Please wait a minute...
金属学报  2021, Vol. 57 Issue (8): 1000-1008    DOI: 10.11900/0412.1961.2020.00388
  研究论文 本期目录 | 过刊浏览 |
高应变速率多向锻造Mg-8Gd-1Er-0.5Zr合金的微观组织、织构及力学性能
丁宁1, 王云峰2, 刘轲1, 朱训明2, 李淑波1, 杜文博1()
1.北京工业大学 材料与制造学部 北京 100124
2.威海万丰镁业科技发展有限公司 威海 264209
Microstructure, Texture, and Mechanical Properties of Mg-8Gd-1Er-0.5Zr Alloy by Multi-Directional Forging at High Strain Rate
DING Ning1, WANG Yunfeng2, LIU Ke1, ZHU Xunming2, LI Shubo1, DU Wenbo1()
1.Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China
2.Weihai Wanfeng Magnesium S&T Development Co. , Ltd. , Weihai 264209, China
引用本文:

丁宁, 王云峰, 刘轲, 朱训明, 李淑波, 杜文博. 高应变速率多向锻造Mg-8Gd-1Er-0.5Zr合金的微观组织、织构及力学性能[J]. 金属学报, 2021, 57(8): 1000-1008.
Ning DING, Yunfeng WANG, Ke LIU, Xunming ZHU, Shubo LI, Wenbo DU. Microstructure, Texture, and Mechanical Properties of Mg-8Gd-1Er-0.5Zr Alloy by Multi-Directional Forging at High Strain Rate[J]. Acta Metall Sin, 2021, 57(8): 1000-1008.

全文: PDF(15901 KB)   HTML
摘要: 

以固溶态Mg-8Gd-1Er-0.5Zr (质量分数,%)合金为对象,研究了在高应变速率多向锻造过程中合金微观组织及织构的演变规律,并探讨了高应变速率多向锻造对合金力学性能的影响机制。结果表明,变形初期,合金晶粒内部的大部分{101¯2}拉伸孪晶被激发,随着累积应变(ΣΔε)的增加,孪晶面积分数降低,再结晶面积分数增高,再结晶机制以连续动态再结晶为主,同时伴有不连续动态再结晶和孪生诱导再结晶。合金晶粒细化分为2个阶段:当ΣΔε < 1.32时,为孪晶破碎机制,晶粒尺寸由初始态的33.0 μm细化至13.1 μm;当ΣΔε ≥ 1.32时,为动态再结晶细化机制,晶粒尺寸进一步细化至4.2 μm。合金织构随ΣΔε增加由基面织构转变为双峰织构,且织构强度增加。ΣΔε = 0.66时,多向锻造Mg-8Gd-1Er-0.5Zr合金的抗拉强度、屈服强度和延伸率分别达到295 MPa、252 MPa和13.8%,比固溶态分别提高了80%、157%和13.1%。

关键词 Mg-Gd-Er-Zr合金多向锻造孪生晶粒细化织构力学性能    
Abstract

Magnesium alloys have attracted significant attention due to their excellent characteristics, such as low density, high specific strength, high thermal conductivity, and superior damping ability. The prominent advantages of using magnesium-alloy parts are environmental protection, energy conservation, and emission reduction, especially forged magnesium-alloy parts, which are used to reduce the weight of equipment in transportation and aerospace fields. Presently, there are relatively few investigations on the forged Mg-RE alloys. Based on Mg-Gd binary alloy, a series of Mg-Gd-Er-Zr alloys were developed, exhibiting excellent room-temperature mechanical properties and high-temperature creep resistance. In this study, the Mg-8Gd-1Er-0.5Zr (mass fraction, %) alloy was conducted using a multi-directional forging (MDF) at a high strain rate. The microstructure and texture evolution in various accumulated strains (ΣΔε) were examined, and their effects on the mechanical properties of the alloy were discussed. The results showed that the {101¯2} extension twinning was activated within most grains in the early stage of forging. With an increase in ΣΔε, the area fraction of twin decreases, while the area fraction of recrystallization increases. Continuous dynamic recrystallization (CDRX) was the dominant mechanism, supplemented by discontinuous dynamic recrystallization (DDRX) and twin-induced recrystallization (T-DRX). The grain refinement was attributed to the twin-breaking, and the grain size decreased from 33.0 μm to 13.1 μm when ΣΔε was less than 1.32. However, it was attributed to the dynamic recrystallization, and the grain size was further refined to 4.2 μm when ΣΔε was greater than 1.32. As ΣΔε increases, the texture of the alloy changed from basal to double-peak texture, and its intensity increased. When ΣΔε = 0.66, the tensile strength, yield strength, and elongation at room-temperature of the MDFed-alloy reached 295 MPa, 252 MPa, and 13.8%, respectively, which were 80%, 157%, and 13.1% higher than those of the as-solution state.

Key wordsMg-Gd-Er-Zr alloy    multi-directional forging    twinning    grain refinement    texture    mechanical property
收稿日期: 2020-09-24     
ZTFLH:  TG146.2  
基金资助:国家重点研发计划项目(2016YFB0101604);北京市教委重点课题项目(KZ201810005005)
作者简介: 丁 宁,男,1995年生,博士
图1  锻造工艺流程示意图
图2  固溶态Mg-8Gd-1Er-0.5Zr (GE81K)合金的OM像及XRD谱
图3  固溶态GE81K合金在累积应变(ΣΔε)为0.66和1.32时的反极图和孪晶分布图,以及ΣΔε = 0.66时变形晶粒内和孪晶界/内部的小角度晶界
图4  固溶态GE81K合金在ΣΔε为1.98和2.64时的反极图和孪晶分布图
图5  固溶态GE81K合金的EBSD分析(a) initial coarse grains divided by twins (ΣΔε = 0.66)(b) distribution of misorientation along line T1 in Fig.3b (ΣΔε = 1.32)(c) twin-induced DRX grains (T-DRX) (ΣΔε = 0.66)
图6  不同累积应变时固溶态GE81K合金的{0001}面极图
图7  不同累积应变时固溶态GE81K合金基面法向偏离锻造方向(FD)的角度分布
图8  固溶态GE81K合金的孪晶面积分数和平均晶粒尺寸随累积应变的变化趋势
1 Song J, Xiong S M. The correlation between as-cast and aged microstructures of high-vacuum die-cast Mg-9Al-1Zn magnesium alloy [J]. J. Alloys Compd., 2011, 509: 1866
2 Liu Y H, Wang Z H, Liu K, et al. Effects of Er on hot cracking susceptibility of Mg-5Zn-xEr magnesium alloys [J]. Acta Metall. Sin., 2019, 55: 389
2 刘耀鸿, 王朝辉, 刘 轲等. Er对Mg-5Zn-xEr镁合金热裂敏感性的影响 [J]. 金属学报, 2019, 55: 389
3 Xia X S, Chen Q, Zhao Z D, et al. Microstructure, texture and mechanical properties of coarse-grained Mg-Gd-Y-Nd-Zr alloy processed by multidirectional forging [J]. J. Alloys Compd., 2015, 623: 62
4 Li S Q, Tang W N, Chen R S, et al. Effect of pre-induced twinning on microstructure and tensile ductility in GW92K magnesium alloy during multi-direction forging at decreasing temperature [J]. J. Magnes. Alloy., 2014, 2: 287
5 Guo W, Wang Q D, Ye B, et al. Microstructure and mechanical properties of AZ31 magnesium alloy processed by cyclic closed-die forging [J]. J. Alloys Compd., 2013, 558: 164
6 Zhou H, Ning H Y, Ma X L, et al. Microstructural evolution and mechanical properties of Mg-9.8Gd-2.7Y-0.4Zr alloy produced by repetitive upsetting [J]. J. Mater. Sci. Technol., 2018, 34: 1067
7 Tang L C, Liu C M, Chen Z Y, et al. Microstructures and tensile properties of Mg-Gd-Y-Zr alloy during multidirectional forging at 773 K [J]. Mater. Des., 2013, 50: 587
8 Xia X S, Wang C P, Wu Y, et al. Grain refinement, microstructure and mechanical properties homogeneity of Mg-Gd-Y-Nd-Zr alloy during multidirectional forging [J]. J. Mater. Eng. Perform., 2018, 27: 5689
9 Wang B Z, Liu C M, Gao Y H, et al. Microstructure evolution and mechanical properties of Mg-Gd-Y-Ag-Zr alloy fabricated by multidirectional forging and ageing treatment [J]. Mater. Sci. Eng., 2017, A702: 22
10 Li B, Teng B G, Luo D G. Effects of passes on microstructure evolution and mechanical properties of Mg-Gd-Y-Zn-Zr alloy during multidirectional forging [J]. Acta Metall. Sin. (Engl. Lett.,), 2018, 31: 1009
11 Salandari-Rabori A, Zarei-Hanzaki A, Abedi H R, et al. Micro and macro texture evolution during multiaxial forging of a WE43 magnesium alloy [J]. J. Alloys Compd., 2018, 739: 249
12 Wu Y Z, Yan H G, Chen J H, et al. Microstructure and mechanical properties of ZK60 magnesium alloy fabricated by high strain rate multiple forging [J]. Mater. Sci. Technol., 2013, 29: 54
13 Wu Y Z. Research on the technics and mechanisms of ZK series magnesium alloys during high strain rate forging [D]. Changsha: Hunan University, 2012
13 吴远志. ZK系列镁合金高应变速率锻造工艺及机理的研究 [D]. 长沙: 湖南大学, 2012
14 Jiang M G, Yan H, Chen R S. Microstructure, texture and mechanical properties in an as-cast AZ61 Mg alloy during multi-directional impact forging and subsequent heat treatment [J]. Mater. Des., 2015, 87: 891
15 Shah S S A, Wu D, Wang W H, et al. Microstructural evolution and mechanical properties of a Mg-Gd-Y alloy processed by impact forging [J]. Mater. Sci. Eng., 2017, A702: 153
16 Shah S S A, Jiang M G, Wu D, et al. Dynamic recrystallization and texture evolution of GW94 Mg alloy during multi- and unidirectional impact forging [J]. Acta Metall. Sin. (Engl. Lett.,), 2018, 31: 923
17 Zheng X B, Du W B, Wang Z H, et al. Remarkably enhanced mechanical properties of Mg-8Gd-1Er-0.5Zr alloy on the route of extrusion, rolling and aging [J]. Mater. Lett., 2018, 212: 155
18 Li R J. Study on creep behaviors and mechanism of Mg-8Gd-1Er-0.5Zr alloy [D]. Beijing: BeijingUniversity of Technology, 2018
18 李瑞静. Mg-8Gd-1Er-0.5Zr合金蠕变性能及机理研究 [D]. 北京: 北京工业大学, 2018
19 Barnett M R, Keshavarz Z, Ma X. A semianalytical Sachs model for the flow stress of a magnesium alloy [J]. Metall. Mater. Trans., 2006, 37A: 2283
20 Zhou X J, Liu C M, Gao Y H, et al. Hot compression behavior of the Mg-Gd-Y-Zn-Zr alloy filled with intragranular long-period stacking ordered phases [J]. J. Alloys Compd., 2017, 724: 528
21 Ramezani S M, Zarei-Hanzaki A, Abedi H R, et al. Achievement of fine-grained bimodal microstructures and superior mechanical properties in a multi-axially forged GWZ magnesium alloy containing LPSO structures [J]. J. Alloys Compd., 2019, 793: 134
22 Hong M, Wu D, Chen R S, et al. Ductility enhancement of EW75 alloy by multi-directional forging [J]. J. Magnes. Alloy., 2014, 2: 317
23 Zhou X J, Zhang J, Chen X M, et al. Fabrication of high-strength AZ80 alloys via multidirectional forging in air with no need of ageing treatment [J]. J. Alloys Compd., 2019, 787: 551
24 Jiang M G, Xu C, Yan H, et al. Unveiling the formation of basal texture variations based on twinning and dynamic recrystallization in AZ31 magnesium alloy during extrusion [J]. Acta Mater., 2018, 157: 53
25 Zeng Z R, Zhu Y M, Xu S W, et al. Texture evolution during static recrystallization of cold-rolled magnesium alloys [J]. Acta Mater., 2016, 105: 479
26 Bhattacharyya J J, Agnew S R, Muralidharan G. Texture enhancement during grain growth of magnesium alloy AZ31B [J]. Acta Mater., 2015, 86: 80
27 Ding N, Du W B, Fu J L, et al. Research on multi-directional forging process and microstructure and mechanical properties after forging for Mg-8Gd-1Er-0.5Zr alloy [J]. Forg. Stamp. Technol., 2020, 45(5): 1
27 丁 宁, 杜文博, 付金龙等. Mg-8Gd-1Er-0.5Zr合金多向锻造工艺及锻后组织与力学性能研究 [J]. 锻压技术, 2020, 45(5): 1
28 Song B, Xin R L, Chen G, et al. Improving tensile and compressive properties of magnesium alloy plates by pre-cold rolling [J]. Scr. Mater., 2012, 66: 1061
29 Zhan M Y, Li C M, Shang J L. Investigation of the plastic deformation mechanism and twinning of magnesium alloys [J]. Mater. Rev., 2011, 25(2): 1
29 詹美艳, 李春明, 尚俊玲. 镁合金的塑性变形机制和孪生变形研究 [J]. 材料导报, 2011, 25(2): 1
30 Serra A, Bacon D J. Interaction of a moving {101¯2} twin boundary with perfect dislocations and loops in a hcp metal [J]. Philos. Mag., 2010, 90: 845
[1] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[2] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[3] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[4] 郑亮, 张强, 李周, 张国庆. /降氧过程对高温合金粉末表面特性和合金性能的影响:粉末存储到脱气处理[J]. 金属学报, 2023, 59(9): 1265-1278.
[5] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[6] 常松涛, 张芳, 沙玉辉, 左良. 偏析干预下体心立方金属再结晶织构竞争[J]. 金属学报, 2023, 59(8): 1065-1074.
[7] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[8] 丁桦, 张宇, 蔡明晖, 唐正友. 奥氏体基Fe-Mn-Al-C轻质钢的研究进展[J]. 金属学报, 2023, 59(8): 1027-1041.
[9] 袁江淮, 王振玉, 马冠水, 周广学, 程晓英, 汪爱英. Cr2AlC涂层相结构演变对力学性能的影响[J]. 金属学报, 2023, 59(7): 961-968.
[10] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[11] 刘满平, 薛周磊, 彭振, 陈昱林, 丁立鹏, 贾志宏. 后时效对超细晶6061铝合金微观结构与力学性能的影响[J]. 金属学报, 2023, 59(5): 657-667.
[12] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[13] 侯娟, 代斌斌, 闵师领, 刘慧, 蒋梦蕾, 杨帆. 尺寸设计对选区激光熔化304L不锈钢显微组织与性能的影响[J]. 金属学报, 2023, 59(5): 623-635.
[14] 吴欣强, 戎利建, 谭季波, 陈胜虎, 胡小锋, 张洋鹏, 张兹瑜. Pb-Bi腐蚀Si增强型铁素体/马氏体钢和奥氏体不锈钢的研究进展[J]. 金属学报, 2023, 59(4): 502-512.
[15] 张哲峰, 李克强, 蔡拓, 李鹏, 张振军, 刘睿, 杨金波, 张鹏. 层错能对面心立方金属形变机制与力学性能的影响[J]. 金属学报, 2023, 59(4): 467-477.