|
|
热障涂层高熵合金粘结层材料研究进展 |
赵晓峰, 李玲, 张晗, 陆杰( ) |
上海交通大学 材料科学与工程学院 上海市先进高温材料及精密成型重点研究室 上海 200240 |
|
Research Progress in High-Entropy Alloy Bond Coat Material for Thermal Barrier Coatings |
ZHAO Xiaofeng, LI Ling, ZHANG Han, LU Jie( ) |
Shanghai Key Laboratory of Advanced High-Temperature Materials and Precision Forming, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China |
引用本文:
赵晓峰, 李玲, 张晗, 陆杰. 热障涂层高熵合金粘结层材料研究进展[J]. 金属学报, 2022, 58(4): 503-512.
Xiaofeng ZHAO,
Ling LI,
Han ZHANG,
Jie LU.
Research Progress in High-Entropy Alloy Bond Coat Material for Thermal Barrier Coatings[J]. Acta Metall Sin, 2022, 58(4): 503-512.
1 |
Clarke D R, Oechsner M, Padture N P. Thermal-barrier coatings for more efficient gas-turbine engines [J]. MRS Bull., 2012, 37: 891
|
2 |
Guo H B, Gong S K, Xu H B. Research progress on new high/ ultra-high temperature thermal barrier coatings and processing technologies [J]. Acta Aeronaut. Astronaut. Sin., 2014, 35: 2722
|
2 |
郭洪波, 宫声凯, 徐惠彬. 新型高温/超高温热障涂层及制备技术研究进展 [J]. 航空学报, 2014, 35: 2722
|
3 |
Zhang X F, Zhou K S, Song J B, et al. Deposition and CMAS corrosion mechanism of 7YSZ thermal barrier coatings prepared by plasma spray-physical vapor deposition [J]. J. Inorg. Mater., 2015, 30: 287
|
3 |
张小锋, 周克崧, 宋进兵 等. 等离子喷涂-物理气相沉积7YSZ热障涂层沉积机理及其CMAS腐蚀失效机制 [J]. 无机材料学报, 2015, 30: 287
|
4 |
Padture N P, Gell M, Jordan E H. Thermal barrier coatings for gas-turbine engine applications [J]. Science, 2002, 296: 280
|
5 |
Yang L, Zhou Y C, Zhu W. Research progress in the real-time acoustic emission characterization of failure in thermal barrier coatings [J]. Mater. China, 2020, 39: 878
|
5 |
杨 丽, 周益春, 朱 旺. 热障涂层失效的声发射实时表征技术研究进展 [J]. 中国材料进展, 2020, 39: 878
|
6 |
Evans A G, Mumm D R, Hutchinson J W, et al. Mechanisms controlling the durability of thermal barrier coatings [J]. Prog. Mater. Sci., 2001, 46: 505
|
7 |
Shillington E A G, Clarke D R. Spalling failure of a thermal barrier coating associated with aluminum depletion in the bond-coat [J]. Acta Mater., 1999, 47: 1297
|
8 |
Hutchinson J W, He M Y, Evans A G. The influence of imperfections on the nucleation and propagation of buckling driven delaminations [J]. J. Mech. Phys. Solids, 2000, 48: 709
|
9 |
Chen Y, Zhao X, Bai M, et al. A mechanistic understanding on rumpling of a NiCoCrAlY bond coat for thermal barrier coating applications [J]. Acta Mater., 2017, 128: 31
|
10 |
Shen Z Y, He L M, Xu Z H, et al. Morphological evolution and failure of LZC/YSZ DCL TBCs by electron beam-physical vapor deposition [J]. Materialia, 2018, 4: 340
|
11 |
Shen Z Y, He L M, Xu Z H, et al. LZC/YSZ DCL TBCs by EB-PVD: Microstructure, low thermal conductivity and high thermal cycling life [J]. J. Eur. Ceram. Soc., 2019, 39: 1443
|
12 |
Shen Z Y, He L M, Xu Z H, et al. LZC/YSZ double layer coatings: EB-PVD, microstructure and thermal cycling life [J]. Surf. Coat. Technol., 2019, 367: 86
|
13 |
Lance M J, Unocic K A, Haynes J A, et al. APS TBC performance on directionally-solidified superalloy substrates with HVOF NiCoCrAlYHfSi bond coatings [J]. Surf. Coat. Technol., 2015, 284: 9
|
14 |
Meng G H, Liu H, Liu M J, et al. Highly oxidation resistant MCrAlY bond coats prepared by heat treatment under low oxygen content [J]. Surf. Coat. Technol., 2019, 368: 192
|
15 |
Meng G H, Liu H, Xu P Y, et al. Superior oxidation resistant MCrAlY bond coats prepared by controlled atmosphere heat treatment [J]. Corros. Sci., 2020, 170: 108653
|
16 |
Evans A G, Clarke D R, Levi C G. The influence of oxides on the performance of advanced gas turbines [J]. J. Eur. Ceram. Soc., 2008, 28: 1405
|
17 |
Goward G W. Progress in coatings for gas turbine airfoils [J]. Surf. Coat. Technol., 1998, 108-109: 73
|
18 |
Pomeroy M J. Coatings for gas turbine materials and long term stability issues [J]. Mater. Des., 2005, 26: 223
|
19 |
Chen Y, Zhao X, Dang Y, et al. Characterization and understanding of residual stresses in a NiCoCrAlY bond coat for thermal barrier coating application [J]. Acta Mater., 2015, 94: 1
|
20 |
Chen Y, Zhao X F, Xiao P. Effect of microstructure on early oxidation of MCrAlY coatings [J]. Acta Mater., 2018, 159: 150
|
21 |
Lu J, Chen Y, Zhao C S, et al. Significantly improving the oxidation and spallation resistance of a MCrAlY alloy by controlling the distribution of yttrium [J]. Corros. Sci., 2019, 153: 178
|
22 |
Yang L X, Zou Z H, Kou Z D, et al. High temperature stress and its influence on surface rumpling in NiCoCrAlY bond coat [J]. Acta Mater., 2017, 139: 122
|
23 |
Zheng L, Guo H B, Guo L, et al. New generation thermal barrier coatings for ultrahigh temperature applications [J]. J. Aeronaut. Mater., 2012, 32(6): 14
|
23 |
郑 蕾, 郭洪波, 郭 磊 等. 新一代超高温热障涂层研究 [J]. 航空材料学报, 2012, 32(6): 14
|
24 |
Yeh J W, Chen S K, Lin S J, et al. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes [J]. Adv. Eng. Mater., 2004, 6: 299
|
25 |
Cantor B, Chang I T H, Knight P, et al. Microstructural development in equiatomic multicomponent alloys [J]. Mater. Sci. Eng., 2004, A375-377: 213
|
26 |
Gao M C, Yeh J W, Liaw P K, et al. High-Entropy Alloys: Fundamentals and Applications [M]. Switzerland: Springer, 2016: 1
|
27 |
Miracle D B, Senkov O N. A critical review of high entropy alloys and related concepts [J]. Acta Mater., 2017, 122: 448
|
28 |
Tsai K Y, Tsai M H, Yeh J W. Sluggish diffusion in Co-Cr-Fe-Mn-Ni high-entropy alloys [J]. Acta Mater., 2013, 61: 4887
|
29 |
Li Z Z, Zhao S T, Ritchie R O, et al. Mechanical properties of high-entropy alloys with emphasis on face-centered cubic alloys [J]. Prog. Mater. Sci., 2019, 102: 296
|
30 |
Zhang Y, Zuo T T, Tang Z, et al. Microstructures and properties of high-entropy alloys [J]. Prog. Mater. Sci., 2014, 61: 1
|
31 |
Lu J, Chen Y, Zhang H, et al. Y/Hf-doped AlCoCrFeNi high-entropy alloy with ultra oxidation and spallation resistance [J]. Corros. Sci., 2020, 166: 108426
|
32 |
Liu Z Y, Gao W, Dahm K L, et al. Oxidation behaviour of sputter-deposited Ni-Cr-Al micro-crystalline coatings [J]. Acta Mater., 1998, 46: 1691
|
33 |
Kaplin C, Brochu M. The effect of grain size on the oxidation of NiCoCrAlY [J]. Appl. Surf. Sci., 2014, 301: 258
|
34 |
Ma K K, Schoenung J M. Isothermal oxidation behavior of cryomilled NiCrAlY bond coat: Homogeneity and growth rate of TGO [J]. Surf. Coat. Technol., 2011, 205: 5178
|
35 |
Richer P, Zúñiga A, Yandouzi M, et al. CoNiCrAlY microstructural changes induced during cold gas dynamic spraying [J]. Surf. Coat. Technol., 2008, 203: 364
|
36 |
Hejrani E, Sebold D, Nowak W J, et al. Isothermal and cyclic oxidation behavior of free standing MCrAlY coatings manufactured by high-velocity atmospheric plasma spraying [J]. Surf. Coat. Technol., 2017, 313: 191
|
37 |
Peng H, Guo H B, He J, et al. Microscale lamellar NiCoCrAlY coating with improved oxidation resistance [J]. Surf. Coat. Technol., 2012, 207: 110
|
38 |
Lu J, Chen Y, Zhang H, et al. Effect of Al content on the oxidation behavior of Y/Hf-doped AlCoCrFeNi high-entropy alloy [J]. Corros. Sci., 2020, 170: 108691
|
39 |
Busso E P, Evans H E, Qian Z Q, et al. Effects of breakaway oxidation on local stresses in thermal barrier coatings [J]. Acta Mater., 2010, 58: 1242
|
40 |
Li Y, Li C J, Yang G J, et al. Thermal fatigue behavior of thermal barrier coatings with the MCrAlY bond coats by cold spraying and low-pressure plasma spraying [J]. Surf. Coat. Technol., 2010, 205: 2225
|
41 |
Tolpygo V K, Clarke D R, Murphy K S. Oxidation-induced failure of EB-PVD thermal barrier coatings [J]. Surf. Coat. Technol., 2001, 146-147: 124
|
42 |
Lu J, Zhang H, Li L, et al. Y-Hf co-doped Al1.1CoCr0.8FeNi high-entropy alloy with excellent oxidation resistance and nanostructure stability at 1200oC [J]. Scr. Mater., 2021, 203: 114105
|
43 |
Lu J, Chen Y, Zhang H, et al. Y/Hf-doped Al0.7CoCrFeNi high-entropy alloy with ultra oxidation and spallation resistance at 1200oC [J]. Corros. Sci., 2020, 174: 108803
|
44 |
Evans H E, Taylor M P. Diffusion cells and chemical failure of MCrAlY bond coats in thermal-barrier coating systems [J]. Oxid. Met., 2001, 55: 17
|
45 |
Wang G, Gleeson B, Douglass D L. A diffusional analysis of the oxidation of binary multiphase alloys [J]. Oxid. Met., 1991, 35: 333
|
46 |
Pint B A. Optimization of reactive-element additions to improve oxidation performance of alumina-forming alloys [J]. J. Am. Ceram. Soc., 2003, 86: 686
|
47 |
Pint B A. Experimental observations in support of the dynamic-segregation theory to explain the reactive-element effect [J]. Oxid. Met., 1996, 45: 1
|
48 |
Naumenko D, Pint B A, Quadakkers W J. Current thoughts on reactive element effects in alumina-forming systems: In memory of john stringer [J]. Oxid. Met., 2016, 86: 1
|
49 |
Yang H B, Wang Y S, Wang X, et al. Research progress of hot corrosion and protection technology of gas turbine under marine environment [J]. Surf. Technol., 2020, 49: 163
|
49 |
杨宏波, 王源升, 王 轩 等. 燃气轮机在海洋环境下的热腐蚀与防护技术研究进展 [J]. 表面技术, 2020, 49: 163
|
50 |
Nicholls J R. Advances in coating design for high-performance gas turbines [J]. MRS Bull., 2003, 28: 659
|
51 |
Bose S. High Temperature Coatings [M]. Boston: Butterworth-Heinemann, 2007: 155
|
52 |
Li L, Lu J, Liu X Z, et al. Al x CoCrFeNi high entropy alloys with superior hot corrosion resistance to Na2SO4 + 25%NaCl at 900oC [J]. Corros. Sci., 2021, 187: 109479
|
53 |
Leyens C, Wright I G, Pint B A. Effect of experimental procedures on the cyclic, hot-corrosion behavior of NiCoCrAlY-type bondcoat alloys [J]. Oxid. Met., 2000, 54: 255
|
54 |
Zhang P M, Li X H, Moverare J, et al. The iron effect on hot corrosion behaviour of MCrAlX coating in the presence of NaCl at 900oC [J]. J. Alloys Compd., 2000, 815: 152381
|
55 |
Lu J, Li L, Zhang H, et al. Oxidation behavior of gas-atomized AlCoCrFeNi high-entropy alloy powder at 900-1100oC [J]. Corros. Sci., 2021, 181: 109257
|
56 |
Mullis A M, Farrell L, Cochrane R F, et al. Estimation of cooling rates during close-coupled gas atomization using secondary dendrite arm spacing measurement [J]. Metall. Mater. Trans., 2013, 44B: 992
|
57 |
Liang J T, Cheng K C, Chen S H. Effect of heat treatment on the phase evolution and mechanical properties of atomized AlCoCrFeNi high-entropy alloy powders [J]. J. Alloys Compd., 2019, 803: 484
|
58 |
Golightly F A, Stott F H, Wood G C. The influence of yttrium additions on the oxide-scale adhesion to an iron-chromium-aluminum alloy [J]. Oxid. Met., 1976, 10: 163
|
59 |
Issartel C, Buscail H, Chevalier S, et al. Effect of yttrium as alloying element on a model alumina-forming alloy oxidation at 1100oC [J]. Oxid. Met., 2017, 88: 409
|
60 |
Luo L R, Zhang H, Chen Y, et al. Effects of the β phase size and shape on the oxidation behavior of NiCoCrAlY coating [J]. Corros. Sci., 2018, 145: 262
|
61 |
Yang G J, Xiang X D, Xing L K, et al. Isothermal oxidation behavior of NiCoCrAlTaY coating deposited by high velocity air-fuel spraying [J]. J. Therm. Spray Technol., 2012, 21: 391
|
62 |
Sadeghimeresht E, Markocsan N, Nylén P. Microstructural and electrochemical characterization of Ni-based bi-layer coatings produced by the HVAF process [J]. Surf. Coat. Technol., 2016, 304: 606
|
63 |
Sadeghimeresht E, Markocsan N, Nylén P. Microstructural characteristics and corrosion behavior of HVAF- and HVOF-sprayed Fe-based coatings [J]. Surf. Coat. Technol., 2017, 318: 365
|
64 |
Zhang P M, Sadeghimeresht E, Chen S L, et al. Effects of surface finish on the initial oxidation of HVAF-sprayed NiCoCrAlY coatings [J]. Surf. Coat. Technol., 2019, 364: 43
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|