|
|
铁素体区等温过程中Ti-Mo-Cu微合金钢中的共析出行为 |
唐帅1( ), 蓝慧芳1, 段磊1, 金剑锋2, 李建平1, 刘振宇1, 王国栋1 |
1.东北大学 轧制技术及连轧自动化国家重点实验室 沈阳 110819 2.东北大学 材料科学与工程学院 沈阳 110819 |
|
Co-Precipitation Behavior in Ferrite Region During Isothermal Process in Ti-Mo-Cu Microalloyed Steel |
TANG Shuai1( ), LAN Huifang1, DUAN Lei1, JIN Jianfeng2, LI Jianping1, LIU Zhenyu1, WANG Guodong1 |
1.State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819, China 2.School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China |
引用本文:
唐帅, 蓝慧芳, 段磊, 金剑锋, 李建平, 刘振宇, 王国栋. 铁素体区等温过程中Ti-Mo-Cu微合金钢中的共析出行为[J]. 金属学报, 2022, 58(3): 355-364.
Shuai TANG,
Huifang LAN,
Lei DUAN,
Jianfeng JIN,
Jianping LI,
Zhenyu LIU,
Guodong WANG.
Co-Precipitation Behavior in Ferrite Region During Isothermal Process in Ti-Mo-Cu Microalloyed Steel[J]. Acta Metall Sin, 2022, 58(3): 355-364.
1 |
Takahashi M. Development of high strength steels for automobiles [R]. Nippon Steel Tech. Rep. No.88, 2003
|
2 |
Kashima T, Hashimoto S, Mukai Y. 780 N/mm2 grade hot-rolled high-strength steel sheet for automotive suspension system [J]. JSAE Rev., 2003, 24: 81
|
3 |
Patel J, Klinkenberg C, Hulka K. Hot rolled HSLA strip steels for automotive and construction applications [A]. Niobium Science & Technology—Proceeding of the International Symposium Niobium 2001 [C]. Orlando, FL: Niobium2001Limited, 2001: 647
|
4 |
Morita M, Kurosawa N, Masui S, et al. Development of hot rolled high strength steels hardened by precipitation hardening with high stretch flanging [A]. CAMP-ISIJ [C]. Tokyo: The Iron and Steel Institute of Japan, 1992: 1863
|
5 |
Seto K, Funakawa Y, Kaneko S. Hot rolled high strength steels for suspension and chassis parts “NANOHITEN” and “BHT® Steel” [R]. JFE Tech. Rep. No.10, 2007
|
6 |
Funakawa Y, Shiozaki T, Tomita K, et al. Development of high strength hot-rolled sheet steel consisting of ferrite and nanometer-sized carbides [J]. ISIJ Int., 2004, 44: 1945
|
7 |
Funakawa Y, Seto K. Stabilization in strength of hot-rolled sheet steel strengthened by nanometer-sized carbides [J]. Tetsu Hagané, 2007, 93: 49
|
7 |
船川 義正, 瀬戸 一洋. 微細炭化物で析出強化した高強度熱延鋼板の強度安定化 [J]. 鐵と鋼, 2007, 93: 49
|
8 |
Gladman T, et al. Structure-property relationships in high-strength microalloyed steels [A]. Microalloying 75' [C]. New York: Union Carbide Corporation, 1977: 32
|
9 |
Honeycombe R W K, Mehl R F. Transformation from austenite in alloy steels [J]. Metall. Trans., 1976, 7A: 915
|
10 |
Berry F G, Honeycombe R W K. Isothermal decomposition of austenite in Fe-Mo-C alloys [J]. Metall. Trans., 1970, 1B: 3279
|
11 |
Yen H W, Chen P Y, Huang C Y, et al. Interphase precipitation of nanometer-sized carbides in a titanium-molybdenum-bearing low-carbon steel [J]. Acta Mater., 2011, 59: 6264
|
12 |
Chen C Y, Yen H W, Kao F H, et al. Precipitation hardening of high-strength low-alloy steels by nanometer-sized carbides [J]. Mater. Sci. Eng., 2009, A499: 162
|
13 |
Jang J H, Lee C H, Heo Y U, et al. Stability of (Ti, M)C (M = Nb, V, Mo and W) carbide in steels using first-principles calculations [J]. Acta Mater., 2012, 60: 208
|
14 |
Kamikawa N, Abe Y, Miyamoto G, et al. Tensile behavior of Ti, Mo-added low carbon steels with interphase precipitation [J]. ISIJ Int., 2014, 54: 212
|
15 |
Chen J, Lü M Y, Tang S, et al. Microstructure, mechanical properties and interphase precipitation behaviors in V-Ti microalloyed steel [J]. Acta Metall. Sin., 2014, 50: 524
|
15 |
陈 俊, 吕梦阳, 唐 帅等. V-Ti微合金钢的组织性能及相间析出行为 [J]. 金属学报, 2014, 50: 524
|
16 |
Chen C Y, Chen C C, Yang J R. Microstructure characterization of nanometer carbides heterogeneous precipitation in Ti-Nb and Ti-Nb-Mo steel [J]. Mater. Charact., 2014, 88: 69
|
17 |
Tang S, Liu Z Y, Wang G D, et al. Microstructural evolution and mechanical properties of high strength microalloyed steels: Ultra fast cooling (UFC) versus accelerated cooling (ACC) [J]. Mater. Sci. Eng., 2013, A580: 257
|
18 |
Jha G, Das S, Sinha S, et al. Design and development of precipitate strengthened advanced high strength steel for automotive application [J]. Mater. Sci. Eng., 2013, A561: 394
|
19 |
Zhang K, Yong Q L, Sun X J, et al. Effect of coiling temperature on microstructure and mechanical properties of Ti-V-Mo complex microalloyed ultra-high strength steel [J]. Acta Metall. Sin., 2016, 52: 529
|
19 |
张 可, 雍岐龙, 孙新军等. 卷取温度对Ti-V-Mo复合微合金化超高强度钢组织及力学性能的影响 [J]. 金属学报, 2016, 52: 529
|
20 |
Zhang K, Sun X J, Zhang M Y, et al. Kinetics of (Ti, V, Mo) C precipitated in γ/α matrix of Ti-V-Mo complex microalloyed steel [J]. Acta Metall. Sin., 2018, 54: 1122
|
20 |
张 可, 孙新军, 张明亚等. Ti-V-Mo复合微合金钢中(Ti, V, Mo)C在γ/α中沉淀析出的动力学 [J]. 金属学报, 2018, 54: 1122
|
21 |
Li C, Wang X M, Shang C J, et al. Study on precipitation behavior of phases containing Cu in the Cu-bearing steel in continuous cooling process [J]. Acta Metall. Sin., 2010, 46: 1488
|
21 |
李 闯, 王学敏, 尚成嘉等. 连续冷却过程中含Cu相在钢中析出行为的研究 [J]. 金属学报, 2010, 46: 1488
|
22 |
Dunne D P. Review: Interaction of precipitation with recrystallisation and phase transformation in low alloy steels [J]. Mater. Sci. Technol., 2010, 26: 410
|
23 |
Dunne D P, Banadkouki S S G, Yu D. Isothermal transformation products in a Cu-bearing high strength low alloy steel [J]. ISIJ Int., 1996, 36: 324
|
24 |
Gagliano M S, Fine M E. Characterization of the nucleation and growth behavior of copper precipitates in low-carbon steels [J]. Metall. Mater. Trans., 2004, 35A: 2323
|
25 |
Chen C Y, Li C H, Tsao T C, et al. A novel technique for developing a dual-phase steel with a lower strength difference between ferrite and martensite [J]. Mater. Today Commun., 2020, 23: 100895
|
26 |
Goodman S R, Brenner S S, Low J R. An FIM-atom probe study of the precipitation of copper from iron-1.4 at. pct copper. Part I: Field-ion microscopy [J]. Metall. Trans., 1973, 4: 2363
|
27 |
Guo H, Cheng J J, Yang S W, et al. Influence of combined Cu and Nb addition on the quenched microstructure and precipitation during tempering in ultra-low carbon steels [J]. J. Alloys Compd., 2013, 577: S619
|
28 |
Kao F. Precipitation strengthening of nanometer-sized copper particles and alloy carbides in high strength low alloy steels [D]. Taiwan University, 2008
|
29 |
Yang Y, Lu H, Yu C, et al. First-principles calculations of mechanical properties of TiC and TiN [J]. J. Alloys Compd., 2009, 485: 542
|
30 |
Yong Q L. Secondary Phase in Steels [M]. Beijing: Metallurgical Industry Press, 2006: 173
|
30 |
雍岐龙. 钢铁材料中的第二相 [M]. 北京: 冶金工业出版社, 2006: 173
|
31 |
Taylor K A. Solubility products for titanium-, vanadium-, and niobium-carbide in ferrite [J]. Scr. Metall. Mater., 1995, 32: 7
|
32 |
Pavlina E J, Speer J G, van Tyne C J. Equilibrium solubility products of molybdenum carbide and tungsten carbide in iron [J]. Scr. Mater., 2012, 66: 243
|
33 |
Cahn J W. Nucleation on dislocations [J]. Acta Metall., 1957, 5: 169
|
34 |
Yong Q L. Theory of nucleation on dislocations [J]. J. Mater. Sci. Technol., 1990, 6: 239
|
35 |
Willens R H, Buehler E, Matthias B T. Superconductivity of the transition-metal carbides [J]. Phys. Rev., 1967, 159: 327
|
36 |
Straumanis M E, Yu L S. Lattice parameters, densities, expansion coefficients and perfection of structure of Cu and of Cu-In α phase [J]. Acta Cryst., 1969, 25A: 676
|
37 |
Elliott R O, Kempter C P. Thermal expansion of some transition metal carbides [J]. J. Phys. Chem., 1958, 62: 630
|
38 |
Krasnenko V, Brik M G. First-principles calculations of hydrostatic pressure effects on the structural, elastic and thermodynamic properties of cubic monocarbides XC (X = Ti, V, Cr, Nb, Mo, Hf) [J]. Solid State Sci., 2012, 14: 1431
|
39 |
White G K. Thermal expansion of reference materials: Copper, silica and silicon [J]. J. Phys., 1973, 6D: 2070
|
40 |
Moll S H, Ogilvie R E. Solubility and diffusion of titanium in iron [J]. Trans. Metall. Soc. AIME, 1959, 215: 613
|
41 |
Smithells C J, Brandes E A. Smithells Metals Reference Book [M]. Oxford: Butterworth-Heinemann, 1992: 13
|
42 |
Wang J T, Hodgson P D, Bikmukhametov I, et al. Effects of hot-deformation on grain boundary precipitation and segregation in Ti-Mo microalloyed steels [J]. Mater. Des., 2018, 141: 48
|
43 |
Dhara S, Marceau R K W, Wood K, et al. Precipitation and clustering in a Ti-Mo steel investigated using atom probe tomography and small-angle neutron scattering [J]. Mater. Sci. Eng., 2018, A718: 74
|
44 |
Timokhina I, Miller M K, Wang J T, et al. On the Ti-Mo-Fe-C atomic clustering during interphase precipitation in the Ti-Mo steel studied by advanced microscopic techniques [J]. Mater. Des., 2016, 111: 222
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|