|
|
基于多尺度力学实验的氢脆现象的最新研究进展 |
兰亮云1,2( ), 孔祥伟1,2, 邱春林3, 杜林秀3 |
1.东北大学 机械工程与自动化学院 沈阳 110819 2.东北大学 航空动力装备振动及控制教育部重点实验室 沈阳 110819 3.东北大学 轧制技术及连轧自动化国家重点实验室 沈阳 110819 |
|
A Review of Recent Advance on Hydrogen Embrittlement Phenomenon Based on Multiscale Mechanical Experiments |
LAN Liangyun1,2( ), KONG Xiangwei1,2, QIU Chunlin3, DU Linxiu3 |
1.School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110819, China 2.Key Laboratory of Vibration and Control of Aero-Propulsion System, Ministry of Education of China, Northeastern University, Shenyang 110819, China 3.State Key Laboratory of Rolling Technology and Automation, Northeastern University, Shenyang 110819, China |
引用本文:
兰亮云, 孔祥伟, 邱春林, 杜林秀. 基于多尺度力学实验的氢脆现象的最新研究进展[J]. 金属学报, 2021, 57(7): 845-859.
Liangyun LAN,
Xiangwei KONG,
Chunlin QIU,
Linxiu DU.
A Review of Recent Advance on Hydrogen Embrittlement Phenomenon Based on Multiscale Mechanical Experiments[J]. Acta Metall Sin, 2021, 57(7): 845-859.
1 |
Chu S, Majumdar A. Opportunities and challenges for a sustainable energy future [J]. Nature, 2012, 488: 294
|
2 |
Zheng J Y, Liu X X, Xu P, et al. Development of high pressure gaseous hydrogen storage technologies [J]. Int. J. Hydrogen Energy, 2012, 37: 1048
|
3 |
Schlapbach L, Züttel A. Hydrogen-storage materials for mobile applications [J]. Nature, 2001, 414: 353
|
4 |
Gangloff R P, Somerday B P. Gaseous Hydrogen Embrittlement of Materials in Energy Technologies [M]. Cambridge: Woodhead Publishing Limited, 2012: 1
|
5 |
Chu W Y, Qiao L J, Li J X, et al. Hydrogen Embrittlement and Stress Corrosion Cracking [M]. Beijing: Science Press, 2013: 1
|
5 |
褚武杨, 乔利杰, 李金许等. 氢脆和应力腐蚀 [M]. 北京: 科学出版社, 2013: 1
|
6 |
Johnson W H. II. On some remarkable changes produced in iron and steel by the action of hydrogen and acids [J]. Proc. R. Soc. London, 1875, 23: 168
|
7 |
Dadfarnia M, Novak P, Ahn D C, et al. Recent advances in the study of structural materials compatibility with hydrogen [J]. Adv. Mater., 2010, 22: 1128
|
8 |
Zepffe C A, Sims C E. Hydrogen embrittlement, internal stress and defects in steel [J]. Trans. Metall. Soc. AIME, 1941, 145: 225
|
9 |
Troiano R A. The role of hydrogen and other interstitials in the mechanical behavior of metals [J]. Trans. ASM, 1960, 52: 54
|
10 |
Beachem C D. A new model for hydrogen-assisted cracking (hydrogen “embrittlement”) [J]. Metall. Mater. Trans., 1972, 3B: 441
|
11 |
Lynch S P. Environmentally assisted cracking: Overview of evidence for an adsorption-induced localised-slip process [J]. Acta Metall., 1988, 36: 2639
|
12 |
Nagumo M, Nakamura M, Takai K. Hydrogen thermal desorption relevant to delayed-fracture susceptibility of high-strength steels [J]. Metall. Mater. Trans., 2001, 32A: 339
|
13 |
Birnbaum H K, Sofronis P. Hydrogen-enhanced localized plasticity—A mechanism for hydrogen-related fracture [J]. Mater. Sci. Eng., 1994, A176: 191
|
14 |
Ren X C, Zhou Q J, Chu W Y, et al. The mechanism of nucleation of hydrogen blister in metals [J]. Chin. Sci. Bull., 2007, 52: 725
|
14 |
任学冲, 周庆军, 褚武杨等. 金属中氢鼓泡形核的机理 [J]. 科学通报, 2007, 52: 725
|
15 |
Martin M L, Robertson I M, Sofronis P. Interpreting hydrogen-induced fracture surfaces in terms of deformation processes: A new approach [J]. Acta Mater., 2011, 59: 3680
|
16 |
Martin M L, Fenske J A, Liu G S, et al. On the formation and nature of quasi-cleavage fracture surfaces in hydrogen embrittled steels [J]. Acta Mater., 2011, 59: 1601
|
17 |
Lynch S P. Interpreting hydrogen-induced fracture surfaces in terms of deformation processes: A new approach [J]. Scr. Mater., 2011, 65: 851
|
18 |
Neeraj T, Srinivasan R, Li J. Hydrogen embrittlement of ferritic steels: Observations on deformation microstructure, nanoscale dimples and failure by nanovoiding [J]. Acta Mater., 2012, 60: 5160
|
19 |
Wang S, Hashimoto N, Wang Y M, et al. Activation volume and density of mobile dislocations in hydrogen-charged iron [J]. Acta Mater., 2013, 61: 4734
|
20 |
Barnoush A, Vehoff H. Recent developments in the study of hydrogen embrittlement: Hydrogen effect on dislocation nucleation [J]. Acta Mater., 2010, 58: 5274
|
21 |
Costin W L, Lavigne O, Kotousov A, et al. Investigation of hydrogen assisted cracking in acicular ferrite using site-specific micro-fracture tests [J]. Mater. Sci. Eng., 2016, A651: 859
|
22 |
Ast J, Ghidelli M, Durst K, et al. A review of experimental approaches to fracture toughness evaluation at the micro-scale [J]. Mater. Des., 2019, 173: 107762
|
23 |
Nagumo M. Hydrogen related failure of steels—A new aspect [J]. Mater. Sci. Technol., 2004, 20: 940
|
24 |
Robertson I M, Sofronis P, Nagao A, et al. Hydrogen embrittlement understood [J]. Metall. Mater. Trans., 2015, 46A: 2323
|
25 |
Djukic M B, Bakic G M, Zeravcic V S, et al. The synergistic action and interplay of hydrogen embrittlement mechanisms in steels and iron: Localized plasticity and decohesion [J]. Eng. Fract. Mech., 2019, 216: 106528
|
26 |
Martin M L, Dadfarnia M, Nagao A, et al. Enumeration of the hydrogen-enhanced localized plasticity mechanism for hydrogen embrittlement in structural materials [J]. Acta Mater., 2019, 165: 734
|
27 |
Nagumo M, Takai K. The predominant role of strain-induced vacancies in hydrogen embrittlement of steels: Overview [J]. Acta Mater., 2019, 165: 722
|
28 |
Lynch S. Discussion of some recent literature on hydrogen-embrittlement mechanisms: Addressing common misunderstandings [J]. Corros. Rev., 2019, 37: 377
|
29 |
Oriani R A. Hydrogen embrittlement of steels [J]. Annu. Rev. Mater. Sci., 1978, 8: 327
|
30 |
Hirth J P. Effects of hydrogen on the properties of iron and steel [J]. Metall. Trans., 1980, 11A: 861
|
31 |
Venezuela J, Liu Q L, Zhang M X, et al. A review of hydrogen embrittlement of martensitic advanced high-strength steels [J]. Corros. Rev., 2016, 34: 153
|
32 |
Luo J, Guo Z H, Rong Y H. Research progress on hydrogen embrittlement in advanced high strength steels [J]. Mater. Mech. Eng., 2015, 39(8): 1
|
32 |
罗 洁, 郭正洪, 戎咏华. 先进高强度钢氢脆的研究进展 [J]. 机械工程材料, 2015, 39(8): 1
|
33 |
Koyama M, Akiyama E, Lee Y K, et al. Overview of hydrogen embrittlement in high-Mn steels [J]. Int. J. Hydrogen Energy, 2017, 42: 12706
|
34 |
Ghosh G, Rostron P, Garg R, et al. Hydrogen induced cracking of pipeline and pressure vessel steels: A review [J]. Eng. Fract. Mech., 2018, 199: 609
|
35 |
Ohaeri E, Eduok U, Szpunar J. Hydrogen related degradation in pipeline steels: A review [J]. Int. J. Hydrogen Energy, 2018, 43: 14584
|
36 |
Li J X, Wang W, Zhou Y, et al. A review of research status of hydrogen embrittlement for automotive advanced high-strength steels [J]. Acta Metall. Sin., 2020, 56: 444
|
36 |
李金许, 王 伟, 周 耀等. 汽车用先进高强钢的氢脆研究进展 [J]. 金属学报, 2020, 56: 444
|
37 |
Liu Q, Atrens A. A critical review of the influence of hydrogen on the mechanical properties of medium-strength steels [J]. Corros. Rev., 2013, 31: 85
|
38 |
Dwivedi S K, Vishwakarma M. Effect of hydrogen in advanced high strength steel materials [J]. Int. J. Hydrogen Energy, 2019, 44: 28007
|
39 |
Kiuchi K, McLellan R B. The solubility and diffusivity of hydrogen in well-annealed and deformed iron [J]. Acta Metall., 1983, 31: 961
|
40 |
Traidia A, Chatizdouros E, Jouiad M. Review of hydrogen-assisted cracking models for application to service lifetime prediction and challenges in the oil and gas industry [J]. Corros. Rev., 2018, 36: 323
|
41 |
Pradhan A, Vishwakarma M, Dwivedi S K. A review: The impact of hydrogen embrittlement on the fatigue strength of high strength steel [J]. Mater. Today: Proc., 2020, 26: 3015
|
42 |
Maroef I, Olson D L, Eberhart M,et al. Hydrogen trapping in ferritic steel weld metal [J]. Int. Mater. Rev., 2002, 47: 191
|
43 |
Turnbull A. Perspectives on hydrogen uptake, diffusion and trapping [J]. Int. J. Hydrogen Energy, 2015, 40: 16961
|
44 |
Bhadeshia H K D H. Prevention of hydrogen embrittlement in steels [J]. ISIJ Int., 2016, 56: 24
|
45 |
Koyama M, Rohwerder M, Tasan C C, et al. Recent progress in microstructural hydrogen mapping in steels: Quantification, kinetic analysis, and multi-scale characterisation [J]. Mater. Sci. Technol., 2017, 33: 1481
|
46 |
Atrens A, Liu Q L, Zhou Q J, et al. Evaluation of automobile service performance using laboratory testing [J]. Mater. Sci. Technol., 2018, 34: 1893
|
47 |
Rudomilova D, Prošek T, Luckeneder G. Techniques for investigation of hydrogen embrittlement of advanced high strength steels [J]. Corros. Rev., 2018, 36: 413
|
48 |
Lynch S. Hydrogen embrittlement phenomena and mechanisms [J]. Corros. Rev., 2012, 30: 105
|
49 |
Nagumo M. Fundamentals of Hydrogen Embrittlement [M]. Singapore: Springer, 2016: 1
|
50 |
Dadfarnia M, Nagao A, Wang S, et al. Recent advances on hydrogen embrittlement of structural materials [J]. Int. J. Fract., 2015, 196: 223
|
51 |
Barrera O, Bombac D, Chen Y, et al. Understanding and mitigating hydrogen embrittlement of steels: A review of experimental, modelling and design progress from atomistic to continuum [J]. J. Mater. Sci., 2018, 53: 6251
|
52 |
Li X F, Ma X F, Zhang J, et al. Review of hydrogen embrittlement in metals: Hydrogen diffusion, hydrogen characterization, hydrogen embrittlement mechanism and prevention [J]. Acta Metall. Sin. (Engl. Lett.), 2020, 33: 759
|
53 |
Henthorne M. The slow strain rate stress corrosion cracking test—A 50 year retrospective [J]. Corrosion, 2016, 72: 1488
|
54 |
Du Y, Gao X H, Lan L Y, et al. Hydrogen embrittlement behavior of high strength low carbon medium manganese steel under different heat treatments [J]. Int. J. Hydrogen Energy, 2019, 44: 32292
|
55 |
General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. Corrosion of metals and alloys—Stress corrosion testing Part 7: Slow strain rate testing [S]. Beijing: Standards Press of China, 2004
|
55 |
中华人民共和国国家质量监督检验检疫总局. 金属和合金的腐蚀 应力腐蚀试验 第7部分: 慢应变速率试验 [S]. 北京: 中国标准出版社, 2004
|
56 |
Standard practice for slow strain rate testing to evaluate the susceptibility of metallic materials to environmentally assisted cracking [S]. West Conshohocken, PA: ASTM International, 2013
|
57 |
Xie F, Wang D, Wu M, et al. Effects of strain rate on stress corrosion cracking of X80 pipeline steel in Ku'erle soil environment [J]. Trans. China Weld. Inst., 2015, 36(1): 55
|
57 |
谢 飞, 王 丹, 吴 明等. 应变速率对X80管线钢在库尔勒土壤环境中应力腐蚀开裂的影响 [J]. 焊接学报, 2015, 36(1): 55
|
58 |
Rehrl J, Mraczek K, Pichler A, et al. Mechanical properties and fracture behavior of hydrogen charged AHSS/UHSS grades at high- and low strain rate tests [J]. Mater. Sci. Eng., 2014, A590: 360
|
59 |
Kan B, Yang Z X, Wang Z, et al. Hydrogen redistribution under stress-induced diffusion and corresponding fracture behaviour of a structural steel [J]. Mater. Sci. Technol., 2017, 33: 1539
|
60 |
Nanninga N E, Levy Y S, Drexler E S, et al. Comparison of hydrogen embrittlement in three pipeline steels in high pressure gaseous hydrogen environments [J]. Corros. Sci., 2012, 59: 1
|
61 |
Zheng Y Y, Zhang L, Shi Q Y, et al. Effects of hydrogen on the mechanical response of X80 pipeline steel subject to high strain rate tensile tests [J]. Fatigue Fract. Eng. Mater. Struct., 2020, 43: 684
|
62 |
Chida T, Hagihara Y, Akiyama E, et al. Comparison of constant load, SSRT and CSRT methods for hydrogen embrittlement evaluation using round bar specimens of high strength steels [J]. ISIJ Int., 2016, 56: 1268
|
63 |
Huang Y H, Ouyang Y Q, Weng S, et al. Effect of loading mode on fracture behavior of CrNiMoV steel welded joint in simulated environment of low pressure nuclear steam turbine [J]. Eng. Fract. Mech., 2019, 205: 81
|
64 |
Nagao A, Hayashi K, Oi K, et al. Effect of uniform distribution of fine cementite on hydrogen embrittlement of low carbon martensitic steel plates [J]. ISIJ Int., 2012, 52: 213
|
65 |
Venezuela J, Zhou Q J, Liu Q L, et al. The influence of microstructure on the hydrogen embrittlement susceptibility of martensitic advanced high strength steels [J]. Mater. Today Commun., 2018, 17: 1
|
66 |
Martínez-Pañeda E, Harris Z D, Fuentes-Alonso S, et al. On the suitability of slow strain rate tensile testing for assessing hydrogen embrittlement susceptibility [J]. Corros. Sci., 2020, 163: 108291
|
67 |
Liu Q L, Zhou Q J, Venezuela J, et al. Evaluation of the influence of hydrogen on some commercial DP, Q&P and TWIP advanced high-strength steels during automobile service [J]. Eng. Fail. Anal., 2018, 94: 249
|
68 |
(2013)e1 Standard test method for determining threshold stress intensity factor for environment-assisted cracking of metallic materials [S]. West Conshohocken, PA: ASTM International, 2013
|
69 |
Wang G, Yan Y, Li J X, et al. Hydrogen embrittlement assessment of ultra-high strength steel 30CrMnSiNi2 [J]. Corros. Sci., 2013, 77: 273
|
70 |
Jiang Y F, Zhang B, Wang D Y, et al. Hydrogen-assisted fracture features of a high strength ferrite-pearlite steel [J]. J. Mater. Sci. Technol., 2019, 35: 1081
|
71 |
Nibur K A, Somerday B P, Marchi C S, et al. Measurement and interpretation of threshold stress intensity factors for steels in high-pressure hydrogen gas [R]. Albuquerque, NM: Sandia National Laboratories, 2010
|
72 |
Nagao A, Smith C D, Dadfarnia M, et al. The role of hydrogen in hydrogen embrittlement fracture of lath martensitic steel [J]. Acta Mater., 2012, 60: 5182
|
73 |
Murakami Y, Kanezaki T, Sofronis P. Hydrogen embrittlement of high strength steels: Determination of the threshold stress intensity for small cracks nucleating at nonmetallic inclusions [J]. Eng. Fract. Mech., 2013, 97: 227
|
74 |
Iannuzzi M, Barnoush A, Johnsen R. Materials and corrosion trends in offshore and subsea oil and gas production [J]. npj Mater. Degrad., 2017, 1: 2
|
75 |
Szost B A, Rivera-Díaz-del-Castillo P E J. Unveiling the nature of hydrogen embrittlement in bearing steels employing a new technique [J]. Scr. Mater., 2013, 68: 467
|
76 |
Yonezu A, Arino M, Kondo T, et al. On hydrogen-induced Vickers indentation cracking in high-strength steel [J]. Mech. Res. Commun., 2010, 37: 230
|
77 |
Yonezu A, Hara T, Kondo T, et al. Evaluation of threshold stress intensity factor of hydrogen embrittlement cracking by indentation testing [J]. Mater. Sci. Eng., 2012, A531: 147
|
78 |
Onyewuenyi O A, Hirth J P. The effect of hydrogen on microhardness of spheroidized AISI 1090 steel [J]. Scr. Metall., 1981, 15: 113
|
79 |
Latifi V A, Miresmaeili R, Abdollah-Zadeh A. The mutual effects of hydrogen and microstructure on hardness and impact energy of SMA welds in X65 steel [J]. Mater. Sci. Eng., 2017, A679: 87
|
80 |
Lee J H, Gao Y F, Johanns K E, et al. Cohesive interface simulations of indentation cracking as a fracture toughness measurement method for brittle materials [J]. Acta Mater., 2012, 60: 5448
|
81 |
Liang X Z, Zhao G H, Owens J, et al. Hydrogen-assisted microcrack formation in bearing steels under rolling contact fatigue [J]. Int. J. Fatigue, 2020, 134: 105485
|
82 |
Wu K, Lu X H, Zhou P W, et al. Improved resistance to hydrogen embrittlement by tailoring the stability of retained austenite [J]. Mater. Sci. Technol., 2017, 33: 1497
|
83 |
Yonezu A, Niwa M, Chen X. Characterization of hydrogen-induced contact fracture in high-strength steel [J]. J. Eng. Mater. Technol., 2015, 137: 021007
|
84 |
Niwa M, Shikama T, Yonezu A. Mechanism of hydrogen embrittlement cracking produced by residual stress from indentation impression [J]. Mater. Sci. Eng., 2015, A624: 52
|
85 |
Dong C F, Li X G, Liu Z Y, et al. Hydrogen-induced cracking and healing behaviour of X70 steel [J]. J. Alloys Compd., 2009, 484: 966
|
86 |
Laureys A, Van den Eeckhout E, Petrov R, et al. Effect of deformation and charging conditions on crack and blister formation during electrochemical hydrogen charging [J]. Acta Mater., 2017, 127: 192
|
87 |
Nix W D, Gao H J. Indentation size effects in crystalline materials: A law for strain gradient plasticity [J]. J. Mech. Phys. Solids, 1998, 46: 411
|
88 |
Schuh C A. Nanoindentation studies of materials [J]. Mater. Today, 2006, 9: 32
|
89 |
Katz Y, Tymiak N, Gerberich W W. Nanomechanical probes as new approaches to hydrogen/deformation interaction studies [J]. Eng. Fract. Mech., 2001, 68: 619
|
90 |
Bahr D, Field D, Nibur K, et al. Hydrogen and deformation: Nano- and microindentation studies [J]. JOM, 2003, 55(2): 47
|
91 |
Nibur K A, Bahr D F, Somerday B P. Hydrogen effects on dislocation activity in austenitic stainless steel [J]. Acta Mater., 2006, 54: 2677
|
92 |
Gao X. Displacement burst and hydrogen effect during loading and holding in nanoindentation of an iron single crystal [J]. Scr. Mater., 2005, 53: 1315
|
93 |
Zhang L, An B, Fukuyama S, et al. Hydrogen effects on localized plasticity in SUS310S stainless steel investigated by nanoindentation and atomic force microscopy [J]. Jpn. J. Appl. Phys., 2009, 48: 08JB08
|
94 |
Barnoush A, Vehoff H. Electrochemical nanoindentation: A new approach to probe hydrogen/deformation interaction [J]. Scr. Mater., 2006, 55: 195
|
95 |
Barnoush A, Vehoff H. In situ electrochemical nanoindentation: A technique for local examination of hydrogen embrittlement [J]. Corros. Sci., 2008, 50: 259
|
96 |
Barnoush A, Vehoff H. Hydrogen embrittlement of aluminum in aqueous environments examined by in situ electrochemical nanoindentation [J]. Scr. Mater., 2008, 58: 747
|
97 |
Zamanzade M, Vehoff H, Barnoush A. Cr effect on hydrogen embrittlement of Fe3Al-based iron aluminide intermetallics: Surface or bulk effect [J]. Acta Mater., 2014, 69: 210
|
98 |
Barnoush A, Asgari M, Johnsen R. Resolving the hydrogen effect on dislocation nucleation and mobility by electrochemical nanoindentation [J]. Scr. Mater., 2012, 66: 414
|
99 |
Barnoush A, Welsh M T, Vehoff H. Correlation between dislocation density and pop-in phenomena in aluminum studied by nanoindentation and electron channeling contrast imaging [J]. Scr. Mater., 2010, 63: 465
|
100 |
Barnoush A, Kheradmand N, Hajihou T. Correlation between the hydrogen chemical potential and pop-in load during in situ electrochemical nanoindentation [J]. Scr. Mater., 2015, 108: 76
|
101 |
Montagne A, Audurier V, Tromas C. Influence of pre-existing dislocations on the pop-in phenomenon during nanoindentation in MgO [J]. Acta Mater., 2013, 61: 4778
|
102 |
Stenerud G, Johnsen R, Olsen J S, et al. Effect of hydrogen on dislocation nucleation in alloy 718 [J]. Int. J. Hydrogen Energy, 2017, 42: 15933
|
103 |
Gaspard V, Kermouche G, Delafosse D, et al. Hydrogen effect on dislocation nucleation in a ferritic alloy Fe-15Cr as observed per nanoindentation [J]. Mater. Sci. Eng., 2014, A604: 86
|
104 |
Wang D, Lu X, Deng Y, et al. Effect of hydrogen on nanomechanical properties in Fe-22Mn-0.6C TWIP steel revealed by in-situ electrochemical nanoindentation [J]. Acta Mater., 2019, 166: 618
|
105 |
Hong Y J, Zhou C S, Zheng Y Y, et al. Effect of hydrogen and strain rate on nanoindentation creep of austenitic stainless steel [J]. Int. J. Hydrogen Energy, 2019, 44: 1253
|
106 |
Yao Y, Qiao L J, Volinsky A A. Hydrogen effects on stainless steel passive film fracture studied by nanoindentation [J]. Corros. Sci., 2011, 53: 2679
|
107 |
Xie D G, Li S Z, Li M, et al. Hydrogenated vacancies lock dislocations in aluminium [J]. Nat. Commun., 2016, 7: 13341
|
108 |
Lee D H, Lee J A, Seok M J, et al. Stress-dependent hardening-to-softening transition of hydrogen effects in nanoindentation of a linepipe steel [J]. Int. J. Hydrogen Energy, 2014, 39: 1897
|
109 |
Zhao Y K, Seok M Y, Choi I C, et al. The role of hydrogen in hardening/softening steel: Influence of the charging process [J]. Scr. Mater., 2015, 107: 46
|
110 |
Hong Y J, Zhou C S, Zheng Y Y, et al. Hydrogen effect on the deformation evolution process in situ detected by nanoindentation continuous stiffness measurement [J]. Mater. Charact., 2017, 127: 35
|
111 |
Tomatsu K, Omura T, Nishiyama Y, et al. Influence of hydrogen on local mechanical properties of pure Fe with different dislocation densities investigated by electrochemical nanoindentation [J]. ISIJ Int., 2016, 56: 2298
|
112 |
Zhao K, He J Y, Mayer A E, et al. Effect of hydrogen on the collective behavior of dislocations in the case of nanoindentation [J]. Acta Mater., 2018, 148: 18
|
113 |
Zheng Y Y, Zhou C S, Hong Y J, et al. Evolution behavior of nanohardness after thermal-aging and hydrogen-charging on austenite and strain-induced martensite in pre-strained austenitic stainless steel [J]. Mater. Res. Express, 2018, 5: 056524
|
114 |
Wasim M, Djukic M B. Hydrogen embrittlement of low carbon structural steel at macro-, micro- and nano-levels [J]. Int. J. Hydrogen Energy, 2020, 45: 2145
|
115 |
He B B, Huang M X. Revealing the intrinsic nanohardness of lath martensite in low carbon steel [J]. Metall. Mater. Trans., 2015, 46A: 688
|
116 |
Saha D C, Biro E, Gerlich A P, et al. Fusion zone microstructure evolution of fiber laser welded press-hardened steels [J]. Scr. Mater., 2016, 121: 18
|
117 |
Lan L Y, Yu M, Qiu C L. On the local mechanical properties of isothermally transformed bainite in low carbon steel [J]. Mater. Sci. Eng., 2019, A742: 442
|
118 |
Casellas D, Caro J, Molas S, et al. Fracture toughness of carbides in tool steels evaluated by nanoindentation [J]. Acta Mater., 2007, 55: 4277
|
119 |
Kheradmand N, Dake J, Barnoush A, et al. Novel methods for micromechanical examination of hydrogen and grain boundary effects on dislocations [J]. Philos. Mag., 2012, 92: 3216
|
120 |
Iqbal F, Ast J, Göken M, et al. In situ micro-cantilever tests to study fracture properties of NiAl single crystals [J]. Acta Mater., 2012, 60: 1193
|
121 |
Deutges M, Knorr I, Borchers C, et al. Influence of hydrogen on the deformation morphology of vanadium (100) micropillars in the α-phase of the vanadium-hydrogen system [J]. Scr. Mater., 2013, 68: 71
|
122 |
Barnoush A, Dake J, Kheradmand N, et al. Examination of hydrogen embrittlement in FeAl by means of in situ electrochemical micropillar compression and nanoindentation techniques [J]. Intermetallics, 2010, 18: 1385
|
123 |
Fang X F, Rasinski M, Kreter A, et al. Plastic deformation of tungsten due to deuterium plasma exposure: Insights from micro-compression tests [J]. Scr. Mater., 2019, 162: 132
|
124 |
Kim D, Jang G H, Lee T, et al. Orientation dependence on plastic flow behavior of hydrogen-precharged micropillars of high-Mn steel [J]. Met. Mater. Int., 2020, 26: 1741
|
125 |
Armstrong D E J, Rogers M E, Roberts S G. Micromechanical testing of stress corrosion cracking of individual grain boundaries [J]. Scr. Mater., 2009, 61: 741
|
126 |
Takahashi Y, Kondo H, Asano R, et al. Direct evaluation of grain boundary hydrogen embrittlement: A micro-mechanical approach [J]. Mater. Sci. Eng., 2016, A661: 211
|
127 |
Tomatsu K, Kawata H, Amino T, et al. In-situ microbending tests of Ni-Cr alloy during cathodic hydrogen charging by electrochemical nanoindentation [J]. ISIJ Int., 2017, 57: 564
|
128 |
Deng Y, Hajilou T, Wan D, et al. In-situ micro-cantilever bending test in environmental scanning electron microscope: Real time observation of hydrogen enhanced cracking [J]. Scr. Mater., 2017, 127: 19
|
129 |
Hajilou T, Deng Y, Rogne B R, et al. In situ electrochemical microcantilever bending test: A new insight into hydrogen enhanced cracking [J]. Scr. Mater., 2017, 132: 17
|
130 |
Deng Y, Barnoush A. Hydrogen embrittlement revealed via novel in situ fracture experiments using notched micro-cantilever specimens [J]. Acta Mater., 2018, 142: 236
|
131 |
Rogne B R S, Kheradmand N, Deng Y, et al. In situ micromechanical testing in environmental scanning electron microscope: A new insight into hydrogen-assisted cracking [J]. Acta Mater., 2018, 144: 257
|
132 |
Bond G M, Robertson I M, Birnbaum H K. Effects of hydrogen on deformation and fracture processes in high-ourity aluminium [J]. Acta Metall., 1988, 36: 2193
|
133 |
Ferreira P J, Robertson I M, Birnbaum H K. Hydrogen effects on the interaction between dislocations [J]. Acta Mater., 1998, 46: 1749
|
134 |
Song J, Curtin W A. Atomic mechanism and prediction of hydrogen embrittlement in iron [J]. Nat. Mater., 2013, 12: 145
|
135 |
Xie D G, Li M, Shan Z W. Review on hydrogen-microstructure interaction in metals [J]. Mater. China, 2018, 37: 215
|
135 |
解德刚, 李 蒙, 单智伟. 氢与金属的微观交互作用研究进展 [J]. 中国材料进展, 2018, 37: 215
|
136 |
Yin S, Cheng G M, Chang T H, et al. Hydrogen embrittlement in metallic nanowires [J]. Nat. Commun., 2019, 10: 2004
|
137 |
Abraham D P, Altstetter C J. The effect of hydrogen on the yield and flow stress of an austenitic stainless steel [J]. Metall. Mater. Trans., 1995, 26A: 2849
|
138 |
Dugdale H, Armstrong D E J, Tarleton E, et al. How oxidized grain boundaries fail [J]. Acta Mater., 2013, 61: 4707
|
139 |
Griesche A, Dabah E, Kannengiesser T, et al. Three-dimensional imaging of hydrogen blister in iron with neutron tomography [J]. Acta Mater., 2014, 78: 14
|
140 |
Ren X C, Shan G B, Chu W Y, et al. Nucleation, growth and cracking of hydrogen bubbles [J]. Chin. Sci. Bull., 2005, 50: 1689
|
140 |
任学冲, 单广斌, 褚武扬等. 氢鼓泡的形核、长大和开裂 [J]. 科学通报, 2005, 50: 1689
|
141 |
Ren X C, Zhou Q J, Shan G B, et al. A nucleation mechanism of hydrogen blister in metals and alloys [J]. Metall. Mater. Trans., 2008, 39A: 87
|
142 |
Xie D G, Wang Z J, Sun J, et al. In situ study of the initiation of hydrogen bubbles at the aluminium metal/oxide interface [J]. Nat. Mater., 2015, 14: 899
|
143 |
Li M, Xie D G, Ma E, et al. Effect of hydrogen on the integrity of aluminium-oxide interface at elevated temperatures [J]. Nat. Commun., 2017, 8: 14564
|
144 |
Chen Y S, Haley D, Gerstl S S A, et al. Direct observation of individual hydrogen atoms at trapping sites in a ferritic steel [J]. Science, 2017, 355: 1196
|
145 |
Chen Y S, Lu H Z, Liang J T, et al. Observation of hydrogen trapping at dislocations, grain boundaries, and precipitates [J]. Science, 2020, 367: 171
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|