Please wait a minute...
金属学报  2022, Vol. 58 Issue (3): 355-364    DOI: 10.11900/0412.1961.2020.00521
  研究论文 本期目录 | 过刊浏览 |
铁素体区等温过程中Ti-Mo-Cu微合金钢中的共析出行为
唐帅1(), 蓝慧芳1, 段磊1, 金剑锋2, 李建平1, 刘振宇1, 王国栋1
1.东北大学 轧制技术及连轧自动化国家重点实验室 沈阳 110819
2.东北大学 材料科学与工程学院 沈阳 110819
Co-Precipitation Behavior in Ferrite Region During Isothermal Process in Ti-Mo-Cu Microalloyed Steel
TANG Shuai1(), LAN Huifang1, DUAN Lei1, JIN Jianfeng2, LI Jianping1, LIU Zhenyu1, WANG Guodong1
1.State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819, China
2.School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
引用本文:

唐帅, 蓝慧芳, 段磊, 金剑锋, 李建平, 刘振宇, 王国栋. 铁素体区等温过程中Ti-Mo-Cu微合金钢中的共析出行为[J]. 金属学报, 2022, 58(3): 355-364.
Shuai TANG, Huifang LAN, Lei DUAN, Jianfeng JIN, Jianping LI, Zhenyu LIU, Guodong WANG. Co-Precipitation Behavior in Ferrite Region During Isothermal Process in Ti-Mo-Cu Microalloyed Steel[J]. Acta Metall Sin, 2022, 58(3): 355-364.

全文: PDF(2561 KB)   HTML
摘要: 

碳化物和Cu的共析出是提高微合金钢强度的一种有效手段,本工作利用OM和TEM研究了Ti-Mo-Cu微合金钢在不同等温温度下复合型碳化物和ε-Cu的共析出行为,利用复合析出相固溶析出模型和经典形核长大理论对Ti-Mo-Cu微合金钢的析出动力学进行了计算。结果表明,(Ti, Mo)C与ε-Cu二者独立析出,分别与铁素体基体呈N-W和K-S取向关系,在600℃时析出以ε-Cu为主,620℃发生(Ti, Mo)C与ε-Cu的共析出,而640~660℃时析出以(Ti, Mo)C相间析出为主。热动力学计算表明,在600~660℃范围内,随温度提高,(Ti, Mo)C中的Ti/Mo原子比由2.5增大到4.5,碳化物组成由Ti0.71Mo0.29C演变为Ti0.79Mo0.21C,(Ti, Mo)C与ε-Cu的析出-温度-时间(PTT)曲线存在交点,当温度低于616℃时,ε-Cu优先析出,温度在616℃附近时,发生(Ti, Mo)C与ε-Cu的共析出,当温度高于616℃时,(Ti, Mo)C优先析出,很好解释了实验现象。

关键词 Ti-Mo-Cu微合金钢(Ti, Mo)Cε-Cu共析出析出动力学    
Abstract

The coprecipitation of carbides and copper (Cu) particles is an effective technique for strengthening microalloyed steel. In this study, OM and TEM techniques were used to investigate the coprecipitation behavior of carbides and ε-Cu in Ti-Mo-Cu microalloyed steel at different isothermal temperatures. A solid solution precipitation model and the classical nucleation theory of precipitates were used to calculate the precipitation kinetics in the Ti-Mo-Cu microalloyed steel. The results show that (Ti, Mo)C and ε-Cu precipitated independently, and they showed the N-W and K-S orientations with the ferrite matrix, respectively. The dominant precipitates at 600oC are ε-Cu. (Ti, Mo)C and ε-Cu were coprecipitated at 620oC. At 640-660oC, (Ti, Mo)C was mainly precipitated in the form of interphase precipitation. Thermodynamic calculations showed that in the range of 600-660oC with an increase in temperature, the Ti/Mo atomic ratio in (Ti, Mo)C increases from 2.5 to 4.5, and the carbide changes from Ti0.71Mo0.29C to Ti0.79Mo0.21C. The precipitation-temperature-time (PTT) curves of (Ti, Mo)C and ε-Cu intersect at 616oC, indicating simultaneous precipitation of (Ti, Mo)C and ε-Cu. (Ti, Mo)C and ε-Cu preferentially precipitate below and above 616oC, respectively. The calculation and experimental results are consistent.

Key wordsTi-Mo-Cu microalloyed steel    (Ti, Mo)C    ε-Cu    co-precipitation    precipitation kinetics
收稿日期: 2020-12-28     
ZTFLH:  TG142.1  
基金资助:国家自然科学基金项目(51774083);中央高校基本科研业务费项目(N2107002);高等学校学科创新引智计划项目(B20029);国家重点研发计划项目(2017YFB0304402)
作者简介: 唐 帅,男,1981年生,博士
图1  实验用钢不同等温温度下显微组织的OM像(a) 600oC (b) 620oC (c) 640oC (d) 660oC
图2  600℃等温后试样中的ε-Cu的TEM明场像和SAED花样(a) at the dislocation (b) interphase precipitate near the grain boundary(c) bright field image of Cu (d) dark field image of Cu and corresponding SAED pattern (inset)
图3  620~660℃等温后试样中的相间析出碳化物的TEM像和SAED花样
SymbolDescriptionMagnitudeUnitRef.
aTiCLattice constant of TiC at room temperature0.433nm[29]
aMoCLattice constant of MoC at room temperature0.428nm[35]
aCuLattice constant of ε-Cu at room temperature0.362nm[36]
aFeLattice constant of α-Fe at room temperature0.287nm
αTiCLinear expansion coefficient of TiC7.86 × 10-6K-1[37]
αMoCLinear expansion coefficient of MoC6.88 × 10-6K-1[38]
αCuLinear expansion coefficient of Cu16.5 × 10-6K-1[39]
QTiActivation energy of Ti in α-Fe248kJ·mol-1[40]
QMoActivation energy of Mo in α-Fe229kJ·mol-1[41]
QCuActivation energy of Cu in α-Fe284kJ·mol-1[41]
vFePoisson ratio of Fe0.291[41]
vCuPoisson ratio of Cu0.345[41]
GFeShear modulus of Fe89334 - 29.688TGPa[30]
GCuShear modulus of Cu44689 - 15.936TGPa[30]
kBoltzmann constant1.38 × 10-23J·K-1
表1  计算中使用的参数[29,30,35~41]
图4  不同温度下(Ti, Mo)C与ε-Cu在铁素体中析出热/动力学的计算结果(a) Ti/Mo atomic ratio and x (b) driving force (c) PTT curves (d) solid solution content
1 Takahashi M. Development of high strength steels for automobiles [R]. Nippon Steel Tech. Rep. No.88, 2003
2 Kashima T, Hashimoto S, Mukai Y. 780 N/mm2 grade hot-rolled high-strength steel sheet for automotive suspension system [J]. JSAE Rev., 2003, 24: 81
3 Patel J, Klinkenberg C, Hulka K. Hot rolled HSLA strip steels for automotive and construction applications [A]. Niobium Science & Technology—Proceeding of the International Symposium Niobium 2001 [C]. Orlando, FL: Niobium2001Limited, 2001: 647
4 Morita M, Kurosawa N, Masui S, et al. Development of hot rolled high strength steels hardened by precipitation hardening with high stretch flanging [A]. CAMP-ISIJ [C]. Tokyo: The Iron and Steel Institute of Japan, 1992: 1863
5 Seto K, Funakawa Y, Kaneko S. Hot rolled high strength steels for suspension and chassis parts “NANOHITEN” and “BHT® Steel” [R]. JFE Tech. Rep. No.10, 2007
6 Funakawa Y, Shiozaki T, Tomita K, et al. Development of high strength hot-rolled sheet steel consisting of ferrite and nanometer-sized carbides [J]. ISIJ Int., 2004, 44: 1945
7 Funakawa Y, Seto K. Stabilization in strength of hot-rolled sheet steel strengthened by nanometer-sized carbides [J]. Tetsu Hagané, 2007, 93: 49
7 船川 義正, 瀬戸 一洋. 微細炭化物で析出強化した高強度熱延鋼板の強度安定化 [J]. 鐵と鋼, 2007, 93: 49
8 Gladman T, et al. Structure-property relationships in high-strength microalloyed steels [A]. Microalloying 75' [C]. New York: Union Carbide Corporation, 1977: 32
9 Honeycombe R W K, Mehl R F. Transformation from austenite in alloy steels [J]. Metall. Trans., 1976, 7A: 915
10 Berry F G, Honeycombe R W K. Isothermal decomposition of austenite in Fe-Mo-C alloys [J]. Metall. Trans., 1970, 1B: 3279
11 Yen H W, Chen P Y, Huang C Y, et al. Interphase precipitation of nanometer-sized carbides in a titanium-molybdenum-bearing low-carbon steel [J]. Acta Mater., 2011, 59: 6264
12 Chen C Y, Yen H W, Kao F H, et al. Precipitation hardening of high-strength low-alloy steels by nanometer-sized carbides [J]. Mater. Sci. Eng., 2009, A499: 162
13 Jang J H, Lee C H, Heo Y U, et al. Stability of (Ti, M)C (M = Nb, V, Mo and W) carbide in steels using first-principles calculations [J]. Acta Mater., 2012, 60: 208
14 Kamikawa N, Abe Y, Miyamoto G, et al. Tensile behavior of Ti, Mo-added low carbon steels with interphase precipitation [J]. ISIJ Int., 2014, 54: 212
15 Chen J, Lü M Y, Tang S, et al. Microstructure, mechanical properties and interphase precipitation behaviors in V-Ti microalloyed steel [J]. Acta Metall. Sin., 2014, 50: 524
15 陈 俊, 吕梦阳, 唐 帅等. V-Ti微合金钢的组织性能及相间析出行为 [J]. 金属学报, 2014, 50: 524
16 Chen C Y, Chen C C, Yang J R. Microstructure characterization of nanometer carbides heterogeneous precipitation in Ti-Nb and Ti-Nb-Mo steel [J]. Mater. Charact., 2014, 88: 69
17 Tang S, Liu Z Y, Wang G D, et al. Microstructural evolution and mechanical properties of high strength microalloyed steels: Ultra fast cooling (UFC) versus accelerated cooling (ACC) [J]. Mater. Sci. Eng., 2013, A580: 257
18 Jha G, Das S, Sinha S, et al. Design and development of precipitate strengthened advanced high strength steel for automotive application [J]. Mater. Sci. Eng., 2013, A561: 394
19 Zhang K, Yong Q L, Sun X J, et al. Effect of coiling temperature on microstructure and mechanical properties of Ti-V-Mo complex microalloyed ultra-high strength steel [J]. Acta Metall. Sin., 2016, 52: 529
19 张 可, 雍岐龙, 孙新军等. 卷取温度对Ti-V-Mo复合微合金化超高强度钢组织及力学性能的影响 [J]. 金属学报, 2016, 52: 529
20 Zhang K, Sun X J, Zhang M Y, et al. Kinetics of (Ti, V, Mo) C precipitated in γ/α matrix of Ti-V-Mo complex microalloyed steel [J]. Acta Metall. Sin., 2018, 54: 1122
20 张 可, 孙新军, 张明亚等. Ti-V-Mo复合微合金钢中(Ti, V, Mo)C在γ/α中沉淀析出的动力学 [J]. 金属学报, 2018, 54: 1122
21 Li C, Wang X M, Shang C J, et al. Study on precipitation behavior of phases containing Cu in the Cu-bearing steel in continuous cooling process [J]. Acta Metall. Sin., 2010, 46: 1488
21 李 闯, 王学敏, 尚成嘉等. 连续冷却过程中含Cu相在钢中析出行为的研究 [J]. 金属学报, 2010, 46: 1488
22 Dunne D P. Review: Interaction of precipitation with recrystallisation and phase transformation in low alloy steels [J]. Mater. Sci. Technol., 2010, 26: 410
23 Dunne D P, Banadkouki S S G, Yu D. Isothermal transformation products in a Cu-bearing high strength low alloy steel [J]. ISIJ Int., 1996, 36: 324
24 Gagliano M S, Fine M E. Characterization of the nucleation and growth behavior of copper precipitates in low-carbon steels [J]. Metall. Mater. Trans., 2004, 35A: 2323
25 Chen C Y, Li C H, Tsao T C, et al. A novel technique for developing a dual-phase steel with a lower strength difference between ferrite and martensite [J]. Mater. Today Commun., 2020, 23: 100895
26 Goodman S R, Brenner S S, Low J R. An FIM-atom probe study of the precipitation of copper from iron-1.4 at. pct copper. Part I: Field-ion microscopy [J]. Metall. Trans., 1973, 4: 2363
27 Guo H, Cheng J J, Yang S W, et al. Influence of combined Cu and Nb addition on the quenched microstructure and precipitation during tempering in ultra-low carbon steels [J]. J. Alloys Compd., 2013, 577: S619
28 Kao F. Precipitation strengthening of nanometer-sized copper particles and alloy carbides in high strength low alloy steels [D]. Taiwan University, 2008
29 Yang Y, Lu H, Yu C, et al. First-principles calculations of mechanical properties of TiC and TiN [J]. J. Alloys Compd., 2009, 485: 542
30 Yong Q L. Secondary Phase in Steels [M]. Beijing: Metallurgical Industry Press, 2006: 173
30 雍岐龙. 钢铁材料中的第二相 [M]. 北京: 冶金工业出版社, 2006: 173
31 Taylor K A. Solubility products for titanium-, vanadium-, and niobium-carbide in ferrite [J]. Scr. Metall. Mater., 1995, 32: 7
32 Pavlina E J, Speer J G, van Tyne C J. Equilibrium solubility products of molybdenum carbide and tungsten carbide in iron [J]. Scr. Mater., 2012, 66: 243
33 Cahn J W. Nucleation on dislocations [J]. Acta Metall., 1957, 5: 169
34 Yong Q L. Theory of nucleation on dislocations [J]. J. Mater. Sci. Technol., 1990, 6: 239
35 Willens R H, Buehler E, Matthias B T. Superconductivity of the transition-metal carbides [J]. Phys. Rev., 1967, 159: 327
36 Straumanis M E, Yu L S. Lattice parameters, densities, expansion coefficients and perfection of structure of Cu and of Cu-In α phase [J]. Acta Cryst., 1969, 25A: 676
37 Elliott R O, Kempter C P. Thermal expansion of some transition metal carbides [J]. J. Phys. Chem., 1958, 62: 630
38 Krasnenko V, Brik M G. First-principles calculations of hydrostatic pressure effects on the structural, elastic and thermodynamic properties of cubic monocarbides XC (X = Ti, V, Cr, Nb, Mo, Hf) [J]. Solid State Sci., 2012, 14: 1431
39 White G K. Thermal expansion of reference materials: Copper, silica and silicon [J]. J. Phys., 1973, 6D: 2070
40 Moll S H, Ogilvie R E. Solubility and diffusion of titanium in iron [J]. Trans. Metall. Soc. AIME, 1959, 215: 613
41 Smithells C J, Brandes E A. Smithells Metals Reference Book [M]. Oxford: Butterworth-Heinemann, 1992: 13
42 Wang J T, Hodgson P D, Bikmukhametov I, et al. Effects of hot-deformation on grain boundary precipitation and segregation in Ti-Mo microalloyed steels [J]. Mater. Des., 2018, 141: 48
43 Dhara S, Marceau R K W, Wood K, et al. Precipitation and clustering in a Ti-Mo steel investigated using atom probe tomography and small-angle neutron scattering [J]. Mater. Sci. Eng., 2018, A718: 74
44 Timokhina I, Miller M K, Wang J T, et al. On the Ti-Mo-Fe-C atomic clustering during interphase precipitation in the Ti-Mo steel studied by advanced microscopic techniques [J]. Mater. Des., 2016, 111: 222
[1] 王长胜, 付华栋, 张洪涛, 谢建新. 冷轧变形对高性能Cu-Ni-Si合金组织性能与析出行为的影响[J]. 金属学报, 2023, 59(5): 585-598.
[2] 许坤, 王海川, 孔辉, 吴朝阳, 张战. 一种新分组团簇动力学模型模拟铝合金中的Al3Sc析出[J]. 金属学报, 2021, 57(6): 822-830.
[3] 陈瑞,许庆彦,柳百成. Al-Mg-Si合金中针棒状析出相时效析出动力学及强化模拟研究*[J]. 金属学报, 2016, 52(8): 987-999.
[4] 李勇,郭明星,姜宁,张许凯,张艳,庄林忠,张济山. 汽车用新型Al-0.93Mg-0.78Si-0.20Cu-3.00Zn合金的制备及其时效析出行为研究*[J]. 金属学报, 2016, 52(2): 191-201.
[5] 王小娜, 韩利战, 顾剑锋. NZ30K镁合金时效析出动力学与强化模型的研究*[J]. 金属学报, 2014, 50(3): 355-360.
[6] 王长军,孙新军,雍岐龙,李昭,张熹,江陆. 贝氏体相变温度对含Ti和Mo低碳热轧TRIP钢的组织与力学性能影响及析出相的微观结构表征[J]. 金属学报, 2013, 29(4): 399-407.
[7] 刘文昌;陈宗霖;肖福仁;姚枚;王少刚;刘润广. 冷轧变形对Inconel 718合金δ相析出动力学的影响[J]. 金属学报, 1998, 34(10): 1049-1054.
[8] 徐温崇;孙福玉;赵佩祥. 钢中(Nb,V)碳氮化物应变诱导析出动力学[J]. 金属学报, 1988, 24(5): 331-335.