为-40℃退火试样TEM元素面分布结果
图8  FIB制备的露点为+10℃退火试样截面组织TEM像
图9  露点为+10℃退火试样上3个不同区域(见图8a)元素面分布
图10  不同露点退火试样C元素深度分布
图11  露点对钢板次表层C含量及脱碳层厚度的影响
图12  不同露点退火试样截面显微组织的OM像
图13  露点对钢板次表层深度方向显微硬度的影响
图14  露点对连续退火0.2C-1.5Si-2.5Mn钢选择性氧化及次表层脱碳的影响示意图
Td / oCT / oCpH2 / atmpH2O / atmpO2 / atm
-408700.051.27 × 10-48.08 × 10-23
-208700.051.02 × 10-35.20 × 10-21
08700.056.03 × 10-31.82 × 10-19
+108700.051.21 × 10-27.37 × 10-19
表1  根据露点计算的氧分压
ElementTemperatureDiffusion coefficient
oCμm2·s-1
O8701.507 × 101
Mn8704.227 × 10-3
Si8706.615 × 10-3
C8702.551 × 101
表2  O、Mn、Si、C在钢中的扩散系数
图15  露点对te、ti、td1和wC的影响
1 Bouaziz O, Zurob H, Huang M X. Driving force and logic of development of advanced high strength steels for automotive applications [J]. Steel Res. Int., 2013, 84: 937
doi: 10.1002/srin.v84.10
2 Meknassi R F, Miklós T. Third generation of advanced high strength sheet steels for the automotive sector: A literature review [J]. Multidiszciplin. Tudom., 2021, 11: 241
3 Pednekar V, Khutorsky A, Lad S, et al. Third generation 980 class AHSS: A viable alternative to replace press-hardenable steels (PHS) in automotive rear rail applications [R]. SAE Tech. Pap., doi: 10.4271/2020-01-0534
4 Wang C Y, Yang J, Chang Y, et al. Development trend and challenge of advanced high strength automobile steels [J]. Iron Steel, 2019, 54(2): 1
4 王存宇, 杨 洁, 常 颖 等. 先进高强度汽车钢的发展趋势与挑战 [J]. 钢铁, 2019, 54(2): 1
5 Zhao Z Z, Chen W J, Gao P F, et al. Progress and perspective of advanced high strength automotive steel [J]. J. Iron Steel Res. Int., 2020, 32: 1059
5 赵征志, 陈伟健, 高鹏飞 等. 先进高强度汽车用钢研究进展及展望 [J]. 钢铁研究学报, 2020, 32: 1059
6 Chen Z, He Y L, Zheng W S, et al. Effect of hot-dip galvanizing process on selective oxidation and galvanizability of medium manganese steel for automotive application [J]. Coatings, 2020, 10: 1265
doi: 10.3390/coatings10121265
7 Jin X Y, Hu G K, Qian H W, et al. Effect of dew point on galvanizability in 4 mass% Al added low density steel [J]. ISIJ Int., 2018, 58: 1584
doi: 10.2355/isijinternational.ISIJINT-2018-010
8 Samanta S, Halder A K, Deo Y, et al. Effect of Mn and Cr on the selective oxidation, surface segregation and hot-dip Zn coatability [J]. Surf. Coat. Technol., 2019, 377: 124908
doi: 10.1016/j.surfcoat.2019.124908
9 Zhou D Y, Li M, Mi Z L, et al. Investigation of selective oxidation and reaction wetting of Q&P steel under different dew point during continuous galvanizing [J]. Trans. Indian Inst. Met., 2021, 74: 235
doi: 10.1007/s12666-020-02141-1
10 Song G M, Sloof W G, Vystavel T, et al. Interface microstructure and adhesion of zinc coatings on TRIP steels [J]. Mater. Sci. Forum, 2007, 539-543: 1104
doi: 10.4028/www.scientific.net/MSF.539-543
11 Jin X Y, Chen J J, Hu G K, et al. Investigation on the coating adhesion of galvanized AHSS treated by oxidation-reduction process [J]. Iron Steel Technol., 2020, 17: 108
12 Hao Y L, Cai N, Yao S C, et al. Effect of selective oxidation behavior of high strength dual-phase steel surface on phosphating properties [J]. Surf. Technol., 2020, 49(8): 309
12 郝玉林, 蔡 宁, 姚士聪 等. 高强双相钢表面选择性氧化行为对磷化性能的影响 [J]. 表面技术, 2020, 49(8): 309
13 Liu H C, He Y L, Li L. Application of thermodynamics and Wagner model on two problems in continuous hot-dip galvanizing [J]. Appl. Surf. Sci., 2009, 256: 1399
doi: 10.1016/j.apsusc.2009.08.095
14 Zhang X, Da Silva C C, Liu C, et al. Selective oxidation of ternary Fe-Mn-Si alloys during annealing process [J]. Corros. Sci., 2020, 174: 108859
doi: 10.1016/j.corsci.2020.108859
15 Fushiwaki Y, Kawano T, Nagataki Y. Influence of Cr addition on selective oxidation behavior of Mn-added high-strength steel sheet [J]. ISIJ Int., 2018, 58: 1623
doi: 10.2355/isijinternational.ISIJINT-2018-075
16 Story M E, Webler B A. Effects of surface microstructure on selective oxidation morphology and kinetics in N2 + 5% H2 atmosphere with variable dew point temperature [J]. ISIJ Int., 2019, 59: 918
doi: 10.2355/isijinternational.ISIJINT-2018-727
17 Mousavi G S, McDermid J R. Selective oxidation of a C-2Mn-1.3Si (wt pct) advanced high-strength steel during continuous galvanizing heat treatments [J]. Metall. Mater. Trans., 2018, 49A: 5546
18 Pourmajidian M, McDermid J R. Selective oxidation of a 0.1C-6Mn-2Si third generation advanced high-strength steel during dew-point controlled annealing [J]. Metall. Mater. Trans., 2018, 49A: 1795
19 Lu R, Wu G X, Zhang J Y. Phase equilibrium calculation of water pressure control in hydrogen reduction system [J]. J. Iron Steel Res. Int., 2021, 33: 119
19 陆 瑞, 吴广新, 张捷宇. 氢还原体系控制水压的物相平衡计算 [J]. 钢铁研究学报, 2021, 33: 119
20 Jiang G R, Wang H Q, Liu L B, et al. Effects of heating atmosphere on selective oxidation of a C-Mn-Si-Al high strength steel [J]. Iron and Steel, 2018, 53(3): 66
20 蒋光锐, 王海全, 刘李斌 等. 加热气氛对一种C-Mn-Si-Al高强钢选择性氧化的影响 [J]. 钢铁, 2018, 53(3): 66
21 Wu G X, Zhang J Y. Effect of water pressure and soaking time on the selective oxidation of DP980 advanced high strength steel [J]. Appl. Surf. Sci., 2018, 453: 252
doi: 10.1016/j.apsusc.2018.05.034
22 Zhang Z T, Sohn I R, Pettit F S, et al. Investigation of the effect of alloying elements and water vapor contents on the oxidation and decarburization of transformation-induced plasticity steels [J]. Metall. Mater. Trans., 2009, 40B: 567
23 Han X, DiGiovanni C, McDermid J, et al. Effect of internal oxidation on the weldability of CMnSi steels [J]. Weld. World, 2019, 63: 1633
doi: 10.1007/s40194-019-00798-x
24 Kalashami A G, DiGiovanni C, Razmpoosh M H, et al. The role of internal oxides on the liquid metal embrittlement cracking during resistance spot welding of the dual phase steel [J]. Metall. Mater. Trans., 2020, 51A: 2180
25 Kalashami A G, Han X, Goodwin F, et al. The influence of modified annealing during the galvanizing process on the resistance spot welding of the CMn1.8Si advanced high strength steel [J]. Surf. Coat. Technol., 2020, 381: 125181
doi: 10.1016/j.surfcoat.2019.125181
26 Li Y P. A study on selective oxidation behaviors of DP780 dual phase steels during hot-dip galvanizing process [D]. Beijing: China iron and Steel Research Institute Group, 2012
26 李远鹏. 热镀锌DP780双相钢的选择性氧化行为研究 [D]. 北京: 钢铁研究总院, 2012
27 Huin D, Flauder P, Leblond J B. Numerical simulation of internal oxidation of steels during annealing treatments [J]. Oxid. Met., 2005, 64: 131
doi: 10.1007/s11085-005-5718-x
28 Lee S J, Matlock D K, Van Tyne C J. An empirical model for carbon diffusion in austenite incorporating alloying element effects [J]. ISIJ Int., 2011, 51: 1903
doi: 10.2355/isijinternational.51.1903
29 Zhang K, Chen Y L, Sun Y H, et al. Effect of H2O(g) on decarburization of 55SiCr spring steel during the heating process [J]. Acta Metall. Sin., 2018, 54: 1350
29 张 凯, 陈银莉, 孙彦辉 等. 加热过程中H2O(g)对55SiCr弹簧钢脱碳的影响 [J]. 金属学报, 2018, 54: 1350
30 Hasegawa M. Ellingham Diagram [A]. Treatise on Process Metallurgy Vol. 1 [M]. Boston: Elsevier, 2014: 507
31 Gong Y F, Kim H S, De Cooman B C. Formation of surface and subsurface oxides during ferritic, intercritical and austenitic annealing of CMnSi TRIP steel [J]. ISIJ Int., 2008, 48: 1745
doi: 10.2355/isijinternational.48.1745
[1] 王周头, 袁清, 张庆枭, 刘升, 徐光. 冷轧中碳梯度马氏体钢的组织与力学性能[J]. 金属学报, 2023, 59(6): 821-828.
[2] 王重阳, 韩世伟, 谢峰, 胡龙, 邓德安. 固态相变和软化效应对超高强钢焊接残余应力的影响[J]. 金属学报, 2023, 59(12): 1613-1623.
[3] 侯旭儒, 赵琳, 任淑彬, 彭云, 马成勇, 田志凌. 热输入对电弧增材制造船用高强钢组织与力学性能的影响[J]. 金属学报, 2023, 59(10): 1311-1323.
[4] 彭俊, 金鑫焱, 钟勇, 王利. 基板表层组织对Fe-16Mn-0.7C-1.5Al TWIP钢可镀性的影响[J]. 金属学报, 2022, 58(12): 1600-1610.
[5] 陆斌, 陈芙蓉, 智建国, 耿如明. 应用稀土氧化物冶金技术改善高强钢焊接性能[J]. 金属学报, 2020, 56(9): 1206-1216.
[6] 周红伟, 白凤梅, 杨磊, 陈艳, 方俊飞, 张立强, 衣海龙, 何宜柱. 1100 MPa级高强钢的低周疲劳行为[J]. 金属学报, 2020, 56(7): 937-948.
[7] 李金许,王伟,周耀,刘神光,付豪,王正,阚博. 汽车用先进高强钢的氢脆研究进展[J]. 金属学报, 2020, 56(4): 444-458.
[8] 罗海文,沈国慧. 超高强高韧化钢的研究进展和展望[J]. 金属学报, 2020, 56(4): 494-512.
[9] 郑成明, 田青超. 合金元素对顶头钢氧化行为的影响[J]. 金属学报, 2019, 55(4): 427-435.
[10] 文明月, 董文超, 庞辉勇, 陆善平. 一种Fe-Cr-Ni-Mo高强钢焊接热影响区的显微组织与冲击韧性研究[J]. 金属学报, 2018, 54(4): 501-511.
[11] 张凯, 陈银莉, 孙彦辉, 徐志军. 加热过程中H2O(g)对55SiCr弹簧钢脱碳的影响[J]. 金属学报, 2018, 54(10): 1350-1358.
[12] 杜瑜宾, 胡小锋, 姜海昌, 闫德胜, 戎利建. 回火时间对Fe-Cr-Ni-Mo高强钢碳化物演变及力学性能的影响[J]. 金属学报, 2018, 54(1): 11-20.
[13] 张清东,林潇,曹强,卢兴福,张勃洋,胡树山. 冷轧高强钢板淬火过程板形瓢曲缺陷演变规律研究[J]. 金属学报, 2017, 53(4): 385-396.
[14] 冯祥利,王磊,刘杨. Q460钢焊接接头组织及动态断裂行为的研究*[J]. 金属学报, 2016, 52(7): 787-796.
[15] 范林,丁康康,郭为民,张彭辉,许立坤. 静水压力和预应力对新型Ni-Cr-Mo-V高强钢腐蚀行为的影响*[J]. 金属学报, 2016, 52(6): 679-688.