Please wait a minute...
金属学报  2022, Vol. 58 Issue (3): 345-354    DOI: 10.11900/0412.1961.2020.00529
  研究论文 本期目录 | 过刊浏览 |
添加3%ZnAl-Mg-Si-Cu合金非等温时效析出行为的影响
袁波1, 郭明星1,2(), 韩少杰1, 张济山1,2, 庄林忠1,2
1.北京科技大学 新金属材料国家重点实验室 北京 100083
2.北京科技大学 现代交通金属材料与加工技术北京实验室 北京 100083
Effect of 3%Zn Addition on the Non-Isothermal Precipitation Behaviors of Al-Mg-Si-Cu Alloys
YUAN Bo1, GUO Mingxing1,2(), HAN Shaojie1, ZHANG Jishan1,2, ZHUANG Linzhong1,2
1.State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083, China
2.Beijing Laboratory of Metallic Materials and Processing for Modern Transportation, University of Science and Technology Beijing, Beijing 100083, China
引用本文:

袁波, 郭明星, 韩少杰, 张济山, 庄林忠. 添加3%ZnAl-Mg-Si-Cu合金非等温时效析出行为的影响[J]. 金属学报, 2022, 58(3): 345-354.
Bo YUAN, Mingxing GUO, Shaojie HAN, Jishan ZHANG, Linzhong ZHUANG. Effect of 3%Zn Addition on the Non-Isothermal Precipitation Behaviors of Al-Mg-Si-Cu Alloys[J]. Acta Metall Sin, 2022, 58(3): 345-354.

全文: PDF(2049 KB)   HTML
摘要: 

利用DSC、TEM、拉伸和硬度测量等方法系统研究了Al-0.8Mg-1.2Si-0.5Cu-0.3Mn-0.5Fe(-3.0Zn) (质量分数,%)合金非等温时效析出行为。结果表明,添加Zn可增加合金低温区和高温区溶质原子团簇析出和回溶量,并促进沉淀相析出,基于DSC分析计算的沉淀相析出激活能和其他材料参数,分别建立了可有效预测2种合金沉淀析出速率的动力学方程;同时,3.0%Zn的添加可有效促进合金非等温热处理时效过程中沉淀相的形核率,致使硬度较高,与不含Zn合金一样其硬度均随时效温度升高而升高,100℃附近升高缓慢,出现一硬度平台,250℃附近出现硬度峰值,随后降低;峰值状态的TEM组织表征显示,非等温热处理可使2种合金均析出大量多尺度β″沉淀相,但是含Zn合金沉淀相数量密度更高,且析出的β″相晶格参数发生显著变化;此外,基于组织和性能测量,建立了2种合金峰值状态沉淀相分布与显微硬度间的经验定量关系。

关键词 Al-Mg-Si-Cu(-Zn)合金非等温热处理时效析出显微组织定量关系    
Abstract

To reduce the weight of a car body, Al-Mg-Si-Cu alloys have been extensively studied for outer body panels of automobiles owing to their high strength-to-weight ratio, recyclability, and good formability. Moreover, the strength of Al-Mg-Si-Cu series alloys can be enhanced using the bake-hardening treatment. However, compared with steel, the formability and final strengths of the alloys need further improvement, which is a major challenge to the large-scale application of Al alloys in the automotive fields. In this study, the non-isothermal precipitation behavior of Al-0.8Mg-1.2Si-0.5Cu-0.3Mn-0.5Fe(-3.0Zn) (mass fraction, %) alloy was systematically investigated using DSC, TEM, tensile test, and hardness measurements. The results show that adding Zn can simultaneously increase the formation and redissolution of solute clusters in the alloys during low- and high-temperatures non-isothermal heat treatments and promote precipitation. The kinetic equations of precipitation in the two alloys were established based on the activation energy of precipitation obtained through DSC analyses and other material parameters, which can effectively predict the corresponding precipitation rates. Further, adding 3.0%Zn to the alloy can effectively increase the nucleation rate of the precipitates in the alloy during non-isothermal heat treatment, resulting in higher hardness. Additionally, with the increase of ageing temperature, the hardness increased gradually, but a hardness plateau appeared at approximately 100oC, and the peak hardness values appeared at approximately 250oC, followed by a decrease in hardness. TEM microstructural characterization showed that non-isothermal heat treatment could result in the formation of multiscale β'' precipitates in the two alloys in the peak ageing state. In comparison, adding Zn to the alloy increased the number density of the precipitates and significantly changed the lattice parameters of β'' phases formed in the peak aged alloy. Finally, based on the obtained microstructure and mechanical properties, the relationship between the precipitate distribution and microhardness of the two alloys was established.

Key wordsAl-Mg-Si-Cu(-Zn) alloy    non-isothermal heat treatment    precipitation    microstructure    quantitative relationship
收稿日期: 2020-12-29     
ZTFLH:  TG146  
基金资助:国家自然科学基金项目(51871029);国家重点研发计划项目(2016YFB0300801);政府引导类计划-政府间双边创新合作项目(BZ2019019);新金属材料国家重点实验室开放课题项目(2020-ZD02)
作者简介: 袁 波,男,1991年生,博士生
图1  固溶态合金对应的DSC曲线(升温速率10℃/min)
图2  固溶淬火态合金DSC曲线GP区析出峰、溶解峰,沉淀相析出峰及对应的激活能计算过程图Color online(a) DSC curves (b) Y-T curves (c) ln[ln(1 / (1 - Y))]-lnt curves (d) ln[(dY / dT)·φ / f(Y)]-1 / T curves
DSC peakQ / (kJ·mol-1)k0 / min-1Kinetics expression
1# alloy GP zone formation42.26.3 × 1051 - exp[-6.3 × 105texp(-5082 / T)]
2# alloy GP zone formation51.61.5 × 1071 - exp[-1.5 × 107texp(-6209 / T)]
1# alloy GP zone dissolution80.75.0 × 1081 - exp[-5.0 × 108texp(-9713 / T)]
2# alloy GP zone dissolution67.01.8 × 1071 - exp[-1.8 × 107texp(-8063 / T)]
1# alloy Precipitate formation100.18.2 × 1091 - exp[-6.8 × 1019t2exp(-24090 / T)]
2# alloy Precipitate formation98.87.3 × 1091 - exp[-5.4 × 1019t2exp(-23780 / T)]
表1  1#和2#合金固溶淬火态不同沉淀相析出动力学方程
图3  1#和2#合金185℃时效时沉淀相体积分数与时效时间理论关系曲线以及硬度变化规律
图4  1#和2#合金非等温时效过程中硬度变化规律
图5  1#和2#固溶淬火态合金以10℃/min升温至250℃状态下的TEM组织表征(a, d) TEM images of second phase (b, e) TEM images of β″ phase (c, f) HRTEM images of β″ showed by square areas in Figs.5b and e, respectively, and corresponding fast Fourier transformation (FFT) and variant charts
图6  2种固溶态合金的应力-应变曲线
AlloyαMβrc / nmb / nmG / GPaσ0 / MPaY / %σss / MPa
1#0.553.060.52.50.28626.9105.075.9
2#5.784.0
表2  在屈服强度模型中运用到的参数值
图7  Al-Mg-Si-Cu(-Zn)合金屈服强度和显微硬度间的关系图
1 Javidani M, Larouche D. Application of cast Al-Si alloys in internal combustion engine components [J]. Int. Mater. Rev., 2014, 59: 132
2 Hirsch J, Al-Samman T. Superior light metals by texture engineering: Optimized aluminum and magnesium alloys for automotive applications [J]. Acta Mater., 2013, 61: 818
3 Ma W Y, Wang B Y, Fu L, et al. Influence of process parameters on deep drawing of AA6111 aluminum alloy at elevated temperatures [J]. J. Cent. South Univ., 2015, 22: 1167
4 Hirsch J. Recent development in aluminium for automotive applications [J]. Trans. Nonferrous Met. Soc. China, 2014, 24: 1995
5 Guo M X, Sha G, Cao L Y, et al. Enhanced bake-hardening response of an Al-Mg-Si-Cu alloy with Zn addition [J]. Mater. Chem. Phys., 2015, 162: 15
6 Birol Y. Pre-aging to improve bake hardening in a twin-roll cast Al-Mg-Si alloy [J]. Mater. Sci. Eng., 2005, A391: 175
7 Edwards G A, Stiller K, Dunlop G L, et al. The precipitation sequence in Al-Mg-Si alloys [J]. Acta Mater., 1998, 46: 3893
8 Andersen S J, Zandbergen H W, Jansen J, et al. The crystal structure of the β″ phase in Al-Mg-Si alloys [J]. Acta Mater., 1998, 46: 3283
9 Saito T, Ehlers F J H, Lefebvre W, et al. HAADF-STEM and DFT investigations of the Zn-containing β″ phase in Al-Mg-Si alloys [J]. Acta Mater., 2014, 78: 245
10 Zhang Y, Pelliccia D, Milkereit B, et al. Analysis of age hardening precipitates of Al-Zn-Mg-Cu alloys in a wide range of quenching rates using small angle X-ray scattering [J]. Mater. Des., 2018, 142: 259
11 Guo M X, Zhang Y, Zhang X K, et al. Non-isothermal precipitation behaviors of Al-Mg-Si-Cu alloys with different Zn contents [J]. Mater. Sci. Eng., 2016, A669: 20
12 Guo M X, Zhang X K, Zhang J S, et al. Effect of Zn addition on the precipitation behaviors of Al-Mg-Si-Cu alloys for automotive applications [J]. J. Mater. Sci., 2017, 52: 1390
13 Yuan B, Guo M X, Wu Y, et al. Influence of treatment pathways on the precipitation behaviors of Al-Mg-Si-Cu-(Zn)-Mn alloys [J]. J. Alloys Compd., 2019, 797: 26
14 Li Y, Guo M X, Jiang N, et al. Precipitation behaviors and preparation of an advanced Al-0.93Mg-0.78Si-0.20Cu-3.00Zn alloy for automotive application [J]. Acta Metall. Sin., 2016, 52: 191
14 李 勇, 郭明星, 姜 宁等. 汽车用新型Al-0.93Mg-0.78Si-0.20Cu-3.00Zn合金的制备及其时效析出行为研究 [J]. 金属学报, 2016, 52: 191
15 Li G, Guo M X, Wang Y, et al. Effect of Ni addition on microstructure and mechanical properties of Al-Mg-Si-Cu-Zn alloys with a high Mg/Si ratio [J]. Int. J. Miner. Metall. Mater., 2019, 26: 740
16 Wang X F, Guo M X, Ma C Q, et al. Effect of particle size distribution on the microstructure, texture, and mechanical properties of Al-Mg-Si-Cu alloy [J] Int. J. Miner. Metall. Mater., 2018, 25: 957
17 Saito T, Wenner S, Osmundsen E, et al. The effect of Zn on precipitation in Al-Mg-Si alloys [J]. Philos. Mag., 2014, 94: 2410
18 Zhang Q X, Guo M X, Hu X Q, et al. Study on kinetics of precipitation in Al-0.6Mg-0.9Si-0.2Cu alloy for automotive application [J]. Acta Metall. Sin., 2013, 49: 1604
18 张巧霞, 郭明星, 胡晓倩等. 汽车板用Al-0.6Mg-0.9Si-0.2Cu合金时效析出动力学研究 [J]. 金属学报, 2013, 49: 1604
19 Zhao X C. The characterization and calculation of vacancy [D]. Nanning: Guangxi University, 2007
19 赵新春. 点缺陷空位的表征与计算 [D]. 南宁: 广西大学, 2007
20 Miao W F, Laughlin D E. Effects of Cu content and preaging on precipitation characteristics in aluminum alloy 6022 [J]. Metall. Mater. Trans., 2000, 31A: 361
21 Cuniberti A, Tolley A, Riglos M V C, et al. Influence of natural aging on the precipitation hardening of an AlMgSi alloy [J]. Mater. Sci. Eng., 2010, A527: 5307
22 Fallah V, Langelier B, Ofori-Opoku N, et al. Cluster evolution mechanisms during aging in Al-Mg-Si alloys [J]. Acta Mater., 2016, 103: 290
23 Serizawa A, Sato T, Miller M K. Effect of cold rolling on the formation and distribution of nanoclusters during pre-aging in an Al-Mg-Si alloy [J]. Mater. Sci. Eng., 2013, A561: 492
24 Galwey A K, Brown M E. Chapter 3-Kinetic background to thermal analysis and calorimetry [J]. Handb. Therm. Anal. Calorim., 1998, 1: 147
25 Liu G, Zhang G J, Ding X D, et al. Modeling the strengthening response to aging process of heat-treatable aluminum alloys containing plate/disc- or rod/needle-shaped precipitates [J]. Mater. Sci. Eng., 2003, A344: 113
26 Du Q, Li Y J. Effect modeling of Cr and Zn on microstructure evolution during homogenization heat treatment of AA3xxx alloys [J]. Trans. Nonferrous Met. Soc. China, 2014, 24: 2145
27 Wolverton C. Solute-vacancy binding in aluminum [J]. Acta Mater., 2007, 55: 5867
28 Ogura T, Hirosawa S, Cerezo A, et al. Atom probe tomography of nanoscale microstructures within precipitate free zones in Al-Zn-Mg(-Ag) alloys [J]. Acta Mater., 2010, 58: 5714
29 Yang W C, Wang M P, Zhang R R, et al. The diffraction patterns from β″ precipitates in 12 orientations in Al-Mg-Si alloy [J]. Scr. Mater., 2010, 62: 705
30 Ninive P H, Strandlie A, Gulbrandsen-Dahl S, et al. Detailed atomistic insight into the β″ phase in Al-Mg-Si alloys [J]. Acta Mater., 2014, 69: 126
31 Guo M X, Zhang Y D, Li G J, et al. Solute clustering in Al-Mg-Si-Cu-(Zn) alloys during aging [J]. J. Alloys Compd., 2019, 774: 347
32 Deschamps A, Brechet Y. Influence of predeformation and ageing of an Al-Zn-Mg alloy—II. Modeling of precipitation kinetics and yield stress [J]. Acta Mater., 1998, 47: 293
33 Dons A L, Jensen E K, Langsrud Y, et al. The Alstruc microstructure solidification model for industrial aluminum alloys [J]. Metall. Mater. Trans., 1999, 30A: 2135
[1] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[2] 卢楠楠, 郭以沫, 杨树林, 梁静静, 周亦胄, 孙晓峰, 李金国. 激光增材修复单晶高温合金的热裂纹形成机制[J]. 金属学报, 2023, 59(9): 1243-1252.
[3] 孙蓉蓉, 姚美意, 王皓瑜, 张文怀, 胡丽娟, 仇云龙, 林晓冬, 谢耀平, 杨健, 董建新, 成国光. Fe22Cr5Al3Mo-xY合金在模拟LOCA下的高温蒸汽氧化行为[J]. 金属学报, 2023, 59(7): 915-925.
[4] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[5] 王长胜, 付华栋, 张洪涛, 谢建新. 冷轧变形对高性能Cu-Ni-Si合金组织性能与析出行为的影响[J]. 金属学报, 2023, 59(5): 585-598.
[6] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[7] 李殿中, 王培. 金属材料的组织定制[J]. 金属学报, 2023, 59(4): 447-456.
[8] 芮祥, 李艳芬, 张家榕, 王旗涛, 严伟, 单以银. 新型纳米复合强化9Cr-ODS钢的设计、组织与力学性能[J]. 金属学报, 2023, 59(12): 1590-1602.
[9] 朱智浩, 陈志鹏, 刘田雨, 张爽, 董闯, 王清. 基于不同 α / β 团簇式比例的Ti-Al-V合金的铸态组织和力学性能[J]. 金属学报, 2023, 59(12): 1581-1589.
[10] 巩向鹏, 伍翠兰, 罗世芳, 沈若涵, 鄢俊. 自然时效对Al-2.95Cu-1.55Li-0.57Mg-0.18Zr合金160℃人工时效的影响[J]. 金属学报, 2023, 59(11): 1428-1438.
[11] 彭立明, 邓庆琛, 吴玉娟, 付彭怀, 刘子翼, 武千业, 陈凯, 丁文江. 镁合金选区激光熔化增材制造技术研究现状与展望[J]. 金属学报, 2023, 59(1): 31-54.
[12] 葛进国, 卢照, 何思亮, 孙妍, 殷硕. 电弧熔丝增材制造2Cr13合金组织与性能各向异性行为[J]. 金属学报, 2023, 59(1): 157-168.
[13] 杨天野, 崔丽, 贺定勇, 黄晖. 选区激光熔化AlSi10Mg-Er-Zr合金微观组织及力学性能强化[J]. 金属学报, 2022, 58(9): 1108-1117.
[14] 张鑫, 崔博, 孙斌, 赵旭, 张欣, 刘庆锁, 董治中. Y元素对Cu-Al-Ni高温形状记忆合金性能的影响[J]. 金属学报, 2022, 58(8): 1065-1071.
[15] 刘仁慈, 王鹏, 曹如心, 倪明杰, 刘冬, 崔玉友, 杨锐. 700℃热暴露对 β 凝固 γ-TiAl合金表面组织及形貌的影响[J]. 金属学报, 2022, 58(8): 1003-1012.