Please wait a minute...
金属学报  2021, Vol. 57 Issue (7): 845-859    DOI: 10.11900/0412.1961.2020.00378
  综述 本期目录 | 过刊浏览 |
基于多尺度力学实验的氢脆现象的最新研究进展
兰亮云1,2(), 孔祥伟1,2, 邱春林3, 杜林秀3
1.东北大学 机械工程与自动化学院 沈阳 110819
2.东北大学 航空动力装备振动及控制教育部重点实验室 沈阳 110819
3.东北大学 轧制技术及连轧自动化国家重点实验室 沈阳 110819
A Review of Recent Advance on Hydrogen Embrittlement Phenomenon Based on Multiscale Mechanical Experiments
LAN Liangyun1,2(), KONG Xiangwei1,2, QIU Chunlin3, DU Linxiu3
1.School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110819, China
2.Key Laboratory of Vibration and Control of Aero-Propulsion System, Ministry of Education of China, Northeastern University, Shenyang 110819, China
3.State Key Laboratory of Rolling Technology and Automation, Northeastern University, Shenyang 110819, China
引用本文:

兰亮云, 孔祥伟, 邱春林, 杜林秀. 基于多尺度力学实验的氢脆现象的最新研究进展[J]. 金属学报, 2021, 57(7): 845-859.
Liangyun LAN, Xiangwei KONG, Chunlin QIU, Linxiu DU. A Review of Recent Advance on Hydrogen Embrittlement Phenomenon Based on Multiscale Mechanical Experiments[J]. Acta Metall Sin, 2021, 57(7): 845-859.

全文: PDF(3358 KB)   HTML
摘要: 

氢作为新型载能体在未来能源市场占据举足轻重的地位,然而金属材料的氢脆现象却成为阻碍氢能发展的主要瓶颈。由于原子氢在材料内部的固有本质(如可快速扩散、跨尺度分布以及不稳定性等),氢脆问题一直是个悬而未决但又引人入胜的科学问题。近20年来,随着多尺度力学表征技术的发展,冶金学者针对氢脆问题做了大量研究工作。本文基于此,综述了氢脆研究的最新进展:首先简述了表征材料氢脆倾向性的宏观力学尺度实验(如恒载荷、慢应变速率拉伸实验等)并对比分析各自优缺点;其次从介观尺度上分析了氢-压痕法的特点及主要应用范围;最后基于纳米压痕技术、微圆柱压缩和微悬臂梁弯曲以及环境TEM等原位力学实验表征材料在氢条件下的力学响应行为,重点讨论微纳观力学尺度上氢脆本质的最新研究成果;并对比分析不同实验结果,阐明其诠释氢脆机理的对立统一关系。

关键词 氢脆多尺度力学实验纳米压痕位错金属材料    
Abstract

Hydrogen is widely considered to be one of the future clean energy sources. A large scale of production, storage, transportation, and the use of hydrogen-related energy is likely to be escalated in the next few decades. However, the presence of hydrogen seriously deteriorates the mechanical properties of most structural metals, which is a main threat to the hydrogen economy. Although hydrogen embrittlement has been recognized for more than a century, there is still a lack of effective measures to eliminate this embrittlement in the engineering practices and some aspects of fundamental science; the embrittlement mechanism is still poorly understood. Because hydrogen is the lightest element in the universe, it exhibits several unique characteristics like permeability, fast diffusion, and unstable distribution in different scale defects. These characteristics are seriously affected by external stress, temperature, and other environmental factors. Therefore, the drawback of hydrogen embrittlement is still an extremely complex and attractive scientific topic. In the last two decades, with the development of multi-scale mechanical experimental techniques, various new studies on hydrogen embrittlement have been reported and its mechanism is deeply evaluated. Based on these advances, this review reflects on the complexity and importance of this topic. The macro-mechanical tests such as constant load and slow strain rate tensile tests are presented and their advantage and disadvantage on screening the susceptibility of materials to hydrogen embrittlement are compared. Subsequently, the hydrogen-indentation (hardness) method is introduced at the mesoscale to show the hydrogen-induced cracking and its application. Furthermore, the main focus of this review comprises the modern experimental approaches to fine-scale evaluation of the hydrogen-dislocation interaction, with particular emphasis on the nanoindentation pop-in effect, micro-pillar compression and micro-cantilever bending tests, and environmental transmission electron microscope tests. The fundamental principles of these approaches are overviewed, and their contribution to the elucidation of the hydrogen embrittlement mechanism is discussed. For example, the different effects of hydrogen on the mechanical properties and a mechanism similar to the hydrogen effect are proposed based on the micro-pillar compression and micro-cantilever bending tests. Nevertheless, there are still several discrepancies in the hydrogen-dislocation interaction that needs further investigation.

Key wordshydrogen embrittlement    multiscale mechanical experiment    nanoindentation    dislocation    metal material
收稿日期: 2020-09-21     
ZTFLH:  TG111.8  
基金资助:国家自然科学基金项目(51605084);中央高校基本科研业务费项目(N2103021)
作者简介: 兰亮云,男,1983年生,副教授,博士
图1  Fe-3%Si钢(质量分数)在不同充氢条件下的纳米压痕载荷-位移曲线[74]
MaterialLoad conditionHydrogen freeHydrogen condition
Pop-in loadPop-inHydrogen concentrationPop-in loadPop-in
displacementdisplacement
316 stainless1000 μN total~200 μN4-6 nm*(1) 500 mA·cm-2 for 6 h650-700 μN12-20 nm*
steel[89]load(2) 10 mA·cm-2 for 6 h350 μN5-14 nm*
Austenitic5-500 mN total144.2 μN9.8 nm*1.4% (atomic fraction)72 μN11.6 nm*
stainless steel[91]load
Fe single1000 μN with433 μN53 nm*0.3 × 10-6~150 μN~7.5 nm and
crystal[92]100 μN/sand 320 μN*12 nm*
Ni single300 μN with~220 μN50 nm*-1000 mV cathodic~100 μN~12 nm for
crystal[94,95]50 μN/spotentialeach pop-in*
Cu single600 μN330 μN55 nm*-1000/-1150 mV~320 μN~50 nm*
crystal[95]cathodic potential
Fe-3%Si[20]1000/2250 μN*2000 μN43 nm*-1000 mV cathodic840 μN~20 nm*
potential
Pure Al[96,100]350 μN~280 μN100 nm-1250 mV cathodic~80 μN65 nm
potential
718 alloy[102]2500 μN with1250 μN17 nm-1200 mV cathodic940 μN6 nm
8000 μN/s(101) crystalpotential
plane
TWIP steel[104]2000 μN with550 μN38 nm*-2000 mV cathodic380 μN12 nm*
8000 μN/s(111) crystalpotential
plane
表1  纳米压痕分析有/无氢条件下材料的Pop-in效应[20,89,91,92,94~96,100,102,104]
图2  微圆柱压缩和微悬臂梁弯曲中氢与位错相互作用的示意图
图3  有/无氢条件下纯Al中位错形态及启动应力的实验和模拟结果[107](a) morphology of dislocation at the valley stress of 27 MPa and peak stress of 250 MPa when the number of cycles (N) is 659 cyc without hydrogen(b) morphology of dislocation when the number of cycles is from 789 cyc to 917 cyc(c) the shear stress-strain curves of different systems (The inset shows the dependence of critical shear stress (τc) on the concentration of hydrogen and hydrogen-vacancy (VaH) complexes)
1 Chu S, Majumdar A. Opportunities and challenges for a sustainable energy future [J]. Nature, 2012, 488: 294
2 Zheng J Y, Liu X X, Xu P, et al. Development of high pressure gaseous hydrogen storage technologies [J]. Int. J. Hydrogen Energy, 2012, 37: 1048
3 Schlapbach L, Züttel A. Hydrogen-storage materials for mobile applications [J]. Nature, 2001, 414: 353
4 Gangloff R P, Somerday B P. Gaseous Hydrogen Embrittlement of Materials in Energy Technologies [M]. Cambridge: Woodhead Publishing Limited, 2012: 1
5 Chu W Y, Qiao L J, Li J X, et al. Hydrogen Embrittlement and Stress Corrosion Cracking [M]. Beijing: Science Press, 2013: 1
5 褚武杨, 乔利杰, 李金许等. 氢脆和应力腐蚀 [M]. 北京: 科学出版社, 2013: 1
6 Johnson W H. II. On some remarkable changes produced in iron and steel by the action of hydrogen and acids [J]. Proc. R. Soc. London, 1875, 23: 168
7 Dadfarnia M, Novak P, Ahn D C, et al. Recent advances in the study of structural materials compatibility with hydrogen [J]. Adv. Mater., 2010, 22: 1128
8 Zepffe C A, Sims C E. Hydrogen embrittlement, internal stress and defects in steel [J]. Trans. Metall. Soc. AIME, 1941, 145: 225
9 Troiano R A. The role of hydrogen and other interstitials in the mechanical behavior of metals [J]. Trans. ASM, 1960, 52: 54
10 Beachem C D. A new model for hydrogen-assisted cracking (hydrogen “embrittlement”) [J]. Metall. Mater. Trans., 1972, 3B: 441
11 Lynch S P. Environmentally assisted cracking: Overview of evidence for an adsorption-induced localised-slip process [J]. Acta Metall., 1988, 36: 2639
12 Nagumo M, Nakamura M, Takai K. Hydrogen thermal desorption relevant to delayed-fracture susceptibility of high-strength steels [J]. Metall. Mater. Trans., 2001, 32A: 339
13 Birnbaum H K, Sofronis P. Hydrogen-enhanced localized plasticity—A mechanism for hydrogen-related fracture [J]. Mater. Sci. Eng., 1994, A176: 191
14 Ren X C, Zhou Q J, Chu W Y, et al. The mechanism of nucleation of hydrogen blister in metals [J]. Chin. Sci. Bull., 2007, 52: 725
14 任学冲, 周庆军, 褚武杨等. 金属中氢鼓泡形核的机理 [J]. 科学通报, 2007, 52: 725
15 Martin M L, Robertson I M, Sofronis P. Interpreting hydrogen-induced fracture surfaces in terms of deformation processes: A new approach [J]. Acta Mater., 2011, 59: 3680
16 Martin M L, Fenske J A, Liu G S, et al. On the formation and nature of quasi-cleavage fracture surfaces in hydrogen embrittled steels [J]. Acta Mater., 2011, 59: 1601
17 Lynch S P. Interpreting hydrogen-induced fracture surfaces in terms of deformation processes: A new approach [J]. Scr. Mater., 2011, 65: 851
18 Neeraj T, Srinivasan R, Li J. Hydrogen embrittlement of ferritic steels: Observations on deformation microstructure, nanoscale dimples and failure by nanovoiding [J]. Acta Mater., 2012, 60: 5160
19 Wang S, Hashimoto N, Wang Y M, et al. Activation volume and density of mobile dislocations in hydrogen-charged iron [J]. Acta Mater., 2013, 61: 4734
20 Barnoush A, Vehoff H. Recent developments in the study of hydrogen embrittlement: Hydrogen effect on dislocation nucleation [J]. Acta Mater., 2010, 58: 5274
21 Costin W L, Lavigne O, Kotousov A, et al. Investigation of hydrogen assisted cracking in acicular ferrite using site-specific micro-fracture tests [J]. Mater. Sci. Eng., 2016, A651: 859
22 Ast J, Ghidelli M, Durst K, et al. A review of experimental approaches to fracture toughness evaluation at the micro-scale [J]. Mater. Des., 2019, 173: 107762
23 Nagumo M. Hydrogen related failure of steels—A new aspect [J]. Mater. Sci. Technol., 2004, 20: 940
24 Robertson I M, Sofronis P, Nagao A, et al. Hydrogen embrittlement understood [J]. Metall. Mater. Trans., 2015, 46A: 2323
25 Djukic M B, Bakic G M, Zeravcic V S, et al. The synergistic action and interplay of hydrogen embrittlement mechanisms in steels and iron: Localized plasticity and decohesion [J]. Eng. Fract. Mech., 2019, 216: 106528
26 Martin M L, Dadfarnia M, Nagao A, et al. Enumeration of the hydrogen-enhanced localized plasticity mechanism for hydrogen embrittlement in structural materials [J]. Acta Mater., 2019, 165: 734
27 Nagumo M, Takai K. The predominant role of strain-induced vacancies in hydrogen embrittlement of steels: Overview [J]. Acta Mater., 2019, 165: 722
28 Lynch S. Discussion of some recent literature on hydrogen-embrittlement mechanisms: Addressing common misunderstandings [J]. Corros. Rev., 2019, 37: 377
29 Oriani R A. Hydrogen embrittlement of steels [J]. Annu. Rev. Mater. Sci., 1978, 8: 327
30 Hirth J P. Effects of hydrogen on the properties of iron and steel [J]. Metall. Trans., 1980, 11A: 861
31 Venezuela J, Liu Q L, Zhang M X, et al. A review of hydrogen embrittlement of martensitic advanced high-strength steels [J]. Corros. Rev., 2016, 34: 153
32 Luo J, Guo Z H, Rong Y H. Research progress on hydrogen embrittlement in advanced high strength steels [J]. Mater. Mech. Eng., 2015, 39(8): 1
32 罗 洁, 郭正洪, 戎咏华. 先进高强度钢氢脆的研究进展 [J]. 机械工程材料, 2015, 39(8): 1
33 Koyama M, Akiyama E, Lee Y K, et al. Overview of hydrogen embrittlement in high-Mn steels [J]. Int. J. Hydrogen Energy, 2017, 42: 12706
34 Ghosh G, Rostron P, Garg R, et al. Hydrogen induced cracking of pipeline and pressure vessel steels: A review [J]. Eng. Fract. Mech., 2018, 199: 609
35 Ohaeri E, Eduok U, Szpunar J. Hydrogen related degradation in pipeline steels: A review [J]. Int. J. Hydrogen Energy, 2018, 43: 14584
36 Li J X, Wang W, Zhou Y, et al. A review of research status of hydrogen embrittlement for automotive advanced high-strength steels [J]. Acta Metall. Sin., 2020, 56: 444
36 李金许, 王 伟, 周 耀等. 汽车用先进高强钢的氢脆研究进展 [J]. 金属学报, 2020, 56: 444
37 Liu Q, Atrens A. A critical review of the influence of hydrogen on the mechanical properties of medium-strength steels [J]. Corros. Rev., 2013, 31: 85
38 Dwivedi S K, Vishwakarma M. Effect of hydrogen in advanced high strength steel materials [J]. Int. J. Hydrogen Energy, 2019, 44: 28007
39 Kiuchi K, McLellan R B. The solubility and diffusivity of hydrogen in well-annealed and deformed iron [J]. Acta Metall., 1983, 31: 961
40 Traidia A, Chatizdouros E, Jouiad M. Review of hydrogen-assisted cracking models for application to service lifetime prediction and challenges in the oil and gas industry [J]. Corros. Rev., 2018, 36: 323
41 Pradhan A, Vishwakarma M, Dwivedi S K. A review: The impact of hydrogen embrittlement on the fatigue strength of high strength steel [J]. Mater. Today: Proc., 2020, 26: 3015
42 Maroef I, Olson D L, Eberhart M,et al. Hydrogen trapping in ferritic steel weld metal [J]. Int. Mater. Rev., 2002, 47: 191
43 Turnbull A. Perspectives on hydrogen uptake, diffusion and trapping [J]. Int. J. Hydrogen Energy, 2015, 40: 16961
44 Bhadeshia H K D H. Prevention of hydrogen embrittlement in steels [J]. ISIJ Int., 2016, 56: 24
45 Koyama M, Rohwerder M, Tasan C C, et al. Recent progress in microstructural hydrogen mapping in steels: Quantification, kinetic analysis, and multi-scale characterisation [J]. Mater. Sci. Technol., 2017, 33: 1481
46 Atrens A, Liu Q L, Zhou Q J, et al. Evaluation of automobile service performance using laboratory testing [J]. Mater. Sci. Technol., 2018, 34: 1893
47 Rudomilova D, Prošek T, Luckeneder G. Techniques for investigation of hydrogen embrittlement of advanced high strength steels [J]. Corros. Rev., 2018, 36: 413
48 Lynch S. Hydrogen embrittlement phenomena and mechanisms [J]. Corros. Rev., 2012, 30: 105
49 Nagumo M. Fundamentals of Hydrogen Embrittlement [M]. Singapore: Springer, 2016: 1
50 Dadfarnia M, Nagao A, Wang S, et al. Recent advances on hydrogen embrittlement of structural materials [J]. Int. J. Fract., 2015, 196: 223
51 Barrera O, Bombac D, Chen Y, et al. Understanding and mitigating hydrogen embrittlement of steels: A review of experimental, modelling and design progress from atomistic to continuum [J]. J. Mater. Sci., 2018, 53: 6251
52 Li X F, Ma X F, Zhang J, et al. Review of hydrogen embrittlement in metals: Hydrogen diffusion, hydrogen characterization, hydrogen embrittlement mechanism and prevention [J]. Acta Metall. Sin. (Engl. Lett.), 2020, 33: 759
53 Henthorne M. The slow strain rate stress corrosion cracking test—A 50 year retrospective [J]. Corrosion, 2016, 72: 1488
54 Du Y, Gao X H, Lan L Y, et al. Hydrogen embrittlement behavior of high strength low carbon medium manganese steel under different heat treatments [J]. Int. J. Hydrogen Energy, 2019, 44: 32292
55 General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. Corrosion of metals and alloys—Stress corrosion testing Part 7: Slow strain rate testing [S]. Beijing: Standards Press of China, 2004
55 中华人民共和国国家质量监督检验检疫总局. 金属和合金的腐蚀 应力腐蚀试验 第7部分: 慢应变速率试验 [S]. 北京: 中国标准出版社, 2004
56 Standard practice for slow strain rate testing to evaluate the susceptibility of metallic materials to environmentally assisted cracking [S]. West Conshohocken, PA: ASTM International, 2013
57 Xie F, Wang D, Wu M, et al. Effects of strain rate on stress corrosion cracking of X80 pipeline steel in Ku'erle soil environment [J]. Trans. China Weld. Inst., 2015, 36(1): 55
57 谢 飞, 王 丹, 吴 明等. 应变速率对X80管线钢在库尔勒土壤环境中应力腐蚀开裂的影响 [J]. 焊接学报, 2015, 36(1): 55
58 Rehrl J, Mraczek K, Pichler A, et al. Mechanical properties and fracture behavior of hydrogen charged AHSS/UHSS grades at high- and low strain rate tests [J]. Mater. Sci. Eng., 2014, A590: 360
59 Kan B, Yang Z X, Wang Z, et al. Hydrogen redistribution under stress-induced diffusion and corresponding fracture behaviour of a structural steel [J]. Mater. Sci. Technol., 2017, 33: 1539
60 Nanninga N E, Levy Y S, Drexler E S, et al. Comparison of hydrogen embrittlement in three pipeline steels in high pressure gaseous hydrogen environments [J]. Corros. Sci., 2012, 59: 1
61 Zheng Y Y, Zhang L, Shi Q Y, et al. Effects of hydrogen on the mechanical response of X80 pipeline steel subject to high strain rate tensile tests [J]. Fatigue Fract. Eng. Mater. Struct., 2020, 43: 684
62 Chida T, Hagihara Y, Akiyama E, et al. Comparison of constant load, SSRT and CSRT methods for hydrogen embrittlement evaluation using round bar specimens of high strength steels [J]. ISIJ Int., 2016, 56: 1268
63 Huang Y H, Ouyang Y Q, Weng S, et al. Effect of loading mode on fracture behavior of CrNiMoV steel welded joint in simulated environment of low pressure nuclear steam turbine [J]. Eng. Fract. Mech., 2019, 205: 81
64 Nagao A, Hayashi K, Oi K, et al. Effect of uniform distribution of fine cementite on hydrogen embrittlement of low carbon martensitic steel plates [J]. ISIJ Int., 2012, 52: 213
65 Venezuela J, Zhou Q J, Liu Q L, et al. The influence of microstructure on the hydrogen embrittlement susceptibility of martensitic advanced high strength steels [J]. Mater. Today Commun., 2018, 17: 1
66 Martínez-Pañeda E, Harris Z D, Fuentes-Alonso S, et al. On the suitability of slow strain rate tensile testing for assessing hydrogen embrittlement susceptibility [J]. Corros. Sci., 2020, 163: 108291
67 Liu Q L, Zhou Q J, Venezuela J, et al. Evaluation of the influence of hydrogen on some commercial DP, Q&P and TWIP advanced high-strength steels during automobile service [J]. Eng. Fail. Anal., 2018, 94: 249
68 (2013)e1 Standard test method for determining threshold stress intensity factor for environment-assisted cracking of metallic materials [S]. West Conshohocken, PA: ASTM International, 2013
69 Wang G, Yan Y, Li J X, et al. Hydrogen embrittlement assessment of ultra-high strength steel 30CrMnSiNi2 [J]. Corros. Sci., 2013, 77: 273
70 Jiang Y F, Zhang B, Wang D Y, et al. Hydrogen-assisted fracture features of a high strength ferrite-pearlite steel [J]. J. Mater. Sci. Technol., 2019, 35: 1081
71 Nibur K A, Somerday B P, Marchi C S, et al. Measurement and interpretation of threshold stress intensity factors for steels in high-pressure hydrogen gas [R]. Albuquerque, NM: Sandia National Laboratories, 2010
72 Nagao A, Smith C D, Dadfarnia M, et al. The role of hydrogen in hydrogen embrittlement fracture of lath martensitic steel [J]. Acta Mater., 2012, 60: 5182
73 Murakami Y, Kanezaki T, Sofronis P. Hydrogen embrittlement of high strength steels: Determination of the threshold stress intensity for small cracks nucleating at nonmetallic inclusions [J]. Eng. Fract. Mech., 2013, 97: 227
74 Iannuzzi M, Barnoush A, Johnsen R. Materials and corrosion trends in offshore and subsea oil and gas production [J]. npj Mater. Degrad., 2017, 1: 2
75 Szost B A, Rivera-Díaz-del-Castillo P E J. Unveiling the nature of hydrogen embrittlement in bearing steels employing a new technique [J]. Scr. Mater., 2013, 68: 467
76 Yonezu A, Arino M, Kondo T, et al. On hydrogen-induced Vickers indentation cracking in high-strength steel [J]. Mech. Res. Commun., 2010, 37: 230
77 Yonezu A, Hara T, Kondo T, et al. Evaluation of threshold stress intensity factor of hydrogen embrittlement cracking by indentation testing [J]. Mater. Sci. Eng., 2012, A531: 147
78 Onyewuenyi O A, Hirth J P. The effect of hydrogen on microhardness of spheroidized AISI 1090 steel [J]. Scr. Metall., 1981, 15: 113
79 Latifi V A, Miresmaeili R, Abdollah-Zadeh A. The mutual effects of hydrogen and microstructure on hardness and impact energy of SMA welds in X65 steel [J]. Mater. Sci. Eng., 2017, A679: 87
80 Lee J H, Gao Y F, Johanns K E, et al. Cohesive interface simulations of indentation cracking as a fracture toughness measurement method for brittle materials [J]. Acta Mater., 2012, 60: 5448
81 Liang X Z, Zhao G H, Owens J, et al. Hydrogen-assisted microcrack formation in bearing steels under rolling contact fatigue [J]. Int. J. Fatigue, 2020, 134: 105485
82 Wu K, Lu X H, Zhou P W, et al. Improved resistance to hydrogen embrittlement by tailoring the stability of retained austenite [J]. Mater. Sci. Technol., 2017, 33: 1497
83 Yonezu A, Niwa M, Chen X. Characterization of hydrogen-induced contact fracture in high-strength steel [J]. J. Eng. Mater. Technol., 2015, 137: 021007
84 Niwa M, Shikama T, Yonezu A. Mechanism of hydrogen embrittlement cracking produced by residual stress from indentation impression [J]. Mater. Sci. Eng., 2015, A624: 52
85 Dong C F, Li X G, Liu Z Y, et al. Hydrogen-induced cracking and healing behaviour of X70 steel [J]. J. Alloys Compd., 2009, 484: 966
86 Laureys A, Van den Eeckhout E, Petrov R, et al. Effect of deformation and charging conditions on crack and blister formation during electrochemical hydrogen charging [J]. Acta Mater., 2017, 127: 192
87 Nix W D, Gao H J. Indentation size effects in crystalline materials: A law for strain gradient plasticity [J]. J. Mech. Phys. Solids, 1998, 46: 411
88 Schuh C A. Nanoindentation studies of materials [J]. Mater. Today, 2006, 9: 32
89 Katz Y, Tymiak N, Gerberich W W. Nanomechanical probes as new approaches to hydrogen/deformation interaction studies [J]. Eng. Fract. Mech., 2001, 68: 619
90 Bahr D, Field D, Nibur K, et al. Hydrogen and deformation: Nano- and microindentation studies [J]. JOM, 2003, 55(2): 47
91 Nibur K A, Bahr D F, Somerday B P. Hydrogen effects on dislocation activity in austenitic stainless steel [J]. Acta Mater., 2006, 54: 2677
92 Gao X. Displacement burst and hydrogen effect during loading and holding in nanoindentation of an iron single crystal [J]. Scr. Mater., 2005, 53: 1315
93 Zhang L, An B, Fukuyama S, et al. Hydrogen effects on localized plasticity in SUS310S stainless steel investigated by nanoindentation and atomic force microscopy [J]. Jpn. J. Appl. Phys., 2009, 48: 08JB08
94 Barnoush A, Vehoff H. Electrochemical nanoindentation: A new approach to probe hydrogen/deformation interaction [J]. Scr. Mater., 2006, 55: 195
95 Barnoush A, Vehoff H. In situ electrochemical nanoindentation: A technique for local examination of hydrogen embrittlement [J]. Corros. Sci., 2008, 50: 259
96 Barnoush A, Vehoff H. Hydrogen embrittlement of aluminum in aqueous environments examined by in situ electrochemical nanoindentation [J]. Scr. Mater., 2008, 58: 747
97 Zamanzade M, Vehoff H, Barnoush A. Cr effect on hydrogen embrittlement of Fe3Al-based iron aluminide intermetallics: Surface or bulk effect [J]. Acta Mater., 2014, 69: 210
98 Barnoush A, Asgari M, Johnsen R. Resolving the hydrogen effect on dislocation nucleation and mobility by electrochemical nanoindentation [J]. Scr. Mater., 2012, 66: 414
99 Barnoush A, Welsh M T, Vehoff H. Correlation between dislocation density and pop-in phenomena in aluminum studied by nanoindentation and electron channeling contrast imaging [J]. Scr. Mater., 2010, 63: 465
100 Barnoush A, Kheradmand N, Hajihou T. Correlation between the hydrogen chemical potential and pop-in load during in situ electrochemical nanoindentation [J]. Scr. Mater., 2015, 108: 76
101 Montagne A, Audurier V, Tromas C. Influence of pre-existing dislocations on the pop-in phenomenon during nanoindentation in MgO [J]. Acta Mater., 2013, 61: 4778
102 Stenerud G, Johnsen R, Olsen J S, et al. Effect of hydrogen on dislocation nucleation in alloy 718 [J]. Int. J. Hydrogen Energy, 2017, 42: 15933
103 Gaspard V, Kermouche G, Delafosse D, et al. Hydrogen effect on dislocation nucleation in a ferritic alloy Fe-15Cr as observed per nanoindentation [J]. Mater. Sci. Eng., 2014, A604: 86
104 Wang D, Lu X, Deng Y, et al. Effect of hydrogen on nanomechanical properties in Fe-22Mn-0.6C TWIP steel revealed by in-situ electrochemical nanoindentation [J]. Acta Mater., 2019, 166: 618
105 Hong Y J, Zhou C S, Zheng Y Y, et al. Effect of hydrogen and strain rate on nanoindentation creep of austenitic stainless steel [J]. Int. J. Hydrogen Energy, 2019, 44: 1253
106 Yao Y, Qiao L J, Volinsky A A. Hydrogen effects on stainless steel passive film fracture studied by nanoindentation [J]. Corros. Sci., 2011, 53: 2679
107 Xie D G, Li S Z, Li M, et al. Hydrogenated vacancies lock dislocations in aluminium [J]. Nat. Commun., 2016, 7: 13341
108 Lee D H, Lee J A, Seok M J, et al. Stress-dependent hardening-to-softening transition of hydrogen effects in nanoindentation of a linepipe steel [J]. Int. J. Hydrogen Energy, 2014, 39: 1897
109 Zhao Y K, Seok M Y, Choi I C, et al. The role of hydrogen in hardening/softening steel: Influence of the charging process [J]. Scr. Mater., 2015, 107: 46
110 Hong Y J, Zhou C S, Zheng Y Y, et al. Hydrogen effect on the deformation evolution process in situ detected by nanoindentation continuous stiffness measurement [J]. Mater. Charact., 2017, 127: 35
111 Tomatsu K, Omura T, Nishiyama Y, et al. Influence of hydrogen on local mechanical properties of pure Fe with different dislocation densities investigated by electrochemical nanoindentation [J]. ISIJ Int., 2016, 56: 2298
112 Zhao K, He J Y, Mayer A E, et al. Effect of hydrogen on the collective behavior of dislocations in the case of nanoindentation [J]. Acta Mater., 2018, 148: 18
113 Zheng Y Y, Zhou C S, Hong Y J, et al. Evolution behavior of nanohardness after thermal-aging and hydrogen-charging on austenite and strain-induced martensite in pre-strained austenitic stainless steel [J]. Mater. Res. Express, 2018, 5: 056524
114 Wasim M, Djukic M B. Hydrogen embrittlement of low carbon structural steel at macro-, micro- and nano-levels [J]. Int. J. Hydrogen Energy, 2020, 45: 2145
115 He B B, Huang M X. Revealing the intrinsic nanohardness of lath martensite in low carbon steel [J]. Metall. Mater. Trans., 2015, 46A: 688
116 Saha D C, Biro E, Gerlich A P, et al. Fusion zone microstructure evolution of fiber laser welded press-hardened steels [J]. Scr. Mater., 2016, 121: 18
117 Lan L Y, Yu M, Qiu C L. On the local mechanical properties of isothermally transformed bainite in low carbon steel [J]. Mater. Sci. Eng., 2019, A742: 442
118 Casellas D, Caro J, Molas S, et al. Fracture toughness of carbides in tool steels evaluated by nanoindentation [J]. Acta Mater., 2007, 55: 4277
119 Kheradmand N, Dake J, Barnoush A, et al. Novel methods for micromechanical examination of hydrogen and grain boundary effects on dislocations [J]. Philos. Mag., 2012, 92: 3216
120 Iqbal F, Ast J, Göken M, et al. In situ micro-cantilever tests to study fracture properties of NiAl single crystals [J]. Acta Mater., 2012, 60: 1193
121 Deutges M, Knorr I, Borchers C, et al. Influence of hydrogen on the deformation morphology of vanadium (100) micropillars in the α-phase of the vanadium-hydrogen system [J]. Scr. Mater., 2013, 68: 71
122 Barnoush A, Dake J, Kheradmand N, et al. Examination of hydrogen embrittlement in FeAl by means of in situ electrochemical micropillar compression and nanoindentation techniques [J]. Intermetallics, 2010, 18: 1385
123 Fang X F, Rasinski M, Kreter A, et al. Plastic deformation of tungsten due to deuterium plasma exposure: Insights from micro-compression tests [J]. Scr. Mater., 2019, 162: 132
124 Kim D, Jang G H, Lee T, et al. Orientation dependence on plastic flow behavior of hydrogen-precharged micropillars of high-Mn steel [J]. Met. Mater. Int., 2020, 26: 1741
125 Armstrong D E J, Rogers M E, Roberts S G. Micromechanical testing of stress corrosion cracking of individual grain boundaries [J]. Scr. Mater., 2009, 61: 741
126 Takahashi Y, Kondo H, Asano R, et al. Direct evaluation of grain boundary hydrogen embrittlement: A micro-mechanical approach [J]. Mater. Sci. Eng., 2016, A661: 211
127 Tomatsu K, Kawata H, Amino T, et al. In-situ microbending tests of Ni-Cr alloy during cathodic hydrogen charging by electrochemical nanoindentation [J]. ISIJ Int., 2017, 57: 564
128 Deng Y, Hajilou T, Wan D, et al. In-situ micro-cantilever bending test in environmental scanning electron microscope: Real time observation of hydrogen enhanced cracking [J]. Scr. Mater., 2017, 127: 19
129 Hajilou T, Deng Y, Rogne B R, et al. In situ electrochemical microcantilever bending test: A new insight into hydrogen enhanced cracking [J]. Scr. Mater., 2017, 132: 17
130 Deng Y, Barnoush A. Hydrogen embrittlement revealed via novel in situ fracture experiments using notched micro-cantilever specimens [J]. Acta Mater., 2018, 142: 236
131 Rogne B R S, Kheradmand N, Deng Y, et al. In situ micromechanical testing in environmental scanning electron microscope: A new insight into hydrogen-assisted cracking [J]. Acta Mater., 2018, 144: 257
132 Bond G M, Robertson I M, Birnbaum H K. Effects of hydrogen on deformation and fracture processes in high-ourity aluminium [J]. Acta Metall., 1988, 36: 2193
133 Ferreira P J, Robertson I M, Birnbaum H K. Hydrogen effects on the interaction between dislocations [J]. Acta Mater., 1998, 46: 1749
134 Song J, Curtin W A. Atomic mechanism and prediction of hydrogen embrittlement in iron [J]. Nat. Mater., 2013, 12: 145
135 Xie D G, Li M, Shan Z W. Review on hydrogen-microstructure interaction in metals [J]. Mater. China, 2018, 37: 215
135 解德刚, 李 蒙, 单智伟. 氢与金属的微观交互作用研究进展 [J]. 中国材料进展, 2018, 37: 215
136 Yin S, Cheng G M, Chang T H, et al. Hydrogen embrittlement in metallic nanowires [J]. Nat. Commun., 2019, 10: 2004
137 Abraham D P, Altstetter C J. The effect of hydrogen on the yield and flow stress of an austenitic stainless steel [J]. Metall. Mater. Trans., 1995, 26A: 2849
138 Dugdale H, Armstrong D E J, Tarleton E, et al. How oxidized grain boundaries fail [J]. Acta Mater., 2013, 61: 4707
139 Griesche A, Dabah E, Kannengiesser T, et al. Three-dimensional imaging of hydrogen blister in iron with neutron tomography [J]. Acta Mater., 2014, 78: 14
140 Ren X C, Shan G B, Chu W Y, et al. Nucleation, growth and cracking of hydrogen bubbles [J]. Chin. Sci. Bull., 2005, 50: 1689
140 任学冲, 单广斌, 褚武扬等. 氢鼓泡的形核、长大和开裂 [J]. 科学通报, 2005, 50: 1689
141 Ren X C, Zhou Q J, Shan G B, et al. A nucleation mechanism of hydrogen blister in metals and alloys [J]. Metall. Mater. Trans., 2008, 39A: 87
142 Xie D G, Wang Z J, Sun J, et al. In situ study of the initiation of hydrogen bubbles at the aluminium metal/oxide interface [J]. Nat. Mater., 2015, 14: 899
143 Li M, Xie D G, Ma E, et al. Effect of hydrogen on the integrity of aluminium-oxide interface at elevated temperatures [J]. Nat. Commun., 2017, 8: 14564
144 Chen Y S, Haley D, Gerstl S S A, et al. Direct observation of individual hydrogen atoms at trapping sites in a ferritic steel [J]. Science, 2017, 355: 1196
145 Chen Y S, Lu H Z, Liang J T, et al. Observation of hydrogen trapping at dislocations, grain boundaries, and precipitates [J]. Science, 2020, 367: 171
[1] 李殿中, 王培. 金属材料的组织定制[J]. 金属学报, 2023, 59(4): 447-456.
[2] 韩卫忠, 卢岩, 张雨衡. 体心立方金属韧脆转变机制研究进展[J]. 金属学报, 2023, 59(3): 335-348.
[3] 夏大海, 邓成满, 陈子光, 李天书, 胡文彬. 金属材料局部腐蚀损伤过程的近场动力学模拟:进展与挑战[J]. 金属学报, 2022, 58(9): 1093-1107.
[4] 韩冬, 张炎杰, 李小武. 短程有序对高层错能Cu-Mn合金拉-拉疲劳变形行为及损伤机制的影响[J]. 金属学报, 2022, 58(9): 1208-1220.
[5] 王江伟, 陈映彬, 祝祺, 洪哲, 张泽. 金属材料的晶界塑性变形机制[J]. 金属学报, 2022, 58(6): 726-745.
[6] 田妮, 石旭, 刘威, 刘春城, 赵刚, 左良. 预拉伸变形对欠时效7N01铝合金板材疲劳断裂的影响[J]. 金属学报, 2022, 58(6): 760-770.
[7] 高川, 邓运来, 王冯权, 郭晓斌. 蠕变时效对欠时效7075铝合金力学性能的影响[J]. 金属学报, 2022, 58(6): 746-759.
[8] 郑士建, 闫哲, 孔祥飞, 张瑞丰. 纳米金属层状材料强塑性的界面调控[J]. 金属学报, 2022, 58(6): 709-725.
[9] 朱彬, 杨兰, 刘勇, 张宜生. 基于纳米压痕逆算法的热冲压马氏体/贝氏体双相组织的微观力学性能[J]. 金属学报, 2022, 58(2): 155-164.
[10] 徐文策, 崔振铎, 朱胜利. 开孔多孔金属材料在电催化及生物医用领域的研究进展[J]. 金属学报, 2022, 58(12): 1527-1544.
[11] 武晓雷, 朱运田. 异构金属材料及其塑性变形与应变硬化[J]. 金属学报, 2022, 58(11): 1349-1359.
[12] 张显程, 张勇, 李晓, 王梓萌, 贺琛贇, 陆体文, 王晓坤, 贾云飞, 涂善东. 异构金属材料的设计与制造[J]. 金属学报, 2022, 58(11): 1399-1415.
[13] 肖娜, 惠卫军, 张永健, 赵晓丽. 真空渗碳处理齿轮钢的氢脆敏感性[J]. 金属学报, 2021, 57(8): 977-988.
[14] 安旭东, 朱特, 王茜茜, 宋亚敏, 刘进洋, 张鹏, 张钊宽, 万明攀, 曹兴忠. 奥氏体316不锈钢中位错与氢的相互作用机理[J]. 金属学报, 2021, 57(7): 913-920.
[15] 孙小钧, 何杰, 陈斌, 赵九洲, 江鸿翔, 张丽丽, 郝红日. Fe含量对Zr60Cu40-xFex相分离非晶合金组织结构、电阻性能和纳米压痕行为的影响[J]. 金属学报, 2021, 57(5): 675-683.