Please wait a minute...
金属学报  2021, Vol. 57 Issue (11): 1499-1520    DOI: 10.11900/0412.1961.2021.00294
  综述 本期目录 | 过刊浏览 |
增材制造可降解金属医用植入物
郑玉峰1(), 夏丹丹2, 谌雨农1, 刘云松2, 徐钰倩2, 温鹏3, 田耘4, 赖毓霄5
1.北京大学 材料科学与工程学院 北京 100871
2.北京大学口腔医(学)院修复科 国家口腔疾病临床医学研究中心;口腔数字化医疗技术和材料国家工程实验室 口腔数字医学北京市重点实验室;口腔材料国家药监局重点实验室 卫生部口腔医学计算机应用工程技术研究中心 北京 100081
3.清华大学 机械工程系 摩擦学国家重点实验室 北京 100084
4.北京大学第三医院骨科 北京 100191
5.中国科学院深圳先进技术研究院 生物医学与健康工程研究所 深圳 518055
Additively Manufactured Biodegrabable Metal Implants
ZHENG Yufeng1(), XIA Dandan2, SHEN Yunong1, LIU Yunsong2, XU Yuqian2, WEN Peng3, TIAN Yun4, LAI Yuxiao5
1.School of Materials Science and Engineering, Peking University, Beijing 100871, China
2.Department of Prosthodontics, Peking University School and Hospital of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, National Medical products Administration Key Laboratory for Dental Materials, Research Center of Engineering and Technology for Digital Dentistry, Ministry of Health, Beijing 100081, China
3.State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
4.Department of Orthopedics, Peking University Third Hospital, Beijing 100191, China
5.Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
引用本文:

郑玉峰, 夏丹丹, 谌雨农, 刘云松, 徐钰倩, 温鹏, 田耘, 赖毓霄. 增材制造可降解金属医用植入物[J]. 金属学报, 2021, 57(11): 1499-1520.
Yufeng ZHENG, Dandan XIA, Yunong SHEN, Yunsong LIU, Yuqian XU, Peng WEN, Yun TIAN, Yuxiao LAI. Additively Manufactured Biodegrabable Metal Implants[J]. Acta Metall Sin, 2021, 57(11): 1499-1520.

全文: PDF(3203 KB)   HTML
摘要: 

增材制造技术由于其高精度、高自由度等特点,可赋予医用金属植入物定制化的宏观与微观结构,使植入物与患者待修复缺损部位实现更好的生物力学适配,满足临床治疗个性化方案的需求,并为医用金属植入物的制造提供新途径。可降解金属目前是医用金属的研究热点,增材制造可降解金属医用植入物是个新方向,本文重点对增材制造镁基、锌基、铁基可降解金属的工艺流程及影响因素、力学性能、降解行为、生物相容性相关结果进行分析与总结,并展望了增材制造技术在医用可降解金属植入物领域的未来发展方向。

关键词 增材制造可降解金属力学性能降解行为生物相容性    
Abstract

Additive manufacturing (AM) can produce complicated structures accurately and freely, giving the implant a macro and micro geometry, which makes the implant match the patient's defect site and realize the needs for personalized clinical treatment. Thus, AM provides a new manufacturing method for biodegradable metals. Presently, biodegradable metals are the hotspot issues of metallic biomaterials research. Additively-manufactured biodegradable metals are new research field. In this paper, a comprehensive review on the AM of Mg-, Zn-, and Fe-based biodegradable metals, which focuses on their processes and influencing factors, mechanical properties, biodegradation behavior, and biocompatibility, is given. Finally, the future development trend of the AM biomedical metallic materials is explored.

Key wordsadditive manufacturing    biodegradable metal    mechanical property    biodegradation behavior    biocompatibility
收稿日期: 2021-07-19     
ZTFLH:  R318.08  
基金资助:国家重点研发计划项目(2018YFE0104200);国家自然科学基金项目(51931001);82170929,口腔材料国家药监局重点实验室开放课题项目(PKUSS20200401);中国科学院创新交叉团队项目(JCTD-2020-19)
PropertyPerformanceZinc and its alloysMagnesium andIron and its alloys
its alloys
MechanicalYield strength (YS) / MPa126-389149-293106-950
propertyUltimate tensile strength / MPa167-647199-350169-1550
Ultimate compressive strength / MPa99-45790-258312-696
Elongation / %6-848-281.3-94
Hardness44-217 HV35-90 HB175-428 HV
Elastic modulus / GPa94-11041-4577-211
CorrosionIn vitro corrosion rate (SBF,0.16-1.660.45-12.560.17-1.30
behaviorelectrochemical test) / (mm·a-1)
In vitro corrosion rate (SBF, static0.014-0.030.07-1.880.028-0.250
immersion test, 30-60 d) / (mm·a-1)
In vivo corrosion rate (rats femur0.13-0.260.36-1.58No significant
model, volume loss, 8-12 weeks)degradation
/ (mm·a-1)
TypeUniform corrosion/Localized corrosion/Uniform corrosion/
localized corrosion/pitting corrosionlocalized corrosion/
pitting corrosionpitting corrosion
Main cathodic reactionsRedox reactionHydrogenRedox reaction
evolution reaction
Gas in biodegradation productsNoneHydrogenNone
Soluble biodegradation productsZn2+, OH-Mg2+, OH-Fe2+, Fe3+, OH-
Insoluble biodegradation productsZn(OH)2/ZnOMg(OH)2/MgOFe(OH)3/Fe2O3/Fe3O4
BiocompatibilityEssential elements in boneYesYesNo
metabolism
Content in humans / g2254-5
Concentration in serum / (mmol·L-1)0.012-0.0170.73-1.060.009-0.029
Average daily intake in diet / mg8.63291.1
Recommended daily allowance / mg12-15280-3508-18[14]
IC50 osteoblasts / (mmol·L-1)0.09> 4.020.328-0.583

IC50 oascular endothelial cells /

(mmol·L-1)

0.1366.7
LD50 / (mmol·L-1)35050001300
表1  可降解金属性能总结[12~17]
ClassificationMaterialBenefitLimitationApplication
Bio-inert316L SSAcceptable biocompatibility, goodHigh elastic modulus, localized● Joint arthroplasty
metalscorrosion resistance and MRIcorrosion with pitting, crevices and● Bone defect repair
compatibility, low coststress corrosion cracking● Dental implant
Co-CrHigh mechanical strength,High elastic modulus, biological● Dental (orthodontic
alloysexcellent corrosion, fatigue andtoxicitywire)
wear resistance● Craniofacial
● Spinal
● Orthopedic
Ti alloysSuperior biocompatibility, goodPoor tribological characteristics,● Bone defect repair
corrosion resistance, mechanicalfatigue strength, expensive,● Bone scaffold
strength, light weightincompatibility between the● Spinal fusion
elastic modulus of bone and● Joint arthroplasty
the Ti implant material
BiodegradableMg-Good biocompatibility,Excessive degradation rate, high● Cardiovascular stents
basedbiodegradable in the physiologicalH2 gas evolution, unwanted pH● Orthopedic fixation
metals
alloysenvironment, ability to stimulateincrease in surrounding tissue,
bone formation and elastic moduluspremature loss of mechanical
close to natural bone, MRIintegrity before sufficient
compatibilitytissue healing
Zn-basedIntermediate corrosion rate (fasterAge hardening, excessive release● Cardiovascular stents
alloysthan Fe-based alloys, slower thanof Zn2+ during degradation results● Orthopedic fixation
Mg-based alloys), fairin cytotoxicity in vitro and delayed
compatibility, no gas evolutionosseointegration in vivo
Fe-basedHigh strength, high ductility, MRILow corrosion rate, high elastic● Cardiovascular stents
alloyscompatibility, fairmodulus
biocompatibility, gas evolution
表2  医用金属材料特点及其潜在应用[20,21]
AM methodologyCharacteristic
Vat polymerizationThe build platform is lowered into a vat of liquid photopolymer resin. A UV light cures the
resin in layers on top of the platform.
Alternative name: SLA—stereolithography apparatus, DLP—digital light processing
Resolution: 10 μm
Material jettingDroplets of material are deposited onto the surface using a thermal or piezoelectric method.
Each layer is cooled or cured by UV light.
Alternative name: inkjet printing, MJM—multi-jet modeling
Resolution: 25-100 μm
Material extrusionA material spool is fed and melted through a heated nozzle and deposited onto the surface,
layer by layer.
Alternative name: FDM—fused deposition modeling
Resolution: 50-200 μm
Powder bed fusionThe material in powder form is spread over the surface and fused to other layers using a laser
or electron beam.
Alternative name: SMS—selective metal sintering, SHS—selective heat sintering, DMLS—
direct metal laser sintering
Resolution: 80-250 μm
Binder jettingBuilding material in powder form is rolled/spread into a flat sheet. A liquid binding agent is
selectively applied between layers as an adhesive.
Alternative name: PB—powder bed printing
Resolution: 80-250 μm
Sheet laminationMaterial in sheet form is placed on a cutting bed and bonded over the surface using an
adhesive. Each layer is cut to shape by laser, knife, or drill after bonding.
Alternative name: UC—ultrasonic consolidation, LOM—laminated object manufacturing
Resolution: depends of thickness of laminates
Direct energy depositionMaterial, typically in the form of a powder or wire, is deposited onto the surface and melted
using a laser or electron beam upon deposition.
Alternative name: LMD—laser metal deposition, LENS—laser engineered net shaping
Resolution: 250 μm
表3  不同3D打印方法总结[22]
图1  为患者量身定制的AM植入物(用于重建切除的骨肿瘤)具体实例及X光照片:包括锁骨、肩胛骨、胫骨近端非骨水泥重建[33~35],3D打印下颌骨钛合金接骨板(术中及术后12个月)[3],及3D打印钛合金定制人工椎体移植手术(模型上演示手术过程,术后X射线演示如何将自稳定的人工椎体插入缺失处,术后即刻进行矢状面重建,及术后1年后随访影像学显示骨结合良好,植入物未移位或下沉,肿瘤无局部复发)[4](a-c) clavicle (a), scapula (b), and uncemented proximal tibial reconstruction (c), respectively [33-35](d) additively manufactured Ti alloy bone plate[3](A) reconstruction of unilateral mandible with AM Ti bone plate(B) 12 months postoperative radiologic examination(e) replacement using AM Ti alloy vertebral body[4](A) model(B) postoperative X-ray demonstrating how the self-stabilizing artificial vertebral body was inserted C2(C) sagittal reconstruction immediately postoperatively(D) at the 1-year follow-up showing evidence of implant osseointegration, no subsidence or displacement of the construct, and no local recurrence of the tumor
图2  气体雾化法制造的JDBM (Mg-Nd-Zn-Zr合金)粉末[58]和N2雾化法制造的纯Zn粉末[59]的SEM像
图3  L-PBF成形WE43的激光功率-扫描速率窗口图[66],及不同激光功率、扫描速率下,纯Zn密度与能量密度的关系[59]
图4  AM多孔生物材料单元体结构总结[28,71](a) beam-based designs[71](b) topological design based on four different types of triply periodic minimal surfaces (TPMS)[28](c) a catalogue of different types of minimal surfaces[71]
图5  可降解金属增材制造的发展历程及研究(L-PBF技术制备的可降解金属支架及血管支架)[59,69,77,78,80,81,109~121],镁基可降解金属[113],锌基可降解金属[59],及铁基可降解金属[118]
图6  AM多孔铁支架体内实验结果,包括:Fe-35Mn支架植入大鼠颅骨缺损4周后的组织学影像[118],Fe-30Mn支架植入不同时间后股骨髁切片[121],及Fe-30Mn支架(A~D)组和缺损对照组在不同时间后的组织学染色[121](a) histological image of Fe-35Mn scaffold after implantation in the rat cranial bone defect for 4 weeks[118](b) the femoral condyle sections obtained at 12, 24 and 48 weeks, respectively for porous Fe-30Mn scaffolds[121](c) the histological stain for porous Fe-30Mn scaffolds (groups A-D) and defect control at 12, 24 and 48 weeks, respectively (White stars indicate the black areas; the areas in purple indicate the new bone tissue; green arrows indicate the new bone tissue in the pores; groups A-D: porous Fe-30Mn scaffolds with the same pore size of 400 μm and the strut sizes of 300, 400, 500, and 600 μm, respectively)[121]
图7  L-PBF成形块体医用金属材料的拉伸性能[59,112,115,116,119,123,125,127~136],L-PBF成形多孔可降解金属的压缩屈服强度与弹性模量之间的关系[58,78~81,118,121,142],L-PBF成形可降解金属的降解速率[78~80,118,119,121,128,137,144,145],及MG63及MC3T3-E1细胞在L-PBF成形可降解金属浸提液中的细胞成活率(未标出部分为MG63细胞的结果)[58,78~81,118,121,128,137,151,152]
1 Chimene D, Lennox K K, Kaunas R R, et al. Advanced bioinks for 3D printing: A materials science perspective [J]. Ann. Biomed. Eng., 2016, 44: 2090
2 Winder J, Cooke R S, Gray J, et al. Medical rapid prototyping and 3D CT in the manufacture of custom made cranial titanium plates [J]. J. Med. Eng. Technol., 1999, 23: 26
3 Ciocca L, Mazzoni S, Fantini M, et al. CAD/CAM guided secondary mandibular reconstruction of a discontinuity defect after ablative cancer surgery [J]. J. Cranio-Maxillofac. Surg., 2012, 40: E511
4 Xu N F, Wei F, Liu X G, et al. Reconstruction of the upper cervical spine using a personalized 3D-printed vertebral body in an adolescent with Ewing sarcoma [J]. Spine, 2016, 41: E50
5 Liang H, Ji T, Zhang Y, et al. Reconstruction with 3D-printed pelvic endoprostheses after resection of a pelvic tumour [J]. Bone Joint J., 2017, 99-B: 267
6 Kong W D, Wang S F, Wang D, et al. Preliminary study on direct manufacturing of customized lingual brackets by selective laser melting [J]. Laser Technol., 2012, 36: 301
6 孔卫东, 王淑范, 王 迪等. 选区激光熔化直接成型个性化舌侧托槽的研究 [J]. 激光技术, 2012, 36: 301
7 Zangeneh S, Lashgari H R, Roshani A. Microstructure and tribological characteristics of aged Co-28Cr-5Mo-0.3C alloy [J]. Mater. Des., 2012, 37: 292
8 Koutsoukis T, Zinelis S, Eliades G, et al. Selective laser melting technique of Co-Cr dental alloys: A review of structure and properties and comparative analysis with other available techniques [J]. J. Prosthodont., 2015, 24: 303
9 Nagels J, Stokdijk M, Rozing P M. Stress shielding and bone resorption in shoulder arthroplasty [J]. J. Shoulder Elbow Surg., 2003, 12: 35
10 Shadanbaz S, Dias G J. Calcium phosphate coatings on magnesium alloys for biomedical applications: A review [J]. Acta Biomater., 2012, 8: 20
11 Sansone V, Pagani D, Melato M. The effects on bone cells of metal ions released from orthopaedic implants. A review [J]. Clin. Cases Miner. Bone Metab., 2013, 10: 34
12 Zheng Y F, Gu X N, Witte F. Biodegradable metals [J]. Mater. Sci. Eng., 2014, R77: 1
13 Liu Y, Zheng Y F, Chen X H, et al. Fundamental theory of biodegradable metals-definition, criteria, and design [J]. Adv. Funct. Mater., 2019, 29: 1805402
14 Manore M M, Meacham S L. New dietary reference intakes set for energy, carbohydrates, fiber, fat, fatty acids, cholesterol, proteins, and amino acids [J]. Acsms Health Fitness J., 2003, 7: 25
15 Kraus T, Moszner F, Fischerauer S, et al. Biodegradable Fe-based alloys for use in osteosynthesis: Outcome of an in vivo study after 52 weeks [J]. Acta Biomater., 2014, 10: 3346
16 He J, He F L, Li D W, et al. Advances in Fe-based biodegradable metallic materials [J]. RSC Adv., 2016, 6: 112819
17 Gorejová R, Haverová L, Oriňaková R, et al. Recent advancements in Fe-based biodegradable materials for bone repair [J]. J. Mater. Sci., 2019, 54: 1913
18 De Baaij J H F, Hoenderop J G J, Bindels R J M. Magnesium in man: Implications for health and disease [J]. Physiol. Rev., 2015, 95: 1
19 Zhang Y F, Xu J K, Ruan Y C, et al. Implant-derived magnesium induces local neuronal production of CGRP to improve bone-fracture healing in rats [J]. Nat. Med., 2016, 22: 1160
20 Bai L, Gong C, Chen X H, et al. Additive manufacturing of customized metallic orthopedic implants: Materials, structures, and surface modifications [J]. Metals, 2019, 9: 1004
21 Kabir H, Munir K, Wen C E, et al. Recent research and progress of biodegradable zinc alloys and composites for biomedical applications: Biomechanical and biocorrosion perspectives [J]. Bioact. Mater., 2021, 6: 836
22 Dhavalikar P, Lan Z Y, Kar R, et al. Biomedical applications of additive manufacturing [A]. Biomaterials Science [M]. 4th Ed., Amsterdam: Academic Press, 2020: 623
23 DebRoy T, Wei H L, Zuback J S, et al. Additive manufacturing of metallic components—Process, structure and properties [J]. Prog. Mater. Sci., 2018, 92: 112
24 Qin Y, Wen P, Guo H, et al. Additive manufacturing of biodegradable metals: Current research status and future perspectives [J]. Acta Biomater., 2019, 98: 3
25 Yin B Z, Qin Y, Wen P, et al. Laser powder bed fusion for fabrication of metal orthopedic implants [J]. Chin. J. Lasers, 2020, 47: 1100001
25 尹浜兆, 秦 瑜, 温 鹏等. 激光粉末床熔融制备金属骨植入物 [J]. 中国激光, 2020, 47: 1100001
26 Gu D D, Meiners W, Wissenbach K, et al. Laser additive manufacturing of metallic components: Materials, processes and mechanisms [J]. Int. Mater. Rev., 2012, 57: 133
27 Wauthle R, Ahmadi S M, Yavari S A, et al. Revival of pure titanium for dynamically loaded porous implants using additive manufacturing [J]. Mater. Sci. Eng., 2015, C54: 94
28 Bobbert F S L, Lietaert K, Eftekhari A A, et al. Additively manufactured metallic porous biomaterials based on minimal surfaces: A unique combination of topological, mechanical, and mass transport properties [J]. Acta Biomater., 2017, 53: 572
29 Yan C Z, Hao L, Hussein A, et al. Advanced lightweight 316L stainless steel cellular lattice structures fabricated via selective laser melting [J]. Mater. Des., 2014, 55: 533
30 Wauthle R, Van Der Stok J, Yavari S A, et al. Additively manufactured porous tantalum implants [J]. Acta Biomater., 2015, 14: 217
31 Elahinia M, Moghaddam N S, Andani M T, et al. Fabrication of Ni-Ti through additive manufacturing: A review [J]. Prog. Mater. Sci., 2016, 83: 630
32 Niinomi M. Mechanical biocompatibilities of titanium alloys for biomedical applications [J]. J. Mech. Behav. Biomed. Mater., 2008, 130
33 Lowther M, Louth S, Davey A, et al. Clinical, industrial, and research perspectives on powder bed fusion additively manufactured metal implants [J]. Addit. Manuf., 2019, 28: 565
34 Fan H B, Fu J, Li X D, et al. Implantation of customized 3-D printed titanium prosthesis in limb salvage surgery: A case series and review of the literature [J]. World J. Surg. Oncol., 2015, 13: 308
35 Lu M X, Li Y J, Luo Y, et al. Uncemented three-dimensional-printed prosthetic reconstruction for massive bone defects of the proximal tibia [J]. World J. Surg. Oncol., 2018, 16: 47
36
37 Ford S, Despeisse M. Additive manufacturing and sustainability: An exploratory study of the advantages and challenges [J]. J. Clean. Prod., 2016, 137: 1573
38 Wang S S, Wang W, Li Y, et al. Short-term efficacy of 3D printed titanium trabecular metal total hip arthroplasty [J]. Chin. J. Cancer Prev. Treat., 2016, 23(suppl.1): 204
38 王姗姗, 王 伟, 李 岩等. 3D打印钛合金骨小梁金属臼杯全髋关节置换术的短期疗效 [J]. 中华肿瘤防治杂志, 2016, 23(): 204
39 Wang B C, Hao Y Q, Pu F F, et al. Computer-aided designed, three dimensional-printed hemipelvic prosthesis for peri-acetabular malignant bone tumour [J]. Int. Orthop., 2018, 42: 687
40 Xia R Z, Zhai Z J, Chang Y Y, et al. Clinical applications of 3-dimensional printing technology in hip joint [J]. Orthop. Surg., 2019, 11: 533
41 Ye K, Wang J W, Hu Z G, et al. Biomechanical properties of a titanium alloy pelvic prosthesis individually manufactured by 3D printing: A finite element analysis [J]. Chin. J. Orthop. Trauma, 2015, 17: 18
41 叶 堃, 王金武, 胡志刚等. 3D打印钛合金个性化骨盆假体生物力学的初步有限元分析 [J]. 中华创伤骨科杂志, 2015, 17: 18
42 Ning J P, Wu W D, Tan Q, et al. Application of patient-specific drill template in the thoracic and cervical pedicle screw implantation: A clinical study [J]. J. Pract. Orthop., 2015, 21: 385
42 宁金沛, 吴卫东, 覃 求等. 3D打印个体化导航模板在胸椎和颈椎椎弓根螺钉植入的临床应用 [J]. 实用骨科杂志, 2015, 21: 385
43 Mangano F G, Cirotti B, Sammons R L, et al. Custom-made, root-analogue direct laser metal forming implant: A case report [J]. Lasers Med. Sci., 2012, 27: 1241
44 Zhu B B, Ba J W, Zheng J, et al. Study on splicing composite forming foundation process of selective laser melting [J]. Appl. Laser, 2016, 36: 663
44 祝彬彬, 巴劲伟, 郑 军等. 选区激光熔化拼接复合成型基础工艺研究 [J]. 应用激光, 2016, 36: 663
45 Liu Y F, Wang W N, Yu H, et al. Study on the fit of titanium alloy removable partial denture framework fabricated by selective laser melting [J]. J. Pract. Stomatol., 2017, 33: 302
45 刘一帆, 王伟娜, 于 海等. 选择性激光熔覆(SLM)钛合金可摘局部义齿支架的适合性研究 [J]. 实用口腔医学杂志, 2017, 33: 302
46 Hu F, Pei Z H, Wen Y. Using intraoral scanning technology for three-dimensional printing of Kennedy class I removable partial denture metal framework: A clinical report [J]. J. Prosthodont., 2019, 28: e473
47 Sing S L, An J, Yeong W Y, et al. Laser and electron-beam powder-bed additive manufacturing of metallic implants: A review on processes, materials and designs [J]. J. Orthop. Res., 2016, 34: 369
48 Brunello G, Sivolella S, Meneghello R, et al. Powder-based 3D printing for bone tissue engineering [J]. Biotechnol. Adv., 2016, 34: 740
49 Xin X Z, Xiang N, Chen J, et al. Electrochemical-corrosion behavior of dental cobalt-chromium alloy fabricated by selective laser melting technique [J]. J. Shanghai Jiaotong Univ. (Med. Sci.), 2012, 32: 602
49 忻贤贞, 项 楠, 陈 洁等. 选择性激光熔化技术制作牙科钴铬合金的电化学腐蚀性能研究 [J]. 上海交通大学学报(医学版), 2012, 32: 602
50 Guo M, Zheng Y F. Manufacture technique and clinical application of porous tantalum implant in orthopaedic surgery [J]. Chin. Orthop. J. Clin. Basic Res., 2013, 5: 47
50 郭 敏, 郑玉峰. 多孔钽材料制备及其骨科植入物临床应用现状 [J]. 中国骨科临床与基础研究杂志, 2013, 5: 47
51 Bermúdez M D, Carrión F J, Martínez-Nicolás G, et al. Erosion-corrosion of stainless steels, titanium, tantalum and zirconium [J]. Wear, 2005, 258: 693
52 Kato H, Nakamura T, Nishiguchi S, et al. Bonding of alkali- and heat-treated tantalum implants to bone [J]. J. Biomed. Mater. Res., 2000, 53: 28
53 Patil N, Goodman S B. The use of porous tantalum for reconstructing bone loss in orthopedic surgery [A]. Advances in Metallic Biomaterials [C]. Berlin, Heidelberg: Springer, 2015: 223
54 Yang K, Tang H P, Wang J, et al. Research development of standardized and addtively manufactured custom-made porous tantalum implant [J]. Hot Working Technol., 2017, 46(22): 5
54 杨 坤, 汤慧萍, 王 建等. 标准化和增材制造个性化多孔钽植入体的研究进展 [J]. 热加工工艺, 2017, 46(22): 5
55 Balla V K, Bodhak S, Bose S, et al. Porous tantalum structures for bone implants: Fabrication, mechanical and in vitro biological properties [J]. Acta Biomater., 2010, 6: 3349
56 Li Y G, Jahr H, Zhou J, et al. Additively manufactured biodegradable porous metals [J]. Acta Biomater., 2020, 115: 29
57 Yao N N, Peng X H. The preparation method of metal powder for 3D printing [J]. Sichuan Nonferrous Met., 2013, (4): 48
57 姚妮娜, 彭雄厚. 3D打印金属粉末的制备方法 [J]. 四川有色金属, 2013, (4): 48
58 Wang Y C, Fu P H, Wang N Q, et al. Challenges and solutions for the additive manufacturing of biodegradable magnesium implants [J]. Engineering, 2020, 6: 1267
59 Wen P, Voshage M, Jauer L, et al. Laser additive manufacturing of Zn metal parts for biodegradable applications: Processing, formation quality and mechanical properties [J]. Mater. Des., 2018, 155: 36
60 Liu C, Zhang M, Chen C J. Effect of laser processing parameters on porosity, microstructure and mechanical properties of porous Mg-Ca alloys produced by laser additive manufacturing [J]. Mater. Sci. Eng., 2017, A703: 359
61 Wei K W, Zeng X Y, Wang Z M, et al. Selective laser melting of Mg-Zn binary alloys: Effects of Zn content on densification behavior, microstructure, and mechanical property [J]. Mater. Sci. Eng., 2019, A756: 226
62 Hu D, Wang Y, Zhang D F, et al. Experimental investigation on selective laser melting of bulk net-shape pure magnesium [J]. Mater. Manuf. Processes, 2015, 30: 1298
63 Demir A G, Monguzzi L, Previtali B. Selective laser melting of pure Zn with high density for biodegradable implant manufacturing [J]. Addit. Manuf., 2017, 15: 20
64 Shuai C J, Zhou Y Z, Yang Y W, et al. Biodegradation resistance and bioactivity of hydroxyapatite enhanced Mg-Zn composites via selective laser melting [J]. Materials (Basel), 2017, 10: 307
65 Karunakaran R, Ortgies S, Tamayol A, et al. Additive manufacturing of magnesium alloys [J]. Bioact. Mater., 2020, 5: 44
66 Esmaily M, Zeng Z, Mortazavi A N, et al. A detailed microstructural and corrosion analysis of magnesium alloy WE43 manufactured by selective laser melting [J]. Addit. Manuf., 2020, 35: 101321
67 Leung C L A, Marussi S, Atwood R C, et al. In situ X-ray imaging of defect and molten pool dynamics in laser additive manufacturing [J]. Nat. Commun., 2018, 9: 1355
68 Leung C L A, Marussi S, Towrie M, et al. The effect of powder oxidation on defect formation in laser additive manufacturing [J]. Acta Mater., 2019, 166: 294
69 Grasso M, Demir A G, Previtali B, et al. In situ monitoring of selective laser melting of zinc powder via infrared imaging of the process plume [J]. Robot. Comput. Integr. Manuf., 2018, 49: 229
70 King W E, Anderson A T, Ferencz R M, et al. Laser powder bed fusion additive manufacturing of metals; physics, computational, and materials challenges [J]. Appl. Phys. Rev., 2015, 2: 041304
71 Zadpoor A A. Additively manufactured porous metallic biomaterials [J]. J. Mat. Chem., 2019, 7B: 4088
72 Deshpande V S, Ashby M F, Fleck N A. Foam topology: Bending versus stretching dominated architectures [J]. Acta Mater., 2001, 49: 1035
73 Montazerian H, Davoodi E, Asadi-Eydivand M, et al. Porous scaffold internal architecture design based on minimal surfaces: A compromise between permeability and elastic properties [J]. Mater. Des., 2017, 126: 98
74 Lietaert K, Zadpoor A A, Sonnaert M, et al. Mechanical properties and cytocompatibility of dense and porous Zn produced by laser powder bed fusion for biodegradable implant applications [J]. Acta Biomater., 2020, 110: 289
75 Li Y, Jahr H, Zhang X Y, et al. Biodegradation-affected fatigue behavior of additively manufactured porous magnesium [J]. Addit. Manuf., 2019, 28: 299
76 Li Y, Li W, Bobbert F S L, et al. Corrosion fatigue behavior of additively manufactured biodegradable porous zinc [J]. Acta Biomater., 2020, 106: 439
77 Li Y, Lietaert K, Li W, et al. Corrosion fatigue behavior of additively manufactured biodegradable porous iron [J]. Corros. Sci., 2019, 156: 106
78 Li Y, Zhou J, Pavanram P, et al. Additively manufactured biodegradable porous magnesium [J]. Acta Biomater., 2018, 67: 378
79 Li Y, Pavanram P, Zhou J, et al. Additively manufactured biodegradable porous zinc [J]. Acta Biomater., 2020, 101: 609
80 Li Y, Jahr H, Lietaert K, et al. Additively manufactured biodegradable porous iron [J]. Acta Biomater., 2018, 77: 380
81 Li Y, Pavanram P, Zhou J, et al. Additively manufactured functionally graded biodegradable porous zinc [J]. Biomater. Sci., 2020, 8: 2404
82 Li Y, Jahr H, Pavanram P, et al. Additively manufactured functionally graded biodegradable porous iron [J]. Acta Biomater., 2019, 96: 646
83 Wang X J, Xu S Q, Zhou S W, et al. Topological design and additive manufacturing of porous metals for bone scaffolds and orthopaedic implants: A review [J]. Biomaterials, 2016, 83: 127
84 Liu Y J, Li X P, Zhang L C, et al. Processing and properties of topologically optimised biomedical Ti-24Nb-4Zr-8Sn scaffolds manufactured by selective laser melting [J]. Mater. Sci. Eng., 2015, A642: 268
85 Dumas M, Terriault P, Brailovski V. Modelling and characterization of a porosity graded lattice structure for additively manufactured biomaterials [J]. Mater. Des., 2017, 121: 383
86 Zargarian A, Esfahanian M, Kadkhodapour J, et al. Numerical simulation of the fatigue behavior of additive manufactured titanium porous lattice structures [J]. Mater. Sci. Eng., 2016, C60: 339
87 Dias M R, Guedes J M, Flanagan C L, et al. Optimization of scaffold design for bone tissue engineering: A computational and experimental study [J]. Med. Eng. Phys., 2014, 36: 448
88 Bucklen B S, Wettergreen W A, Yuksel E, et al. Bone-derived CAD library for assembly of scaffolds in computer-aided tissue engineering [J]. Virtual Phys. Prototyp., 2008, 3: 13
89 Johnson N S, Vulimiri P S, To A C, et al. Invited review: Machine learning for materials developments in metals additive manufacturing [J]. Addit. Manuf., 2020, 36: 101641
90 Benn F, Kröger N, Zinser M, et al. Influence of surface condition on the degradation behaviour and biocompatibility of additively manufactured WE43 [J]. Mater. Sci. Eng., 2021, C124: 112016
91 Walter R, Kannan M B, He Y, et al. Effect of surface roughness on the in vitro degradation behaviour of a biodegradable magnesium-based alloy [J]. Appl. Surf. Sci., 2013, 279: 343
92 Cox S C, Jamshidi P, Eisenstein N M, et al. Surface finish has a critical influence on biofilm formation and mammalian cell attachment to additively manufactured prosthetics [J]. ACS Biomater. Sci. Eng., 2017, 3: 1616
93 Liu L, Huang B, Liu X M, et al. Photo-controlled degradation of PLGA/Ti3C2 hybrid coating on Mg-Sr alloy using near infrared light [J]. Bioact. Mater., 2021, 6: 568
94 Yuan W, Xia D D, Zheng Y F, et al. Controllable biodegradation and enhanced osseointegration of ZrO2-nanofilm coated Zn-Li alloy: In vitro and in vivo studies [J]. Acta Biomater., 2020, 105: 290
95 Huang L, Li J, Yuan W, et al. Near-infrared light controlled fast self-healing protective coating on magnesium alloy [J]. Corros. Sci., 2020, 163: 108257
96 Yuan W, Li B, Chen D F, et al. Formation mechanism, corrosion behavior, and cytocompatibility of microarc oxidation coating on absorbable high-purity zinc [J]. ACS Biomater. Sci. Eng., 2019, 5: 487
97 Kopp A, Derra T, Müether M, et al. Influence of design and postprocessing parameters on the degradation behavior and mechanical properties of additively manufactured magnesium scaffolds [J]. Acta Biomater., 2019, 98: 23
98 Yang C, Huan Z G, Wang X Y, et al. 3D printed Fe scaffolds with HA nanocoating for bone regeneration [J]. ACS Biomater. Sci. Eng., 2018, 4: 608
99 Wu M W, Chen J K, Lin B H, et al. Improved fatigue endurance ratio of additive manufactured Ti-6Al-4V lattice by hot isostatic pressing [J]. Mater. Des., 2017, 134: 163
100 Wauthle R, Vrancken B, Beynaerts B, et al. Effects of build orientation and heat treatment on the microstructure and mechanical properties of selective laser melted Ti6Al4V lattice structures [J]. Addit. Manuf., 2015, 5: 77
101 Gangireddy S, Gwalani B, Liu K M, et al. Microstructure and mechanical behavior of an additive manufactured (AM) WE43-Mg alloy [J]. Addit. Manuf., 2019, 26: 53
102 Elmer J W, Allen S M, Eagar T W. Microstructural development during solidification of stainless steel alloys [J]. Metall. Trans., 1989, 20A: 2117
103 Hosseini E, Popovich V A. A review of mechanical properties of additively manufactured Inconel 718 [J]. Addit. Manuf., 2019, 30: 100877
104 Seitz J M, Lucas A, Kirschner M. Magnesium-based compression screws: A novelty in the clinical use of implants [J]. JOM, 2016, 68: 1177
105 Lee J W, Han H S, Han K J, et al. Long-term clinical study and multiscale analysis of in vivo biodegradation mechanism of Mg alloy [J]. Proc. Natl. Acad. Sci. USA, 2016, 113: 716
106 Zhao D W, Witte F, Lu F Q, et al. Current status on clinical applications of magnesium-based orthopaedic implants: A review from clinical translational perspective [J]. Biomaterials, 2017, 112: 287
107 Schinhammer M, Häenzi A C, Löeffler J F, et al. Design strategy for biodegradable Fe-based alloys for medical applications [J]. Acta Biomater., 2010, 6: 1705
108 Li H F, Zheng Y F, Qin L. Progress of biodegradable metals [J]. Progr. Nat. Sci. Mater. Int., 2014, 24: 414
109 Ng C C, Savalani M M, Man H C, et al. Layer manufacturing of magnesium and its alloy structures for future applications [J]. Virtual Phys. Prototyp., 2010, 5: 13
110 Zhang B C, Liao H L, Coddet C. Effects of processing parameters on properties of selective laser melting Mg-9%Al powder mixture [J]. Mater. Des., 2012, 34: 753
111 Chou D T, Wells D, Hong D, et al. Novel processing of iron-manganese alloy-based biomaterials by inkjet 3-D printing [J]. Acta Biomater., 2013, 9: 8593
112 Song B, Dong S J, Deng S H, et al. Microstructure and tensile properties of iron parts fabricated by selective laser melting [J]. Opt. Laser Technol., 2014, 56: 451
113 Jauer L, Jülich B, Voshage M, et al. Selective laser melting of magnesium alloys [J]. Eur. Cells Mater., 2015, 30(suppl.3): 1
114 Jauer L, Kimm M, Meiners W, et al. Additive manufacturing of magnesium alloys [A]. 9th Symposium on Biodegradable Metals[C]. Bertinoro, Italy, 2017: 10
115 Wen P, Jauer L, Voshage M, et al. Densification behavior of pure Zn metal parts produced by selective laser melting for manufacturing biodegradable implants [J]. J. Mater. Process. Technol., 2018, 258: 128
116 Qin Y, Wen P, Voshage M, et al. Additive manufacturing of biodegradable Zn-xWE43 porous scaffolds: Formation quality, microstructure and mechanical properties [J]. Mater. Des., 2019, 181: 107937
117 Wen P, Qin Y, Chen Y Z, et al. Laser additive manufacturing of Zn porous scaffolds: Shielding gas flow, surface quality and densification [J]. J. Mater. Sci. Technol., 2019, 35: 368
118 Carluccio D, Xu C, Venezuela J, et al. Additively manufactured iron-manganese for biodegradable porous load-bearing bone scaffold applications [J]. Acta Biomater., 2020, 103: 346
119 Qin Y, Wen P, Xia D D, et al. Effect of grain structure on the mechanical properties and in vitro corrosion behavior of additively manufactured pure Zn [J]. Addit. Manuf., 2020, 33: 101134
120 Hyer H, Zhou L, Liu Q Y, et al. High strength WE43 microlattice structures additively manufactured by laser powder bed fusion [J]. Materialia, 2021, 16: 101067
121 Nie Y, Chen G, Peng H B, et al. In vitro and 48 weeks in vivo performances of 3D printed porous Fe-30Mn biodegradable scaffolds [J]. Acta Biomater., 2021, 121: 724
122 Montani M, Demir A G, Mostaed E, et al. Processability of pure Zn and pure Fe by SLM for biodegradable metallic implant manufacturing [J]. Rapid Prototyp. J., 2017, 23: 514
123 Song B, Dong S J, Liu Q, et al. Vacuum heat treatment of iron parts produced by selective laser melting: Microstructure, residual stress and tensile behavior [J]. Mater. Des., 2014, 54: 727
124 Shuai C J, Yang Y W, Wu P, et al. Laser rapid solidification improves corrosion behavior of Mg-Zn-Zr alloy [J]. J. Alloys Compd., 2017, 691: 961
125 Zumdick N A, Jauer L, Kersting L C, et al. Additive manufactured WE43 magnesium: A comparative study of the microstructure and mechanical properties with those of powder extruded and as-cast WE43 [J]. Mater. Charact., 2019, 147: 384
126 Pawlak A, Rosienkiewicz M, Chlebus E. Design of experiments approach in AZ31 powder selective laser melting process optimization [J]. Arch. Civil Mech. Eng., 2017, 17: 9
127 Deng Q C, Wu Y J, Luo Y H, et al. Fabrication of high-strength Mg-Gd-Zn-Zr alloy via selective laser melting [J]. Mater. Charact., 2020, 165: 110377
128 Yang Y W, Yuan F L, Gao C D, et al. A combined strategy to enhance the properties of Zn by laser rapid solidification and laser alloying [J]. J. Mech. Behav. Biomed. Mater., 2018, 82: 51
129 Kasperovich G, Hausmann J. Improvement of fatigue resistance and ductility of TiAl6V4 processed by selective laser melting [J]. J. Mater. Process. Technol., 2015, 220: 202
130 Wu L, Zhu H T, Gai X Y, et al. Evaluation of the mechanical properties and porcelain bond strength of cobalt-chromium dental alloy fabricated by selective laser melting [J]. J. Prosthet. Dent., 2014, 111: 51
131 Wei K W, Gao M, Wang Z M, et al. Effect of energy input on formability, microstructure and mechanical properties of selective laser melted AZ91D magnesium alloy [J]. Mater. Sci. Eng., 2014, A611: 212
132 Takaichi A, Suyalatu N, Nakamoto T, et al. Microstructures and mechanical properties of Co-29Cr-6Mo alloy fabricated by selective laser melting process for dental applications [J]. J. Mech. Behav. Biomed. Mater., 2013, 21: 67
133 Guan K, Wang Z M, Gao M, et al. Effects of processing parameters on tensile properties of selective laser melted 304 stainless steel [J]. Mater. Des., 2013, 50: 581
134 Spierings A B, Herres N, Levy G. Influence of the particle size distribution on surface quality and mechanical properties in AM steel parts [J]. Rapid Prototyp. J., 2011, 17: 195
135 Hollander D A, von Walter M, Wirtz T, et al. Structural, mechanical and in vitro characterization of individually structured Ti-6Al-4V produced by direct laser forming [J]. Biomaterials, 2006, 27: 955
136 Liu S, Yang W S, Shi X, et al. Influence of laser process parameters on the densification, microstructure, and mechanical properties of a selective laser melted AZ61 magnesium alloy [J]. J. Alloys Compd., 2019, 808: 151160
137 Shuai C J, Liu L, Zhao M C, et al. Microstructure, biodegradation, antibacterial and mechanical properties of ZK60-Cu alloys prepared by selective laser melting technique [J]. J. Mater Sci. Technol., 2018, 34: 1944
138 Hutmacher D W. Scaffolds in tissue engineering bone and cartilage [J]. Biomaterials, 2000, 21: 2529
139 Wu S L, Liu X M, Yeung K W K, et al. Biomimetic porous scaffolds for bone tissue engineering [J]. Mater. Sci. Eng., 2014, R80: 1
140 Zhou Y Z, Wu P, Yang Y W, et al. The microstructure, mechanical properties and degradation behavior of laser-melted Mg-Sn alloys [J]. J. Alloys Compd., 2016, 687: 109
141 Venezuela J, Dargusch M S. The influence of alloying and fabrication techniques on the mechanical properties, biodegradability and biocompatibility of zinc: A comprehensive review [J]. Acta Biomater., 2019, 87: 1
142 Morgan E F, Keaveny T M. Dependence of yield strain of human trabecular bone on anatomic site [J]. J. Biomech., 2001, 34: 569
143 Ahmadi S M, Kumar R, Borisov E V, et al. From microstructural design to surface engineering: A tailored approach for improving fatigue life of additively manufactured meta-biomaterials [J]. Acta Biomater., 2019, 83: 153
144 Hong D, Chou D T, Velikokhatnyi O I, et al. Binder-jetting 3D printing and alloy development of new biodegradable Fe-Mn-Ca/Mg alloys [J]. Acta Biomater., 2016, 45: 375
145 Shuai C J, Xue L F, Gao C D, et al. Selective laser melting of Zn-Ag alloys for bone repair: Microstructure, mechanical properties and degradation behaviour [J]. Virtual Phys. Prototyp., 2018, 13: 146
146 Ralston K D, Birbilis N, Davies C H J. Revealing the relationship between grain size and corrosion rate of metals [J]. Scr. Mater., 2010, 63: 1201
147 Lu Y, Bradshaw A R, Chiu Y L, et al. Effects of secondary phase and grain size on the corrosion of biodegradable Mg-Zn-Ca alloys [J]. Mater. Sci. Eng, 2015, C48: 480
148 Zhou W, Shen T, Aung N N. Effect of heat treatment on corrosion behaviour of magnesium alloy AZ91D in simulated body fluid [J]. Corros. Sci., 2010, 52: 1035
149 Gao C D, Li S, Liu L, et al. Dual alloying improves the corrosion resistance of biodegradable Mg alloys prepared by selective laser melting [J]. J. Magnes. Alloy., 2021, 9: 305
150 Guo Y X, Zhao M C, Xie B, et al. In vitro corrosion resistance and antibacterial performance of novel Fe-xCu biomedical alloys prepared by selective laser melting [J]. Adv. Eng. Mater., 2021, 23: 2001000
151 Shuai C J, Yang W J, Yang Y W, et al. Selective laser melted Fe-Mn bone scaffold: Microstructure, corrosion behavior and cell response [J]. Mater. Res. Express, 2020, 7: 015404
152 Gao C D, Yao M, Li S, et al. Highly biodegradable and bioactive Fe-Pd-bredigite biocomposites prepared by selective laser melting [J]. J. Adv. Res., 2019, 20: 91
153 Nie F L, Zheng Y F, Wei S C, et al. In vitro corrosion, cytotoxicity and hemocompatibility of bulk nanocrystalline pure iron [J]. Biomed. Mater., 2010, 5: 065015
154 Sunil B R, Kumar A A, Kumar T S S, et al. Role of biomineralization on the degradation of fine grained AZ31 magnesium alloy processed by groove pressing [J]. Mater. Sci. Eng., 2013, C33: 1607
155 Saha P, Roy M, Datta M K, et al. Effects of grain refinement on the biocorrosion and in vitro bioactivity of magnesium [J]. Mater. Sci. Eng., 2015, C57: 294
156 Van Bael S, Chai Y C, Truscello S, et al. The effect of pore geometry on the in vitro biological behavior of human periosteum-derived cells seeded on selective laser-melted Ti6Al4V bone scaffolds [J]. Acta Biomater., 2012, 8: 2824
157 Taniguchi N, Fujibayashi S, Takemoto M, et al. Effect of pore size on bone ingrowth into porous titanium implants fabricated by additive manufacturing: An in vivo experiment [J]. Mater. Sci. Eng., 2016, C59: 690
158 Zadpoor A A. Bone tissue regeneration: The role of scaffold geometry [J]. Biomater. Sci., 2015, 3: 231
159 Ferreira L, Karp J M, Nobre L, et al. New opportunities: The use of nanotechnologies to manipulate and track stem cells [J]. Cell Stem Cell, 2008, 3: 136
160 McMurray R J, Gadegaard N, Tsimbouri P M, et al. Nanoscale surfaces for the long-term maintenance of mesenchymal stem cell phenotype and multipotency [J]. Nat. Mater., 2011, 10: 637
[1] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[2] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[3] 郑亮, 张强, 李周, 张国庆. /降氧过程对高温合金粉末表面特性和合金性能的影响:粉末存储到脱气处理[J]. 金属学报, 2023, 59(9): 1265-1278.
[4] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[5] 卢楠楠, 郭以沫, 杨树林, 梁静静, 周亦胄, 孙晓峰, 李金国. 激光增材修复单晶高温合金的热裂纹形成机制[J]. 金属学报, 2023, 59(9): 1243-1252.
[6] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[7] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[8] 丁桦, 张宇, 蔡明晖, 唐正友. 奥氏体基Fe-Mn-Al-C轻质钢的研究进展[J]. 金属学报, 2023, 59(8): 1027-1041.
[9] 穆亚航, 张雪, 陈梓名, 孙晓峰, 梁静静, 李金国, 周亦胄. 基于热力学计算与机器学习的增材制造镍基高温合金裂纹敏感性预测模型[J]. 金属学报, 2023, 59(8): 1075-1086.
[10] 袁江淮, 王振玉, 马冠水, 周广学, 程晓英, 汪爱英. Cr2AlC涂层相结构演变对力学性能的影响[J]. 金属学报, 2023, 59(7): 961-968.
[11] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[12] 刘满平, 薛周磊, 彭振, 陈昱林, 丁立鹏, 贾志宏. 后时效对超细晶6061铝合金微观结构与力学性能的影响[J]. 金属学报, 2023, 59(5): 657-667.
[13] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[14] 侯娟, 代斌斌, 闵师领, 刘慧, 蒋梦蕾, 杨帆. 尺寸设计对选区激光熔化304L不锈钢显微组织与性能的影响[J]. 金属学报, 2023, 59(5): 623-635.
[15] 吴欣强, 戎利建, 谭季波, 陈胜虎, 胡小锋, 张洋鹏, 张兹瑜. Pb-Bi腐蚀Si增强型铁素体/马氏体钢和奥氏体不锈钢的研究进展[J]. 金属学报, 2023, 59(4): 502-512.