|
|
开孔多孔金属材料在电催化及生物医用领域的研究进展 |
徐文策, 崔振铎, 朱胜利( ) |
天津大学 材料科学与工程学院 天津 300350 |
|
Recent Advances in Open-Cell Porous Metal Materials for Electrocatalytic and Biomedical Applications |
XU Wence, CUI Zhenduo, ZHU Shengli( ) |
School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China |
引用本文:
徐文策, 崔振铎, 朱胜利. 开孔多孔金属材料在电催化及生物医用领域的研究进展[J]. 金属学报, 2022, 58(12): 1527-1544.
Wence XU,
Zhenduo CUI,
Shengli ZHU.
Recent Advances in Open-Cell Porous Metal Materials for Electrocatalytic and Biomedical Applications[J]. Acta Metall Sin, 2022, 58(12): 1527-1544.
1 |
Shi S, Li Y, Ngo-Dinh B N, et al. Scaling behavior of stiffness and strength of hierarchical network nanomaterials [J]. Science, 2021, 371: 1026
doi: 10.1126/science.abd9391
pmid: 33674489
|
2 |
Lang X Y, Hirata A, Fujita T, et al. Nanoporous metal/oxide hybrid electrodes for electrochemical supercapacitors [J]. Nat. Nanotechnol., 2011, 6: 232
doi: 10.1038/nnano.2011.13
pmid: 21336267
|
3 |
Smith A J, Trimm D L. The preparation of skeletal catalysts [J]. Annu. Rev. Mater. Res., 2005, 35: 127
doi: 10.1146/annurev.matsci.35.102303.140758
|
4 |
Knyrim J S, Becker P, Johrendt D, et al. A new non-centrosymmetric modification of BiB3O6 [J]. Angew. Chem. Int. Ed., 2006, 45: 8239
doi: 10.1002/anie.200602993
|
5 |
Biener J, Biener M M, Madix R J, et al. Nanoporous gold: Understanding the origin of the reactivity of a 21st century catalyst made by pre-columbian technology [J]. ACS Catal., 2015, 5: 6263
doi: 10.1021/acscatal.5b01586
|
6 |
Wang X G, Wang W M, Qi Z, et al. Fabrication, microstructure and electrocatalytic property of novel nanoporous palladium composites [J]. J. Alloys Compd., 2010, 508: 463
doi: 10.1016/j.jallcom.2010.08.094
|
7 |
Wang D H, Engle K M, Shi B F, et al. Ligand-enabled reactivity and selectivity in a synthetically versatile aryl C-H olefination [J]. Science, 2010, 327: 315
doi: 10.1126/science.1182512
|
8 |
Wittstock A, Biener J, Bäumer M. Nanoporous gold: A new material for catalytic and sensor applications [J]. Phys. Chem. Chem. Phys., 2010, 12: 12919
doi: 10.1039/c0cp00757a
pmid: 20820589
|
9 |
Dixon M C, Daniel T A, Hieda M, et al. Preparation, structure, and optical properties of nanoporous gold thin films [J]. Langmuir, 2007, 23: 2414
pmid: 17249701
|
10 |
He R, Wang Y C, Wang X Y, et al. Facile synthesis of pentacle gold-copper alloy nanocrystals and their plasmonic and catalytic properties [J]. Nat. Commun., 2014, 5: 4327
doi: 10.1038/ncomms5327
pmid: 24999674
|
11 |
Chapman C A R, Wang L, Chen H, et al. Nanoporous gold biointerfaces: Modifying nanostructure to control neural cell coverage and enhance electrophysiological recording performance [J]. Adv. Funct. Mater., 2017, 27: 1604631
|
12 |
Liu D Q, Yang Z B, Wang P, et al. Preparation of 3D nanoporous copper-supported cuprous oxide for high-performance lithium ion battery anodes [J]. Nanoscale, 2013, 5: 1917
doi: 10.1039/c2nr33383j
pmid: 23354412
|
13 |
Ryan G, Pandit A, Apatsidis D P. Fabrication methods of porous metals for use in orthopaedic applications [J]. Biomaterials, 2006, 27: 2651
pmid: 16423390
|
14 |
Wang M Y, Yu X T, Wang Z, et al. Hierarchically 3D porous films electrochemically constructed on gas-liquid-solid three-phase interface for energy application [J]. J. Mater. Chem., 2017, 5A: 9488
|
15 |
Zhang J T, Li C M. Nanoporous metals: Fabrication strategies and advanced electrochemical applications in catalysis, sensing and energy systems [J]. Chem. Soc. Rev., 2012, 41: 7016
doi: 10.1039/c2cs35210a
pmid: 22975622
|
16 |
Fujita T, Guan P F, McKenna K, et al. Atomic origins of the high catalytic activity of nanoporous gold [J]. Nat. Mater., 2012, 11: 775
doi: 10.1038/nmat3391
pmid: 22886067
|
17 |
Nagels J, Stokdijk M, Rozing P M. Stress shielding and bone resorption in shoulder arthroplasty [J]. J. Shoulder Elbow Surg., 2003, 12: 35
pmid: 12610484
|
18 |
Torres Y, Trueba P, Pavón J, et al. Designing, processing and characterisation of titanium cylinders with graded porosity: An alternative to stress-shielding solutions [J]. Mater. Des., 2014, 63: 316
doi: 10.1016/j.matdes.2014.06.012
|
19 |
Anselme K. Osteoblast adhesion on biomaterials [J]. Biomaterials, 2000, 21: 667
pmid: 10711964
|
20 |
Zhang Z, Jones D, Yue S, et al. Hierarchical tailoring of strut architecture to control permeability of additive manufactured titanium implants [J]. Mater. Sci. Eng., 2013, C33: 4055
|
21 |
Xiao J, Qiu G B. Research review of space holders of sintered titanium foams with large pores and high porosity [J]. Mater. China, 2018, 37: 372
|
21 |
肖健, 邱贵宝. 大孔径高孔隙率烧结泡沫钛的造孔剂研究述评 [J]. 中国材料进展, 2018, 37: 372
|
22 |
Qiao J C, Xi Z P, Tang H P, et al. Current status of metal porous materials by powder metallurgy technology [J]. Rare Met. Mater. Eng., 2008, 37: 2054
|
22 |
乔吉超, 奚正平, 汤慧萍 等. 粉末冶金技术制备金属多孔材料研究进展 [J]. 稀有金属材料与工程, 2008, 37: 2054
|
23 |
Li Y X, Cui Z D, Yang X J, et al. The porous TiNb24Zr4 alloys with controllable porosity fabricated by conventional sintering [J]. Adv. Mater. Res., 2011, 335-336: 797
|
24 |
Lu Z L, Xu W L, Cao J W, et al. Microstructures and properties of porous TiAl-based intermetallics prepared by freeze-casting [J]. Trans. Nonferrous Met. Soc. China, 2020, 30: 382
doi: 10.1016/S1003-6326(20)65220-7
|
25 |
Li J R, Yu C L, Xu Z J, et al. Preparing a novel gradient porous metal fiber sintered felt with better manufacturability for hydrogen production via methanol steam reforming [J]. Int. J. Hydrogen Energy, 2019, 44: 23983
doi: 10.1016/j.ijhydene.2019.07.142
|
26 |
Zou C M, Zhang E L, Zeng S Y. Porous titanium by fiber sintering and its biomimetic Ca-P coating [J]. Rare Met. Mater. Eng., 2007, 36: 1394
|
26 |
邹鹑鸣, 张二林, 曾松岩. 纤维烧结多孔钛及其表面生长仿生Ca-P涂层 [J]. 稀有金属材料与工程, 2007, 36: 1394
|
27 |
Munir Z A, Anselmi-Tamburini U, Ohyanagi M. The effect of electric field and pressure on the synthesis and consolidation of materials: A review of the spark plasma sintering method [J]. J. Mater. Sci., 2006, 41: 763
doi: 10.1007/s10853-006-6555-2
|
28 |
Zhang F M, Otterstein E, Burkel E. Spark plasma sintering, microstructures, and mechanical properties of macroporous titanium foams [J]. Adv. Eng. Mater., 2010, 12: 863
doi: 10.1002/adem.201000106
|
29 |
McCue I, Benn E, Gaskey B, et al. Dealloying and dealloyed materials [J]. Annu. Rev. Mater. Res., 2016, 46: 263
doi: 10.1146/annurev-matsci-070115-031739
|
30 |
Newman R C, Corcoran S G, Erlebacher J, et al. Alloy corrosion [J]. MRS Bull., 1999, 24: 24
|
31 |
Joo S H, Bae J W, Park W Y, et al. Beating thermal coarsening in nanoporous materials via high-entropy design [J]. Adv. Mater., 2020, 32: 1906160
|
32 |
Yang X X, Xu W C, Cao S, et al. An amorphous nanoporous PdCuNi-S hybrid electrocatalyst for highly efficient hydrogen production [J]. Appl. Catal., 2019, 246B: 156
|
33 |
Fujita T. Hierarchical nanoporous metals as a path toward the ultimate three-dimensional functionality [J]. Sci. Technol. Adv. Mater., 2017, 18: 724
doi: 10.1080/14686996.2017.1377047
|
34 |
Chuang A, Erlebacher J. Challenges and opportunities for integrating dealloying methods into additive manufacturing [J]. Materials, 2020, 13: 3706
doi: 10.3390/ma13173706
|
35 |
Ding Y, Kim Y J, Erlebacher J. Nanoporous gold leaf: "Ancient technology"/advanced material [J]. Adv. Mater., 2004, 16: 1897
doi: 10.1002/adma.200400792
|
36 |
Kertis F, Snyder J, Govada L, et al. Structure/processing relationships in the fabrication of nanoporous gold [J]. JOM, 2010, 62(6): 50
|
37 |
Vega A A, Newman R C. Nanoporous metals fabricated through electrochemical dealloying of Ag-Au-Pt with systematic variation of Au:Pt ratio [J]. J. Electrochem. Soc., 2014, 161: C1
doi: 10.1149/2.003401jes
|
38 |
Ye X L, Lu N, Li X J, et al. Primary and secondary dealloying of Au(Pt)-Ag: Structural and compositional evolutions, and volume shrinkage [J]. J. Electrochem. Soc., 2014, 161: C517
doi: 10.1149/2.0131412jes
|
39 |
Wang Z L, Liu P, Han J H, et al. Engineering the internal surfaces of three-dimensional nanoporous catalysts by surfactant-modified dealloying [J]. Nat. Commun., 2017, 8: 1066
doi: 10.1038/s41467-017-01085-3
pmid: 29057916
|
40 |
Erlebacher J, Aziz M J, Karma A, et al. Evolution of nanoporosity in dealloying [J]. Nature, 2001, 410: 450
doi: 10.1038/35068529
|
41 |
Xu W C, Zhu S L, Liang Y Q, et al. A nanoporous metal phosphide catalyst for bifunctional water splitting [J]. J. Mater. Chem., 2018, 6A: 5574
|
42 |
Wang Z L, Ning S C, Liu P, et al. Tuning surface structure of 3D nanoporous gold by surfactant-free electrochemical potential cycling [J]. Adv. Mater., 2017, 29: 1703601
|
43 |
Fu J T, Corsi J S, Welborn S S, et al. Eco-friendly synthesis of nanoporous magnesium by air-free electrolytic dealloying with recovery of sacrificial elements for energy conversion and storage applications [J]. ACS Sustain. Chem. Eng., 2021, 9: 2762
doi: 10.1021/acssuschemeng.0c08157
|
44 |
Shi H, Zhou Y T, Yao R Q, et al. Spontaneously separated intermetallic Co3Mo from nanoporous copper as versatile electrocatalysts for highly efficient water splitting [J]. Nat. Commun., 2020, 11: 2940
doi: 10.1038/s41467-020-16769-6
|
45 |
Xu W C, Fan G L, Zhu S L, et al. Electronic structure modulation of nanoporous cobalt phosphide by carbon doping for alkaline hydrogen evolution reaction [J]. Adv. Funct. Mater., 2021, 31: 2107333
|
46 |
Lan J, Peng M, Liu P, et al. Scalable synthesis of nanoporous boron for high efficiency ammonia electrosynthesis [J]. Mater. Today, 2020, 38: 58
doi: 10.1016/j.mattod.2020.04.012
|
47 |
Tan Y W, Wang H, Liu P, et al. 3D nanoporous metal phosphides toward high-efficiency electrochemical hydrogen production [J]. Adv. Mater., 2016, 28: 2951
doi: 10.1002/adma.201505875
|
48 |
Tan Y W, Wang H, Liu P, et al. Versatile nanoporous bimetallic phosphides towards electrochemical water splitting [J]. Energy Environ. Sci., 2016, 9: 2257
doi: 10.1039/C6EE01109H
|
49 |
Guo X Y, Zhang C X, Tian Q H, et al. Liquid metals dealloying as a general approach for the selective extraction of metals and the fabrication of nanoporous metals: A review [J]. Mater. Today Commun., 2021, 26: 102007
|
50 |
Harrison J D, Wagner C. The attack of solid alloys by liquid metals and salt melts [J]. Acta Metall., 1959, 7: 722
doi: 10.1016/0001-6160(59)90178-6
|
51 |
Wada T, Yubuta K, Inoue A, et al. Dealloying by metallic melt [J]. Mater. Lett., 2011, 65: 1076
doi: 10.1016/j.matlet.2011.01.054
|
52 |
Okulov I V, Okulov A V, Volegov A S, et al. Tuning microstructure and mechanical properties of open porous TiNb and TiFe alloys by optimization of dealloying parameters [J]. Scr. Mater., 2018, 154: 68
doi: 10.1016/j.scriptamat.2018.05.029
|
53 |
Okulov I V, Okulov A V, Soldatov I V, et al. Open porous dealloying-based biomaterials as a novel biomaterial platform [J]. Mater. Sci. Eng., 2018, C88: 95
|
54 |
Kim J W, Tsuda M, Wada T, et al. Optimizing niobium dealloying with metallic melt to fabricate porous structure for electrolytic capacitors [J]. Acta Mater., 2015, 84: 497
doi: 10.1016/j.actamat.2014.11.002
|
55 |
Hadden M, Martinez-Martin D, Yong K T, et al. Recent advancements in the fabrication of functional nanoporous materials and their biomedical applications [J]. Materials, 2022, 15: 2111
doi: 10.3390/ma15062111
|
56 |
Han J H, Li C, Lu Z, et al. Vapor phase dealloying: A versatile approach for fabricating 3D porous materials [J]. Acta Mater., 2019, 163: 161
doi: 10.1016/j.actamat.2018.10.012
|
57 |
Lu Z, Li C, Han J H, et al. Three-dimensional bicontinuous nanoporous materials by vapor phase dealloying [J]. Nat. Commun., 2018, 9: 276
doi: 10.1038/s41467-017-02167-y
pmid: 29348401
|
58 |
Li J, Li L J, Gao Y F, et al. Preparation of nanomaterials employing template method [J]. Mater. Rep., 2011, 25(2): 5
|
58 |
李静, 李利军, 高艳芳 等. 模板法制备纳米材料 [J]. 材料导报, 2011, 25(2): 5
|
59 |
Krishnan M R, Chien Y C, Cheng C F, et al. Fabrication of mesoporous polystyrene films with controlled porosity and pore size by solvent annealing for templated syntheses [J]. Langmuir, 2017, 33: 8428
doi: 10.1021/acs.langmuir.7b02195
pmid: 28817284
|
60 |
Tang W X, Wu X F, Li S D, et al. Co-nanocasting synthesis of mesoporous Cu-Mn composite oxides and their promoted catalytic activities for gaseous benzene removal [J]. Appl. Catal., 2015, 162B: 110
|
61 |
Masuda H, Fukuda K. Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina [J]. Science, 1995, 268: 1466
pmid: 17843666
|
62 |
Zheng M, Yang J, Zhang H. Review on preparation and applications of porous metal materials [J]. Mater. Rep., 2022, 36(18): 78
|
62 |
郑敏, 杨瑾, 张华. 多孔金属材料的制备及应用研究进展 [J]. 材料导报, 2022, 36(18): 78
|
63 |
Zhao L J, Zhang F, Peng J, et al. Research progress and application of preparation technology of porous metal materials [J]. Powder Metall. Ind., 2022, 32(5): 110
|
63 |
赵立杰, 张芳, 彭军 等. 多孔金属材料的制备工艺研究进展及应用 [J]. 粉末冶金工业, 2022, 32(5): 110
|
64 |
Furumoto T, Koizumi A, Alkahari M R, et al. Permeability and strength of a porous metal structure fabricated by additive manufacturing [J]. J. Mater. Process. Technol., 2015, 219: 10
doi: 10.1016/j.jmatprotec.2014.11.043
|
65 |
Thijs L, Verhaeghe F, Craeghs T, et al. A study of the microstructural evolution during selective laser melting of Ti-6Al-4V [J]. Acta Mater., 2010, 58: 3303
doi: 10.1016/j.actamat.2010.02.004
|
66 |
Liu Y J, Li S J, Zhang L C, et al. Early plastic deformation behaviour and energy absorption in porous β-type biomedical titanium produced by selective laser melting [J]. Scr. Mater., 2018, 153: 99
doi: 10.1016/j.scriptamat.2018.05.010
|
67 |
Li S J, Murr L E, Cheng X Y, et al. Compression fatigue behavior of Ti-6Al-4V mesh arrays fabricated by electron beam melting [J]. Acta Mater., 2012, 60: 793
doi: 10.1016/j.actamat.2011.10.051
|
68 |
Cansizoglu O, Harrysson O, Cormier D, et al. Properties of Ti-6Al-4V non-stochastic lattice structures fabricated via electron beam melting [J]. Mater. Sci. Eng., 2008, A492: 468
|
69 |
Liu Y J, Wang H L, Li S J, et al. Compressive and fatigue behavior of beta-type titanium porous structures fabricated by electron beam melting [J]. Acta Mater., 2017, 126: 58
doi: 10.1016/j.actamat.2016.12.052
|
70 |
Walter M G, Warren E L, McKone J R, et al. Solar water splitting cells [J]. Chem. Rev., 2010, 110: 6446
doi: 10.1021/cr1002326
pmid: 21062097
|
71 |
Hansen J N, Prats H, Toudahl K K, et al. Is there anything better than Pt for HER? [J]. ACS Energy Lett., 2021, 6: 1175
doi: 10.1021/acsenergylett.1c00246
pmid: 34056107
|
72 |
Liu S L, Mu X Q, Duan H Y, et al. Pd nanoparticle assemblies as efficient catalysts for the hydrogen evolution and oxygen reduction reactions [J]. Eur. J. Inorg. Chem., 2017, 2017: 535
doi: 10.1002/ejic.201601277
|
73 |
Yu A, Kim S Y, Lee C, et al. Boosted electron-transfer kinetics of hydrogen evolution reaction at bimetallic RhCo alloy nanotubes in acidic solution [J]. ACS Appl. Mater. Interfaces, 2019, 11: 46886
doi: 10.1021/acsami.9b16892
|
74 |
Xie J F, Zhang H, Li S, et al. Defect-rich MoS2 ultrathin nanosheets with additional active edge sites for enhanced electrocatalytic hydrogen evolution [J]. Adv. Mater., 2013, 25: 5807
doi: 10.1002/adma.201302685
|
75 |
Sun J S, Wen Z, Han L P, et al. Nonprecious intermetallic Al7Cu4Ni nanocrystals seamlessly integrated in freestanding bimodal nanoporous copper for efficient hydrogen evolution catalysis [J]. Adv. Funct. Mater., 2018, 28: 1706127
|
76 |
Xu X S, Deng Y X, Gu M H, et al. Large-scale synthesis of porous nickel boride for robust hydrogen evolution reaction electrocatalyst [J]. Appl. Surf. Sci., 2019, 470: 591
doi: 10.1016/j.apsusc.2018.11.127
|
77 |
Jiang B, Guo Y N, Kim J, et al. Mesoporous metallic iridium nanosheets [J]. J. Am. Chem. Soc., 2018, 140: 12434
doi: 10.1021/jacs.8b05206
pmid: 30129750
|
78 |
Liu Z Y, Li J H, Zhang J, et al. Ultrafine Ir nanowires with microporous channels and superior electrocatalytic activity for oxygen evolution reaction [J]. ChemCatChem, 2020, 12: 3060
doi: 10.1002/cctc.202000388
|
79 |
Yao Q, Huang B L, Zhang N, et al. Channel-rich RuCu nanosheets for pH-universal overall water splitting electrocatalysis [J]. Angew. Chem. Int. Ed., 2019, 58: 13983
doi: 10.1002/anie.201908092
pmid: 31342633
|
80 |
Su X R, Li X W, Ong C Y A, et al. Metallization of 3D printed polymers and their application as a fully functional water-splitting system [J]. Adv. Sci., 2019, 6: 1801670
|
81 |
You B, Sun Y J. Hierarchically porous nickel sulfide multifunctional superstructures [J]. Adv. Energy Mater., 2016, 6: 1502333
|
82 |
Wang X G, Li W, Xiong D H, et al. Fast fabrication of self-supported porous nickel phosphide foam for efficient, durable oxygen evolution and overall water splitting [J]. J. Mater. Chem., 2016, 4A: 5639
|
83 |
Shui J L, Chen C, Li J C M. Evolution of nanoporous Pt-Fe alloy nanowires by dealloying and their catalytic property for oxygen reduction reaction [J]. Adv. Funct. Mater., 2011, 21: 3357
doi: 10.1002/adfm.201100723
|
84 |
Wang R Y, Xu C X, Bi X X, et al. Nanoporous surface alloys as highly active and durable oxygen reduction reaction electrocatalysts [J]. Energy Environ. Sci., 2012, 5: 5281
doi: 10.1039/C1EE02243A
|
85 |
Snyder J, Fujita T, Chen M W, et al. Oxygen reduction in nanoporous metal-ionic liquid composite electrocatalysts [J]. Nat. Mater., 2010, 9: 904
doi: 10.1038/nmat2878
pmid: 20953182
|
86 |
Li J, Yin H M, Li X B, et al. Surface evolution of a Pt-Pd-Au electrocatalyst for stable oxygen reduction [J]. Nat. Energy, 2017, 2: 17111
doi: 10.1038/nenergy.2017.111
|
87 |
Qiu H J, Fang G, Wen Y R, et al. Nanoporous high-entropy alloys for highly stable and efficient catalysts [J]. J. Mater. Chem., 2019, 7A: 6499
|
88 |
Oezaslan M, Heggen M, Strasser P. Size-dependent morphology of dealloyed bimetallic catalysts: Linking the nano to the macro scale [J]. J. Am. Chem. Soc., 2012, 134: 514
doi: 10.1021/ja2088162
pmid: 22129031
|
89 |
Xu C X, Zhang Y, Wang L Q, et al. Nanotubular mesoporous PdCu bimetallic electrocatalysts toward oxygen reduction reaction [J]. Chem. Mater., 2009, 21: 3110
doi: 10.1021/cm900244g
|
90 |
Chen L Y, Guo H, Fujita T, et al. Nanoporous PdNi bimetallic catalyst with enhanced electrocatalytic performances for electro-oxidation and oxygen reduction reactions [J]. Adv. Funct. Mater., 2011, 21: 4364
doi: 10.1002/adfm.201101227
|
91 |
Tominaka S, Hayashi T, Nakamura Y, et al. Mesoporous PdCo sponge-like nanostructure synthesized by electrodeposition and dealloying for oxygen reduction reaction [J]. J. Mater. Chem., 2010, 20: 7175
doi: 10.1039/c0jm00973c
|
92 |
Tominaka S, Nakamura Y, Osaka T. Nanostructured catalyst with hierarchical porosity and large surface area for on-chip fuel cells [J]. J. Power Sources, 2010, 195: 1054
doi: 10.1016/j.jpowsour.2009.08.082
|
93 |
Lv H, Xu D D, Sun L Z, et al. Ternary palladium-boron-phosphorus alloy mesoporous nanospheres for highly efficient electrocatalysis [J]. ACS Nano, 2019, 13: 12052
doi: 10.1021/acsnano.9b06339
pmid: 31513375
|
94 |
Zeis R, Lei T, Sieradzki K, et al. Catalytic reduction of oxygen and hydrogen peroxide by nanoporous gold [J]. J. Catal., 2008, 253: 132
doi: 10.1016/j.jcat.2007.10.017
|
95 |
Chen C J, Zhu S L, Yang X J, et al. Electro-oxidation of ethylene glycol on nanoporous Ti-Cu amorphous alloy [J]. Electrochim. Acta, 2011, 56: 10253
doi: 10.1016/j.electacta.2011.09.018
|
96 |
Liu L F, Pippel E, Scholz R, et al. Nanoporous Pt-Co alloy nanowires: Fabrication, characterization, and electrocatalytic properties [J]. Nano Lett., 2009, 9: 4352
doi: 10.1021/nl902619q
pmid: 19842671
|
97 |
Liu L F, Scholz R, Pippel E, et al. Microstructure, electrocatalytic and sensing properties of nanoporous Pt46Ni54 alloy nanowires fabricated by mild dealloying [J]. J. Mater. Chem., 2010, 20: 5621
doi: 10.1039/c0jm00113a
|
98 |
Deng K, Xu Y, Yang D D, et al. Pt-Ni-P nanocages with surface porosity as efficient bifunctional electrocatalysts for oxygen reduction and methanol oxidation [J]. J. Mater. Chem., 2019, 7A: 9791
|
99 |
Yin S L, Wang Z Q, Li C J, et al. Mesoporous Pt@PtM (M = Co, Ni) cage-bell nanostructures toward methanol electro-oxidation [J]. Nanoscale Adv., 2020, 2: 1084
doi: 10.1039/D0NA00020E
|
100 |
Zhang J T, Liu P P, Ma H Y, et al. Nanostructured porous gold for methanol electro-oxidation [J]. J. Phys. Chem., 2007, 111C: 10382
|
101 |
Chen L Y, Lang X Y, Fujita T, et al. Nanoporous gold for enzyme-free electrochemical glucose sensors [J]. Scr. Mater., 2011, 65: 17
doi: 10.1016/j.scriptamat.2011.03.025
|
102 |
Liu Z N, Huang L H, Zhang L L, et al. Electrocatalytic oxidation ofD-glucose at nanoporous Au and Au-Ag alloy electrodes in alkaline aqueous solutions [J]. Electrochim. Acta, 2009, 54: 7286
doi: 10.1016/j.electacta.2009.07.049
|
103 |
Liu Z N, Du J G, Qiu C C, et al. Electrochemical sensor for detection of p-nitrophenol based on nanoporous gold [J]. Electrochem. Commun., 2009, 11: 1365
doi: 10.1016/j.elecom.2009.05.004
|
104 |
Chen L Y, Fujita T, Ding Y, et al. A three-dimensional gold-decorated nanoporous copper core-shell composite for electrocatalysis and nonenzymatic biosensing [J]. Adv. Funct. Mater., 2010, 20: 2279
doi: 10.1002/adfm.201000326
|
105 |
Ding Y, Chen M W, Erlebacher J. Metallic mesoporous nanocomposites for electrocatalysis [J]. J. Am. Chem. Soc., 2004, 126: 6876
doi: 10.1021/ja0320119
pmid: 15174851
|
106 |
Wang R Y, Wang C, Cai W B, et al. Ultralow-platinum-loading high-performance nanoporous electrocatalysts with nanoengineered surface structures [J]. Adv. Mater., 2010, 22: 1845
doi: 10.1002/adma.200903548
|
107 |
Ge X B, Yan X L, Wang R Y, et al. Tailoring the structure and property of Pt-decorated nanoporous gold by thermal annealing [J]. J. Phys. Chem., 2009, 113C: 7379
|
108 |
Yu J S, Ding Y, Xu C X, et al. Nanoporous metals by dealloying multicomponent metallic glasses [J]. Chem. Mater., 2008, 20: 4548
doi: 10.1021/cm8009644
|
109 |
Xu C X, Liu A H, Qiu H J, et al. Nanoporous PdCu alloy with enhanced electrocatalytic performance [J]. Electrochem. Commun., 2011, 13: 766
doi: 10.1016/j.elecom.2011.04.007
|
110 |
Xu C X, Liu Y Q, Wang J P, et al. Nanoporous PdCu alloy for formic acid electro-oxidation [J]. J. Power Sources, 2012, 199: 124
doi: 10.1016/j.jpowsour.2011.10.075
|
111 |
Sa Y J, Lee C W, Lee S Y, et al. Catalyst-electrolyte interface chemistry for electrochemical CO2 reduction [J]. Chem. Soc. Rev., 2020, 49: 6632
doi: 10.1039/D0CS00030B
|
112 |
Li D, Wu J, Liu T T, et al. Tuning the pore structure of porous tin foam electrodes for enhanced electrochemical reduction of carbon dioxide to formate [J]. Chem. Eng. J., 2019, 375: 122024
|
113 |
Kim H, Lee H, Lim T, et al. Facile fabrication of porous Sn-based catalysts for electrochemical CO2 reduction to HCOOH and syngas [J]. J. Ind. Eng. Chem., 2018, 66: 248
doi: 10.1016/j.jiec.2018.05.036
|
114 |
Wang J, Wang H, Han Z Z, et al. Electrodeposited porous Pb electrode with improved electrocatalytic performance for the electroreduction of CO2 to formic acid [J]. Front. Chem. Sci. Eng., 2015, 9: 57
doi: 10.1007/s11705-014-1444-8
|
115 |
Welch A J, DuChene J S, Tagliabue G, et al. Nanoporous gold as a highly selective and active carbon dioxide reduction catalyst [J]. ACS Appl. Energy Mater., 2019, 2: 164
doi: 10.1021/acsaem.8b01570
|
116 |
Morimoto M, Takatsuji Y, Hirata K, et al. Visualization of catalytic edge reactivity in electrochemical CO2 reduction on porous Zn electrode [J]. Electrochim. Acta, 2018, 290: 255
doi: 10.1016/j.electacta.2018.09.080
|
117 |
Zhao Y, Liu X L, Chen D C, et al. Atomic-level-designed copper atoms on hierarchically porous gold architectures for high-efficiency electrochemical CO2 reduction [J]. Sci. China Mater., 2021, 64: 1900
doi: 10.1007/s40843-020-1583-4
|
118 |
Yan W Y, Zhang C, Liu L. Hierarchically porous CuAg via 3D printing/dealloying for tunable CO2 reduction to syngas [J]. ACS Appl. Mater. Interfaces, 2021, 13: 45385
doi: 10.1021/acsami.1c10564
|
119 |
Yang P P, Zhang X L, Gao F Y, et al. Protecting copper oxidation state via intermediate confinement for selective CO2 electroreduction to C2+ fuels [J]. J. Am. Chem. Soc., 2020, 142: 6400
doi: 10.1021/jacs.0c01699
|
120 |
Zhong M, Tran K, Min Y M, et al. Accelerated discovery of CO2 electrocatalysts using active machine learning [J]. Nature, 2020, 581: 178
doi: 10.1038/s41586-020-2242-8
|
121 |
Nazemi M, El-Sayed M A. Electrochemical synthesis of ammonia from N2 and H2O under ambient conditions using pore-size-controlled hollow gold nanocatalysts with tunable plasmonic properties [J]. J. Phys. Chem. Lett., 2018, 9: 5160
doi: 10.1021/acs.jpclett.8b02188
|
122 |
Pang F J, Wang Z F, Zhang K, et al. Bimodal nanoporous Pd3Cu1 alloy with restrained hydrogen evolution for stable and high yield electrochemical nitrogen reduction [J]. Nano Energy, 2019, 58: 834
doi: 10.1016/j.nanoen.2019.02.019
|
123 |
Wang X J, Luo M, Lan J, et al. Nanoporous intermetallic Pd3Bi for efficient electrochemical nitrogen reduction [J]. Adv. Mater., 2021, 33: 2007733
|
124 |
Xu W C, Fan G L, Chen J L, et al. Nanoporous palladium hydride for electrocatalytic N2 reduction under ambient conditions [J]. Angew. Chem. Int. Ed., 2020, 59: 3511
doi: 10.1002/anie.201914335
|
125 |
Pang F J, Wang F, Yang L T, et al. Hierarchical nanoporous Pd1Ag1 alloy enables efficient electrocatalytic nitrogen reduction under ambient conditions [J]. Chem. Commun., 2019, 55: 10108
doi: 10.1039/C9CC04460D
|
126 |
Fan G L, Xu W C, Li J H, et al. Nanoporous NiSb to enhance nitrogen electroreduction via tailoring competitive adsorption sites [J]. Adv. Mater., 2021, 33: 2101126
|
127 |
Wang H J, Yu H J, Wang Z Q, et al. Electrochemical fabrication of porous Au film on Ni foam for nitrogen reduction to ammonia [J]. Small, 2019, 15: 1804769
|
128 |
Yang Y J, Wang S Q, Wen H M, et al. Nanoporous gold embedded ZIF composite for enhanced electrochemical nitrogen fixation [J]. Angew. Chem. Int. Ed., 2019, 58: 15362
doi: 10.1002/anie.201909770
pmid: 31441563
|
129 |
Xiao L, Zhu S L, Liang Y Q, et al. Effects of hydrophobic layer on selective electrochemical nitrogen fixation of self-supporting nanoporous Mo4P3 catalyst under ambient conditions [J]. Appl. Catal., 2021, 286B: 119895
|
130 |
Rezwan K, Chen Q Z, Blaker J J, et al. Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering [J]. Biomaterials, 2006, 27: 3413
pmid: 16504284
|
131 |
Geng Z, Cui Z D, Li Z Y, et al. Synthesis, characterization and the formation mechanism of magnesium- and strontium-substituted hydroxyapatite [J]. J. Mater. Chem., 2015, 3B: 3738
|
132 |
Geng Z, Cui Z D, Li Z Y, et al. Strontium incorporation to optimize the antibacterial and biological characteristics of silver-substituted hydroxyapatite coating [J]. Mater. Sci. Eng., 2016, C58: 467
|
133 |
Wu S L, Liu X M, Yeung K W K, et al. Biomimetic porous scaffolds for bone tissue engineering [J]. Mater. Sci. Eng., 2014, R80: 1
|
134 |
Niinomi M. Mechanical properties of biomedical titanium alloys [J]. Mater. Sci. Eng., 1998, A243: 231
|
135 |
Li Q, Niinomi M, Nakai M, et al. Improvements in the superelasticity and change in deformation mode of β-type TiNb24Zr2 alloys caused by aging treatments [J]. Metall. Mater. Trans., 2011, 42A: 2843
|
136 |
Deng S H, Yang X J, Zhu S L, et al. Biomedical properties of porous NiTi shape memory alloy and its prospect in medical application [J]. Heat Treat. Met., 2003, 28(12): 12
|
136 |
邓松华, 杨贤金, 朱胜利 等. 多孔NiTi形状记忆合金的生物医学特性及其医用前景 [J]. 金属热处理, 2003, 28(12): 12
|
137 |
Hu F, Zhu S L, Yang X J. Progress in research on normal sintering of porous TiNi alloys [J]. Heat Treat. Met., 2002, 27(7): 6
|
137 |
胡飞, 朱胜利, 杨贤金. 用粉末冶金法制备医用多孔TiNi合金的研究 [J]. 金属热处理, 2002, 27(7): 6
|
138 |
Liu S M, Yang X J, Cui Z D, et al. Effect of voltage on properties of the ceramic coatings prepared by micro-arc oxidation on titanium [J]. Mater. Rep., 2011, 25(16): 8
|
138 |
刘世敏, 杨贤金, 崔振铎 等. 电压对钛表面微弧氧化陶瓷层特性的影响 [J]. 材料导报, 2011, 25(16): 8
|
139 |
Zhu S L, Yang X J, Hu F, et al. Pore features of porous TiNi alloy sintered in argon atmosphere [J]. Trans. Met. Heat Treat., 2003, 24(4): 51
|
139 |
朱胜利, 杨贤金, 胡飞 等. 氩气保护烧结多孔TiNi合金孔隙特征的研究 [J]. 金属热处理学报, 2003, 24(4): 51
|
140 |
Chen M F, Yang X J, He F, et al. Effect of NaOH concentration on formation of bone-like apatite layer on NiTi shape memory alloy [J]. Acta Metall. Sin., 2003, 39: 859
|
140 |
陈民芳, 杨贤金, 何菲 等. NaOH浓度对NiTi形状记忆合金表面类骨磷灰石形成的影响 [J]. 金属学报, 2003, 39: 859
|
141 |
Hu R X, Yang X J, Chen M F, et al. Optimization of bioactive layer processing using chemical method on the surface of NiTi SMA [J]. Heat Treat. Met., 2003, 28(10): 42
|
141 |
胡荣香, 杨贤金, 陈民芳 等. NiTi形状记忆合金表面化学法制备生物活性层工艺的优化 [J]. 金属热处理, 2003, 28(10): 42
|
142 |
Li Y X, Cui Z D, Yang X J, et al. Corrosion behavior of porous Ti-24Nb-4Zr alloy in different simulated body fluids [J]. Adv. Mater. Res., 2012, 399-401: 1577
|
143 |
Liang C Y, Wang H S, Yang J J, et al. Femtosecond laser-induced micropattern and Ca/P deposition on Ti implant surface and its acceleration on early osseointegration [J]. ACS Appl. Mater. Interfaces, 2013, 5: 8179
doi: 10.1021/am402290e
|
144 |
Lai M, Gao Y, Yuan B, et al. Effect of pore structure regulation on the properties of porous TiNbZr shape memory alloys for biomedical application [J]. J. Mater. Eng. Perform., 2015, 24: 136
doi: 10.1007/s11665-014-1299-7
|
145 |
Kuczyńska-Zemła D, Kijeńska-Gawrońska E, Pisarek M, et al. Effect of laser functionalization of titanium on bioactivity and biological response [J]. Appl. Surf. Sci., 2020, 525: 146492
|
146 |
Harrysson O L A, Cansizoglu O, Marcellin-Little D J, et al. Direct metal fabrication of titanium implants with tailored materials and mechanical properties using electron beam melting technology [J]. Mater. Sci. Eng., 2008, C28: 366
|
147 |
Zhang J H, Sun Y Y, Guo A L, et al. Research progress of 3D printing magnesium-based biomaterials for bone defect repair [J]. Chin. J. Bone Joint Surg., 2021, 14: 826
|
147 |
张剑华, 孙元艺, 郭阿龙 等. 3D打印含镁生物医用材料用于骨缺损修复研究进展 [J]. 中华骨与关节外科杂志, 2021, 14: 826
|
148 |
Kiani F, Wen C E, Li Y C. Prospects and strategies for magnesium alloys as biodegradable implants from crystalline to bulk metallic glasses and composites—A review [J]. Acta Biomater., 2020, 103: 1
doi: 10.1016/j.actbio.2019.12.023
|
149 |
Anvari-Yazdi A F, Tahermanesh K, Hadavi S M M, et al. Cytotoxicity assessment of adipose-derived mesenchymal stem cells on synthesized biodegradable Mg-Zn-Ca alloys [J]. Mater. Sci. Eng., 2016, C69: 584
|
150 |
Gu X N, Zheng Y F, Cheng Y, et al. In vitro corrosion and biocompatibility of binary magnesium alloys [J]. Biomaterials, 2009, 30: 484
doi: 10.1016/j.biomaterials.2008.10.021
pmid: 19000636
|
151 |
Li Y G, Jahr H, Zhou J, et al. Additively manufactured biodegradable porous metals [J]. Acta Biomater., 2020, 115: 29
doi: S1742-7061(20)30478-5
pmid: 32853809
|
152 |
Gu X N, Li N, Zhou W R, et al. Corrosion resistance and surface biocompatibility of a microarc oxidation coating on a Mg-Ca alloy [J]. Acta Biomater., 2011, 7: 1880
doi: 10.1016/j.actbio.2010.11.034
pmid: 21145440
|
153 |
Yazdimamaghani M, Razavi M, Vashaee D, et al. Development and degradation behavior of magnesium scaffolds coated with polycaprolactone for bone tissue engineering [J]. Mater. Lett., 2014, 132: 106
doi: 10.1016/j.matlet.2014.06.036
|
154 |
Lai Y X, Li Y, Cao H J, et al. Osteogenic magnesium incorporated into PLGA/TCP porous scaffold by 3D printing for repairing challenging bone defect [J]. Biomaterials, 2019, 197: 207
doi: S0142-9612(19)30019-5
pmid: 30660996
|
155 |
Wang J L, Wu Y H, Li H F, et al. Magnesium alloy based interference screw developed for ACL reconstruction attenuates peri-tunnel bone loss in rabbits [J]. Biomaterials, 2018, 157: 86
doi: S0142-9612(17)30793-7
pmid: 29248806
|
156 |
Zheng Y F, Xia D D, Shen Y N, et al. Additively manufactured biodegrabable metal implants [J]. Acta Metall. Sin., 2021, 57: 1499
doi: 10.11900/0412.1961.2021.00294
|
156 |
郑玉峰, 夏丹丹, 谌雨农 等. 增材制造可降解金属医用植入物 [J]. 金属学报, 2021, 57: 1499
doi: 10.11900/0412.1961.2021.00294
|
157 |
Li Y, Jahr H, Pavanram P, et al. Additively manufactured functionally graded biodegradable porous iron [J]. Acta Biomater., 2019, 96: 646
doi: S1742-7061(19)30493-3
pmid: 31302295
|
158 |
Nie Y, Chen G, Peng H B, et al. In vitro and 48 weeks in vivo performances of 3D printed porous Fe-30Mn biodegradable scaffolds [J]. Acta Biomater., 2021, 121: 724
doi: 10.1016/j.actbio.2020.12.028
|
159 |
Liu Y, Zheng Y F, Chen X H, et al. Fundamental theory of biodegradable metals—Definition, criteria, and design [J]. Adv. Funct. Mater., 2019, 29: 1805402
|
160 |
Li Y, Pavanram P, Zhou J, et al. Additively manufactured biodegradable porous zinc [J]. Acta Biomater., 2020, 101: 609
doi: S1742-7061(19)30713-5
pmid: 31672587
|
161 |
Moon S K, Kim C K, Joo U H, et al. Biological evaluation of micro-nanoporous layer on Ti-Ag alloy for dental implant [J]. Int. J. Mater. Res., 2012, 103: 749
doi: 10.3139/146.110676
|
162 |
Xiong Y Z, Wang W, Gao R N, et al. Fatigue behavior and osseointegration of porous Ti-6Al-4V scaffolds with dense core for dental application [J]. Mater. Des., 2020, 195: 108994
|
163 |
Chahine G, Koike M, Okabe T, et al. The design and production of Ti-6Al-4V ELI customized dental implants [J]. JOM, 2008, 60(11): 50
|
164 |
He F, Zhang X, Peng W, et al. Research progress on porous tantalum coating in dental implants [J]. J. Dalian Med. Univ., 2019, 41: 458
|
164 |
何帆, 张新, 彭巍 等. 多孔钽涂层在牙种植体中的应用及研究进展 [J]. 大连医科大学学报, 2019, 41: 458
|
165 |
Balla V K, Bodhak S, Bose S, et al. Porous tantalum structures for bone implants: Fabrication, mechanical and in vitro biological properties [J]. Acta Biomater., 2010, 6: 3349
doi: 10.1016/j.actbio.2010.01.046
pmid: 20132912
|
166 |
Wang Q, Zhang H, Li Q J, et al. Biocompatibility and osteogenic properties of porous tantalum [J]. Exp. Ther. Med., 2015, 9: 780
pmid: 25667628
|
167 |
Lee J W, Wen H B, Gubbi P, et al. New bone formation and trabecular bone microarchitecture of highly porous tantalum compared to titanium implant threads: A pilot canine study [J]. Clin. Oral Implants Res., 2018, 29: 164
|
168 |
Wu L J, Dong Y W, Yao L T, et al. Nanoporous tantalum coated zirconia implant improves osseointegration [J]. Ceram. Int., 2020, 46: 17437
doi: 10.1016/j.ceramint.2020.04.038
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|