Please wait a minute...
金属学报  2021, Vol. 57 Issue (6): 703-716    DOI: 10.11900/0412.1961.2020.00254
  研究论文 本期目录 | 过刊浏览 |
RAP法制备AlSi7Mg合金半固态坯料研究
姜巨福1(), 张逸浩1, 刘英泽1, 王迎2, 肖冠菲1, 张颖1
1.哈尔滨工业大学 材料科学与工程学院 哈尔滨 150001
2.哈尔滨工业大学 机电工程学院 哈尔滨 150001
Research on AlSi7Mg Alloy Semi-Solid Billet Fabricated by RAP
JIANG Jufu1(), ZHANG Yihao1, LIU Yingze1, WANG Ying2, XIAO Guanfei1, ZHANG Ying1
1.School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
2.School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001, China
引用本文:

姜巨福, 张逸浩, 刘英泽, 王迎, 肖冠菲, 张颖. RAP法制备AlSi7Mg合金半固态坯料研究[J]. 金属学报, 2021, 57(6): 703-716.
Jufu JIANG, Yihao ZHANG, Yingze LIU, Ying WANG, Guanfei XIAO, Ying ZHANG. Research on AlSi7Mg Alloy Semi-Solid Billet Fabricated by RAP[J]. Acta Metall Sin, 2021, 57(6): 703-716.

全文: PDF(46624 KB)   HTML
摘要: 

采用DSC测试、热镦粗实验、半固态等温处理实验、金相显微镜观察以及Image Pro Plus图像处理软件,研究了等温压缩温度、压缩量和半固态等温处理的温度、保温时间对再结晶重熔(RAP)法制备AlSi7Mg铝合金半固态坯料微观组织的影响。结果表明:等温压缩过程中温度对半固态坯料微观组织的影响不明显,而等温压缩变形量的增大有利于细化半固态坯料微观组织,最优热镦粗参数为温度240℃,变形量40%;半固态等温处理过程中,随保温温度升高,微观组织固相晶粒的尺寸逐渐增大,而随着保温时间延长,半固态组织中固相颗粒的尺寸先缓慢长大再迅速长大然后趋于不变,固相颗粒的圆整度变化较为复杂。通过RAP法制备的AlSi7Mg铝合金半固态坯料平均晶粒尺寸为64~117 μm,形状因子为0.76~0.89。低于599℃时,半固态的平均晶粒尺寸的立方粗化线性关系不明显,影响晶粒粗化的机制主要有Ostwald熟化、合并长大、再结晶和熔化;在599℃时,晶粒尺寸的立方粗化线性关系较为明显,此时Ostwald熟化为晶粒粗化的主导机制。

关键词 材料合成与加工工艺半固态坯料再结晶重熔微观组织AlSi7Mg    
Abstract

Semi-solid metal processing is a metal-forming technology that combines the advantages of casting and forging, realizing near-net forming high-performance parts with complex structures. Research on semi-solid processing of AlSi7Mg alloys mainly focuses on rheology, and the preparation of high solid fraction AlSi7Mg semi-solid billets by the solid phase method has been largely neglected. In fact, semi-solid technology is more significant than casting at higher solid fractions. The present study investigates semi-solid billets of AlSi7Mg aluminum alloy with a high solid fraction, prepared by the recrystallization and partial re-melting (RAP) method. The effects of upsetting temperature, compression ratio, semi-solid isothermal treatment temperature, and holding time on the billet microstructure were investigated by DSC test, upsetting experiment, semi-solid isothermal treatment experiment, OM observations, and Image Pro Plus image processing software. The microstructure of the semi-solid billet during isothermal compression was slightly affected by temperature but was beneficially refined by increasing the compression ratio. The optimal hot upsetting parameters were 240oC and 40% deformation. During the semi-solid isothermal treatment, increasing the holding temperature gradually increased the size of the solid phase grains in the microstructure. As the holding time increased, the solid phase particles in the semi-solid structure initially grew slowly, and thereafter rapidly grew to a stable size. The changes in roundness of the solid particles were more complicated. The average grain size of the billet prepared by the RAP method was 64~117 μm, and the shape factor was 0.76~0.89. The linear relationship between cubic coarsening of the average semi-solid grain size and isothermal time was nonobvious at isothermal temperatures below 599oC but was evident at temperatures of 599oC. Below 599oC, the grain coarsening is affected by Ostwald ripening, coalescence, recrystallization, and melting; while at 599oC, the grain coarsening was dominated by Ostwald ripening.

Key wordssynthesizing and processing technics for material    semi-solid billet    recrystallization and remelting    microstructure    AlSi7Mg
收稿日期: 2020-07-13     
ZTFLH:  TG249.9  
基金资助:国家重点研发计划项目(2019YFB2006500);国家自然科学基金项目(51875124)
作者简介: 姜巨福,男,1976年生,教授,博士
ElementSiMgTiFeMnCuZnAl
Standard6.5-7.50.25-0.45≤ 0.2≤ 0.12≤ 0.05≤ 0.2≤ 0.3Bal.
Sample6.9300.4900.0540.0200.0330.0110.043Bal.
表1  AlSi7Mg铝合金成分 (mass fraction / %)
图1  AlSi7Mg铝合金DSC曲线及其液相率-温度曲线
图2  不同变形量下AlSi7Mg铝合金的镦粗试样
图3  不同变形温度和变形量对AlSi7Mg铝合金半固态坯料的影响(a) average grain size (D)(b) shape factor (f)
图4  变形量为40%时不同变形温度下AlSi7Mg铝合金半固态坯料微观组织的OM像(a) 200oC (b) 220oC (c) 240oC (d) 260oC
图5  变形量为30%不同变形温度下AlSi7Mg铝合金半固态坯料微观组织的OM像(a) 200oC (b) 220oC (c) 240oC (d) 260oC
图6  变形量为20%不同变形温度下AlSi7Mg铝合金半固态坯料微观组织的OM像(a) 200oC (b) 220oC (c) 240oC (d) 260oC
图7  不同等温时间下AlSi7Mg铝合金半固态坯料微观组织的OM像(T = 581℃)(a) 2 min (b) 6 min (c) 11 min (d) 16 min (e) 21 min (f) 26 min
图8  不同等温时间下AlSi7Mg铝合金半固态坯料微观组织的OM像(T = 584℃)(a) 2 min (b) 6 min (c) 11 min (d) 16 min (e) 21 min (f) 26 min
图9  不同等温时间下AlSi7Mg铝合金微观组织的OM像(T = 588℃)(a) 2 min (b) 6 min (c) 11 min (d) 16 min (e) 21 min (f) 26 min
图10  不同等温时间下AlSi7Mg铝合金微观组织的OM像(T = 593℃)(a) 2 min (b) 6 min (c) 11 min (d) 16 min (e) 21 min (f) 26 min
图11  不同等温时间下AlSi7Mg铝合金微观组织的OM像(T = 599℃)(a) 2 min (b) 6 min (c) 11 min (d) 16 min (e) 21 min (f) 26 min
图12  平均晶粒尺寸D3随等温时间变化的散点图及线性拟合图
图13  不同等温时间组的平均晶粒尺寸及形状因子随等温温度变化图
图14  等温时间为11 min时平均晶粒尺寸及形状因子随等温温度变化图
图15  不同方法制备的AlSi7Mg铝合金半固态坯料微观组织对比
1 Bai J Y. Application of aluminum alloy material and its forming technology [J]. World Nonferrous Met., 2017, (14): 272
1 白嘉远. 铝合金材料的应用及其加工成形技术 [J]. 世界有色金属, 2017, (14): 272
2 Pan F S, Zhang D F, et al. Aluminum Alloy and Application [M]. Beijing: Chemical Industry Press, 2006: 341
2 潘复生, 张丁非等. 铝合金及应用 [M]. 北京: 化学工业出版社, 2006: 341
3 Li J. Lightweight commercial vehicle and application of aluminum alloy in modern automobile production [J]. Autom. Appl. Technol., 2020, (1): 178
3 李 剑. 商用汽车轻量化及铝合金在现代汽车生产中的应用 [J]. 汽车实用技术, 2020, (1): 178
4 Xie G N. Effective application of aluminum alloy in marine and marine engineering [J]. Mar. Equip./Mater. Mark., 2019, (1): 49
4 谢光能. 铝合金在船舶和海洋工程中的有效应用 [J]. 船舶物资与市场, 2019, (1): 49
5 Zhang Y. Application of aluminum alloy to aerospace industry [J]. Alum. Fabr., 2009, (3): 50
5 张 钰. 铝合金在航天航空中的应用 [J]. 铝加工, 2009, (3): 50
6 Zhu L. Preparation and thixoforming of A356 alloy semi-solid billet [D]. Harbin: Harbin Institute of Technology, 2019
6 朱 亮. A356铝合金半固态坯制备及触变成形工艺研究 [D]. 哈尔滨: 哈尔滨工业大学, 2019
7 Zeng L. Research on fabricating and thixoforming of semisolid billet via semisolid isothermal treatment of hot rolled 2A12 aluminum alloy [D]. Harbin: Harbin Institute of Technology, 2018
7 曾 力. 热轧态2A12铝合金半固态等温处理制坯及触变成形研究 [D]. 哈尔滨: 哈尔滨工业大学, 2018
8 Chen G. Research on thixoforming and defect controlling of high performance wrought aluminum alloys [D]. Harbin: Harbin Institute of Technology, 2013
8 陈 刚. 高强变形铝合金触变成形及缺陷控制研究 [D]. 哈尔滨: 哈尔滨工业大学, 2013
9 Koç M, Vazquez V, Witulski T, et al. Application of the finite element method to predict material flow and defects in the semi-solid forging of A356 aluminum alloys [J]. J. Mater. Process. Technol., 1996, 59: 106
10 Spencer D B. Rheology of liquid-solid mixtures of lead-tin [D]. Cambridge, MA, USA: Massachusetts Institute of Technology, 1971
11 Spencer D B, Mehrabian R, Flemings M C. Rheological behavior of Sn-15 pct Pb in the crystallization range [J]. Met. Mater. Trans., 1972, 3B: 1925
12 Luo S J, Jiang J F, Du Z M. New research development, industrial application and some thinking of semi-solid metal forming [J]. Chin. J. Mech. Eng., 2003, 39(11): 52
12 罗守靖, 姜巨福, 杜之明. 半固态金属成形研究的新进展、工业应用及其思考 [J]. 机械工程学报, 2003, 39(11): 52
13 Chen G. Research on inhomogeneity of microstructure and mechanical properties for 2A50 aluminum alloy prepared by thixoforging [D]. Harbin: Harbin Institute of Technology, 2009
13 陈 刚. 2A50铝合金半固态模锻成形的组织性能不均匀性研究 [D]. 哈尔滨: 哈尔滨工业大学, 2009
14 Gao J Z. Microstructure and properties of A201 aluminum alloy with high solid faction semisolid die-casting process [D]. Beijing: University of Science and Technology Beijing, 2019
14 郜俊震. A201铝合金高固相分数半固态压铸行为与组织性能研究 [D]. 北京: 北京科技大学, 2019
15 Pan S, Li Q, Yu B Y, et al. Research progress of Mg alloy semisolid forming [J]. Rare Met. Mater. Eng., 2019, 48: 2379
15 潘 帅, 李 强, 于宝义等. 镁合金半固态研究进展 [J]. 稀有金属材料与工程, 2019, 48: 2379
16 Luo X Q, Li Z Y, Yan Q Z. The research progress of semi-solid metal forming technology [J]. New Technol. New Process, 2015, (6): 135
16 罗晓强, 李正阳, 燕青芝. 半固态金属成形技术的研究进展 [J]. 新技术新工艺, 2015, (6): 135
17 Zhang S G. Study on technology of the rheo-squeeze casting process for aluminum alloys [D]. Nanchang: Nanchang University, 2018
17 张树国. 铝合金流变挤压铸造成形技术基础研究 [D]. 南昌: 南昌大学, 2018
18 Yu Z T, Zhang H H, Shao G J, et al. Study of solid content in aluminum alloys reheated to semisolid state by DSC [J]. Phys. Exam. Test., 2002, (1): 22
18 余忠土, 张恒华, 邵光杰等. 半固态铝合金中固相分数差热扫描法的研究 [J]. 物理测试, 2002, (1): 22
19 Cheng S J. Study on semi-solid ZL101 aluminum alloy preparation and squeeze casting process [D]. Taiyuan: North University of China, 2016
19 程书建. 半固态ZL101铝合金制备及挤压铸造工艺研究 [D]. 太原: 中北大学, 2016
20 Jiang J F, Liu Y Z, Xiao G F, et al. Effects of plastic deformation of solid phase on mechanical properties and microstructure of wrought 5A06 aluminum alloy in directly semisolid thixoforging [J]. J. Alloys Compd., 2020, 831: 154748
21 Liu Z, Chen Z P, Chen T. Effects of crucible size and electromagnetic frequency on flow during fabrication of semisolid A356 Al alloy slurry [J]. Acta Metall. Sin., 2018, 54: 435
21 刘 政, 陈志平, 陈 涛. 坩埚尺寸和电磁频率对半固态A356铝合金浆料流动的影响 [J]. 金属学报, 2018, 54: 435
22 Liu Z, Mao W M, Zhao Z D. Semi-solid A356 alloy slurry prepared by a new process [J]. Acta Metall. Sin., 2009, 45: 507
22 刘 政, 毛卫民, 赵振铎. 新工艺制备半固态A356铝合金浆料 [J]. 金属学报, 2009, 45: 507
23 Mao W M, Zhao A M, Cui C L, et al. Research on the continuous cast billets of semi-solid AlSi7Mg alloy and their microstructure formation [J]. Acta Metall. Sin., 2000, 36: 539
23 毛卫民, 赵爱民, 崔成林等. AlSi7Mg合金半固态连铸坯料和组织形成研究 [J]. 金属学报, 2000, 36: 539
24 Liu G J, Zhang K, Zhang Y Z, et al. Continuous production and research of semisolid AlSi7Mg alloy [J]. Acta Metall. Sin., 1999, 35: 141
24 刘国钧, 张 奎, 张永忠等. 半固态AlSi7Mg铝合金的连续制备实验与研究 [J]. 金属学报, 1999, 35: 141
25 Tian Z F, Zhang Z F, Xu J, et al. Effect of electromagnetic stirring on microstructures of AlSi7Mg alloys [J]. Hot Work. Technol., 2006, 35(9): 46
25 田战峰, 张志峰, 徐 骏等. 电磁搅拌对AlSi7Mg合金显微组织的影响 [J]. 热加工工艺, 2006, 35(9): 46
26 Dai G X. Study on preparation of AlSi7Mg alloy semi-solid billets by melt isothermal treatment process [D]. Hefei: Hefei University of Technology, 2006
26 戴光星. 熔体等温处理法制备AlSi7Mg合金半固态坯料的研究 [D]. 合肥: 合肥工业大学, 2006
27 Chen C P, Tsao C Y A. Semi-solid deformation of non-dendritic structures—I. Phenomenological behavior [J]. Acta Mater., 1997, 45: 1955
28 Tzimas E, Zavaliangos A. Mechanical behavior of alloys with equiaxed microstructure in the semisolid state at high solid content [J]. Acta Mater., 1999, 47: 517
29 Chen Q, Chen G, Ji X H, et al. Compound forming of 7075 aluminum alloy based on functional integration of plastic deformation and thixoformation [J]. J. Mater. Process. Technol., 2017, 246: 167
30 Kirkwood D H, Sellars C M, Eliasboyed L G. Thixotropic materials [P]. US Pat, 5037489, 1991
31 Kiuchi M, Kopp R. Mushy/semi-solid metal forming technology—Present and future [J]. CIRP Ann., 2002, 51: 653
32 Atkinson H V, Liu D. Coarsening rate of microstructure in semi-solid aluminium alloys [J]. Trans. Nonferrous Met. Soc. China, 2010, 20: 1672
33 Fu J L, Wang S X, Wang K K. Influencing factors of the coarsening behaviors for 7075 aluminum alloy in the semi-solid state [J]. J. Mater. Sci., 2018, 53: 9790
34 Jiang J F, Wang Y, Xiao G F, et al. Comparison of microstructural evolution of 7075 aluminum alloy fabricated by SIMA and RAP [J]. J. Mater. Process. Technol., 2016, 238: 361
35 Zhang D Y, Dong H B, Atkinson H. What is the process window for semi-solid processing? [J]. Metall. Mater. Trans., 2016, 47A: 1
36 Wei B. Research no microstructure evolution and deformation behavior of 7075 aluminum alloy in high temperature solid and semi-solid state [D]. Harbin: Harbin Institute of Technology, 2015
36 魏 斌. 7075铝合金高温固态-半固态组织演变及变形行为研究 [D]. 哈尔滨: 哈尔滨工业大学, 2015
37 Xiao X Q. Research on preparation and thixoforming of semi-solid billet of 5A06 wrought aluminum alloy [D]. Harbin: Harbin Institute of Technology, 2018
37 肖信权. 5A06变形铝合金半固态坯料制备及其触变成形研究 [D]. 哈尔滨: 哈尔滨工业大学, 2018
38 Xia D. Microstructure evolution and formation mechanism of semi-solid 7075 aluminum alloys fabricated by plastic predeformation [D]. Chongqing: Chongqing University, 2015
38 夏 丹. 预变形法制备7075铝合金坯料的半固态微观组织演变规律及形成机制 [D]. 重庆: 重庆大学, 2015
39 Jiang J F, Wang Y, Atkinson H V. Microstructural coarsening of 7005 aluminum alloy semisolid billets with high solid fraction [J]. Mater. Charact., 2014, 90: 52
40 Tzimas E, Zavaliangos A. Evolution of near-equiaxed microstructure in the semisolid state [J]. Mater. Sci. Eng., 2000, A289: 228
41 Ma M Z. Research on microstructure evolution and mechanical behavior of 7075 aluminum alloy thixoforming at high solid fraction [D]. Ji'nan: Shandong University, 2018
41 马民壮. 7075铝合金高固相率触变成形的微观组织演变和力学行为研究 [D]. 济南: 山东大学, 2018
42 Jiang J F, Peng Q C, Shan W W, et al. Preparation of semi-solid AZ91D billets by new SIMA method [J]. Spec. Cast. Nonferrous Alloys, 2005, 25: 740
42 姜巨福, 彭秋才, 单巍巍等. 新SIMA法制备AZ91D半固态坯 [J]. 特种铸造及有色合金, 2005, 25: 740
43 Lifshitz I M, Slyozov V V. The kinetics of precipitation from supersaturated solid solutions [J]. J. Phys. Chem. Solids, 1961, 19: 35
44 Wagner C. Theory of the ageing of precipitates by redissolution (Ostwald maturing) [J]. Z. Elektrochem., 1961, 65: 581
45 Bolouri A, Shahmiri M, Kang C G. Coarsening of equiaxed microstructure in the semisolid state of aluminum 7075 alloy through SIMA processing [J]. J. Mater. Sci., 2012, 47: 3544
46 Wang Y F, Zhao S D, Zhao X Z, et al. Microstructural coarsening of 6061 aluminum alloy semi-solid billets prepared via recrystallization and partial melting [J]. J. Mech. Sci. Technol., 2017, 31: 3917
47 Chen Q, Luo S J, Zhao Z D. Microstructural evolution of previously deformed AZ91D magnesium alloy during partial remelting [J]. J. Alloys Compd., 2009, 477: 726
48 Chen T J, Hao Y, Sun J. Microstructural evolution of previously deformed ZA27 alloy during partial remelting [J]. Mater. Sci. Eng., 2002, A337: 73
49 Jiang J F, Xiao G F, Wang Y, et al. Microstructure evolution of wrought nickel based superalloy GH4037 in the semi-solid state [J]. Mater. Charact., 2018, 141: 229
50 Bolouri A, Shahmiri M, Kang C G. Study on the effects of the compression ratio and mushy zone heating on the thixotropic microstructure of AA 7075 aluminum alloy via SIMA process [J]. J. Alloys Compd., 2011, 509: 402
51 Wang S C, Li Y Y, Chen W P, et al. Novel partial remelting process and microstructure evolution of semi-solid 2024 alloy [J]. Rare Met. Mater. Eng., 2009, 38(suppl.): 192
51 王顺成, 李元元, 陈维平等. 半固态2024合金部分重熔新工艺与组织演变 [J]. 稀有金属材料与工程, 2009, 38(): 192
52 Hu H Q. Metal Solidification Principle [M]. 2nd Ed., Beijing: China Machine Press, 2012: 46
52 胡汉起. 金属凝固原理 [M]. 第2版. 北京: 机械工业出版社, 2012: 46
53 Sistaninia M, Phillion A B, Drezet J M, et al. Three-dimensional granular model of semi-solid metallic alloys undergoing solidification: Fluid flow and localization of feeding [J]. Acta Mater., 2012, 60: 3902
54 Wang Y, Liu G, Fan Z. Microstructural evolution of rheo-diecast AZ91D magnesium alloy during heat treatment [J]. Acta Mater., 2006, 54: 689
[1] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[2] 刘兴军, 魏振帮, 卢勇, 韩佳甲, 施荣沛, 王翠萍. 新型钴基与Nb-Si基高温合金扩散动力学研究进展[J]. 金属学报, 2023, 59(8): 969-985.
[3] 冯艾寒, 陈强, 王剑, 王皞, 曲寿江, 陈道伦. 低密度Ti2AlNb基合金热轧板微观组织的热稳定性[J]. 金属学报, 2023, 59(6): 777-786.
[4] 王长胜, 付华栋, 张洪涛, 谢建新. 冷轧变形对高性能Cu-Ni-Si合金组织性能与析出行为的影响[J]. 金属学报, 2023, 59(5): 585-598.
[5] 李民, 王继杰, 李昊泽, 邢炜伟, 刘德壮, 李奥迪, 马颖澈. Y对无取向6.5%Si钢凝固组织、中温压缩变形和软化机制的影响[J]. 金属学报, 2023, 59(3): 399-412.
[6] 王虎, 赵琳, 彭云, 蔡啸涛, 田志凌. 激光熔化沉积TiB2 增强TiAl基合金涂层的组织及力学性能[J]. 金属学报, 2023, 59(2): 226-236.
[7] 唐伟能, 莫宁, 侯娟. 增材制造镁合金技术现状与研究进展[J]. 金属学报, 2023, 59(2): 205-225.
[8] 卢海飞, 吕继铭, 罗开玉, 鲁金忠. 激光热力交互增材制造Ti6Al4V合金的组织及力学性能[J]. 金属学报, 2023, 59(1): 125-135.
[9] 李会朝, 王彩妹, 张华, 张建军, 何鹏, 邵明皓, 朱晓腾, 傅一钦. 搅拌摩擦增材制造技术研究进展[J]. 金属学报, 2023, 59(1): 106-124.
[10] 马志民, 邓运来, 刘佳, 刘胜胆, 刘洪雷. 淬火速率对7136铝合金应力腐蚀开裂敏感性的影响[J]. 金属学报, 2022, 58(9): 1118-1128.
[11] 高栋, 周宇, 于泽, 桑宝光. 液氮温度下纯Ti动态塑性变形中的孪晶变体选择[J]. 金属学报, 2022, 58(9): 1141-1149.
[12] 沈岗, 张文泰, 周超, 纪焕中, 罗恩, 张海军, 万国江. 热挤压Zn-2Cu-0.5Zr合金的力学性能与降解行为[J]. 金属学报, 2022, 58(6): 781-791.
[13] 余春, 徐济进, 魏啸, 陆皓. 核级镍基合金焊接材料失塑裂纹研究现状[J]. 金属学报, 2022, 58(4): 529-540.
[14] 徐流杰, 宗乐, 罗春阳, 焦照临, 魏世忠. 难熔高熵合金的强韧化途径与调控机理[J]. 金属学报, 2022, 58(3): 257-271.
[15] 何焕生, 余黎明, 刘晨曦, 李会军, 高秋志, 刘永长. 新一代马氏体耐热钢G115的研究进展[J]. 金属学报, 2022, 58(3): 311-323.