|
|
低活化铁素体/马氏体钢组织调控及其固相连接研究进展 |
刘晨曦, 毛春亮, 崔雷, 周晓胜, 余黎明, 刘永长( ) |
天津大学 材料科学与工程学院 水利安全与仿真国家重点实验室 天津 300354 |
|
Recent Progress in Microstructural Control and Solid-State Welding of Reduced Activation Ferritic/Martensitic Steels |
LIU Chenxi, MAO Chunliang, CUI Lei, ZHOU Xiaosheng, YU Liming, LIU Yongchang( ) |
State Key Laboratory of Hydraulic Engineering Simulation and Safety, School of Materials Science and Engineering, Tianjin University, Tianjin 300354, China |
引用本文:
刘晨曦, 毛春亮, 崔雷, 周晓胜, 余黎明, 刘永长. 低活化铁素体/马氏体钢组织调控及其固相连接研究进展[J]. 金属学报, 2021, 57(11): 1521-1538.
Chenxi LIU,
Chunliang MAO,
Lei CUI,
Xiaosheng ZHOU,
Liming YU,
Yongchang LIU.
Recent Progress in Microstructural Control and Solid-State Welding of Reduced Activation Ferritic/Martensitic Steels[J]. Acta Metall Sin, 2021, 57(11): 1521-1538.
1 |
Zhang Y M, Zeng L P, Shen X Y, et al. ITER project and fusion energy development strategy [J]. Nucl. Fus. Plasma Phys., 2013, 33: 359
|
1 |
张一鸣, 曾丽萍, 沈欣媛等. ITER计划与聚变能发展战略 [J]. 核聚变与等离子体物理, 2013, 33: 359
|
2 |
He K H, Luo D L, Wang M, et al. The latest progress of ITER international mega-science project [J]. China Nucl. Power, 2020, 13: 735
|
2 |
何开辉, 罗德隆, 王 敏等. ITER计划国际大科学工程工作进展 [J]. 中国核电, 2020, 13: 735
|
3 |
Wu Y C. The routes and mechanism of plasma facing tungsten materials to improve ductility [J]. Acta Metall. Sin., 2019, 55: 171
|
3 |
吴玉程. 面向等离子体W材料改善韧性的方法与机制 [J]. 金属学报, 2019, 55: 171
|
4 |
Yi X O, Han W T, Liu P P, et al. Defect production, evolution, and thermal recovery mechanisms in radiation damaged tungsten [J]. Acta Metall. Sin., 2021, 57: 257
|
4 |
易晓鸥, 韩文妥, 刘平平等. 金属W中辐照缺陷的产生、演化与热回复机制 [J]. 金属学报, 2021, 57: 257
|
5 |
Feng K M. Controlled nuclear fusion and ITER project [J]. China Nucl. Power, 2009, 2: 212
|
5 |
冯开明. 可控核聚变与国际热核实验堆(ITER)计划 [J]. 中国核电, 2009, 2: 212
|
6 |
Neuberger H, Rey J, Arbeiter F, et al. Evaluation of conservative and innovative manufacturing routes for gas cooled test blanket module and breeding blanket first walls [J]. Fusion Eng. Des., 2019, 146: 2140
|
7 |
Wu Y, Team The FDS. Design analysis of the China dual-functional lithium lead (DFLL) test blanket module in ITER [J]. Fusion Eng. Des., 2007, 82: 1893
|
8 |
Tanigawa H, Shiba K, Möslang A, et al. Status and key issues of reduced activation ferritic/martensitic steels as the structural material for a DEMO blanket [J]. J. Nucl. Mater., 2011, 417: 9
|
9 |
Tanigawa H, Shiba K, Sakasegawa H, et al. Technical issues related to the development of reduced-activation ferritic/martensitic steels as structural materials for a fusion blanket system [J]. Fusion Eng. Des., 2011, 86: 2549
|
10 |
Zhao Q, Ma Z Q, Yu L M, et al. Tailoring the secondary phases and mechanical properties of ODS steel by heat treatment [J]. J. Mater. Sci. Technol., 2019, 35: 1064
|
11 |
Zhou X S, Liu Y C, Yu L M, et al. Microstructure characteristic and mechanical property of transformable 9Cr-ODS steel fabricated by spark plasma sintering [J]. Mater. Des., 2017, 132: 158
|
12 |
Peng Y Y, Yu L M, Liu Y C, et al. Effect of ageing treatment at 650℃ on microstructure and properties of 9Cr-ODS steel [J]. Acta Metall. Sin., 2020, 56: 1075
|
12 |
彭艳艳, 余黎明, 刘永长等. 650℃时效对9Cr-ODS钢显微组织和性能的影响 [J]. 金属学报, 2020, 56: 1075
|
13 |
Gao X, Zhang G K, Xiang X, et al. Effects of alloying elements on the adsorption of oxygen on V(110) Surfaces: A first-principles study [J]. Acta Metall. Sin., 2020, 56: 919
|
13 |
高 翔, 张桂凯, 向 鑫等. 合金元素对V(110)表面O吸附影响的第一性原理研究 [J]. 金属学报, 2020, 56: 919
|
14 |
Zhuang G, Li G Q, Li J, et al. Progress of the CFETR design [J]. Nucl. Fusion, 2019, 59: 112010
|
15 |
Bawane K, Lu K. Microstructure evolution of nanostructured ferritic alloy with and without Cr3C2 coated SiC at high temperatures [J]. J. Mater. Sci. Technol., 2020, 43: 126
|
16 |
Tanigawa H, Gaganidze E, Hirose T, et al. Development of benchmark reduced activation ferritic/martensitic steels for fusion energy applications [J]. Nucl. Fusion, 2017, 57: 092004
|
17 |
Salavy J F, Boccaccini L V, Chaudhuri P, et al. Must we use ferritic steel in TBM? [J]. Fusion Eng. Des., 2010, 85: 1896
|
18 |
Zhou X S, Liu C X, Yu L M, et al. Phase transformation behavior and microstructural control of high-Cr martensitic/ferritic heat-resistant steels for power and nuclear plants: A review [J]. J. Mater. Sci. Technol., 2015, 31: 235
|
19 |
Ciampichetti A, Rocco P, Zucchetti M. The zero waste option: Clearance of activated and first wall/blanket materials [J]. J. Nucl. Mater., 2002, 307-311: 1047
|
20 |
Mergia K, Structural Boukos N., thermal, electrical and magnetic properties of Eurofer97steel [J]. J. Nucl. Mater., 2008, 373: 1
|
21 |
Tavassoli A A F, Rensman J W, Schirra M, et al. Materials design data for reduced activation martensitic steel type F82H [J]. Fusion Eng. Des., 2002, 61-62: 617
|
22 |
Kohyama A, Kohno Y, Kuroda M, et al. Production of low activation steel; JLF-1, large heats—Current status and future plan [J]. J. Nucl. Mater., 1998, 258-263: 1319
|
23 |
Chen J, Wang P, Fu H H, et al. Research of low activation structural material for fusion reactor in SWIP [A]. Proceedings of the Proc. 24th Int. Conf. on Fusion Energy [C]. San Diego, CA, 2012
|
24 |
Huang Q Y, Li C J, Wu Q S, et al. Progress in development of CLAM steel and fabrication of small TBM in China [J]. J. Nucl. Mater., 2011, 417: 85
|
25 |
Laha K, Saroja S, Moitra A, et al. Development of India-specific RAFM steel through optimization of tungsten and tantalum contents for better combination of impact, tensile, low cycle fatigue and creep properties [J]. J. Nucl. Mater., 2013, 439: 41
|
26 |
Huang Q Y, Li C J, Li Y F, et al. R & D status of China low activation martensitic steel [J]. Chin. J. Nucl. Sci. Eng., 2007, 27: 41
|
26 |
黄群英, 李春京, 李艳芬等. 中国低活化马氏体钢 CLAM 研究进展 [J]. 核科学与工程, 2007, 27: 41
|
27 |
Rieth M, Rey J. Specific welds for test blanket modules [J]. J. Nucl. Mater., 2009, 386-388: 471
|
28 |
Wu S K, Zhang J C, Liao H B, et al. Review on welding technology of RAFM steel [J]. J. Mech. Eng., 2019, 55(2): 195
|
28 |
吴世凯, 张建超, 廖洪彬等. 聚变堆低活化铁素体/马氏体(RAFM)钢焊接研究进展 [J]. 机械工程学报, 2019, 55(2): 195
|
29 |
Chen X Z, Huang Y M, Madigan B, et al. An overview of the welding technologies of CLAM steels for fusion application [J]. Fusion Eng. Des., 2012, 87: 1639
|
30 |
Aubert P, Tavassoli F, Rieth M, et al. Review of candidate welding processes of RAFM steels for ITER test blanket modules and DEMO [J]. J. Nucl. Mater., 2011, 417: 43
|
31 |
Francis J A, Mazur W, Bhadeshia H K D H. Review Type IV cracking in ferritic power plant steels [J]. Mater. Sci. Technol., 2006, 22: 1387
|
32 |
Ennis P J, Czyrska-Filemonowicz A. Recent advances in creep-resistant steels for power plant applications [J]. Sadhana, 2003, 28: 709
|
33 |
Liu P P, Zhao M Z, Zhu Y M, et al. Effects of carbide precipitate on the mechanical properties and irradiation behavior of the low activation martensitic steel [J]. J. Alloys Compd., 2013, 579: 599
|
34 |
Taneike M, Abe F, Sawada K. Creep-strengthening of steel at high temperatures using nano-sized carbonitride dispersions [J]. Nature, 2003, 424: 294
|
35 |
Vanaja J, Laha K, Nandagopal M, et al. Effect of tungsten on tensile properties and flow behaviour of RAFM steel [J]. J. Nucl. Mater., 2013, 433: 412
|
36 |
Vanaja J, Laha K, Mathew M D, et al. Effects of tungsten and tantalum on creep deformation and rupture properties of reduced activation ferritic-martensitic steel [J]. Procedia Eng., 2013, 55: 271
|
37 |
Abe F, Nakazawa S. The effect of tungsten on creep [J]. Metall. Mater. Trans., 1992, 23A: 3025
|
38 |
Shi L, Yan Z S, Liu Y C, et al. Improved toughness and ductility in ferrite/acicular ferrite dual-phase steel through intercritical heat treatment [J]. Mater. Sci. Eng., 2014, A590: 7
|
39 |
Tamura M, Kusuyama H, Shinozuka K, et al. Long-term stability of TaC particles during tempering of 8% Cr-2% W steel [J]. J. Nucl. Mater., 2007, 367-370: 137
|
40 |
Abe F. Precipitate design for creep strengthening of 9% Cr tempered martensitic steel for ultra-supercritical power plants [J]. Sci. Technol. Adv. Mater., 2008, 9: 013002
|
41 |
Chen J G, Liu C X, Liu Y C, et al. Effects of tantalum content on the microstructure and mechanical properties of low-carbon RAFM steel [J]. J. Nucl. Mater., 2016, 479: 295
|
42 |
Xiao X, Liu G Q, Hu B F, et al. Microstructure stability of V and Ta microalloyed 12%Cr reduced activation ferrite/martensite steel during long-term aging at 650°C [J]. J. Mater. Sci. Technol., 2015, 31: 311
|
43 |
Tan L, Hoelzer D T, Busby J T, et al. Microstructure control for high strength 9Cr ferritic-martensitic steels [J]. J. Nucl. Mater., 2012, 422: 45
|
44 |
Maruyama K, Sawada K, Koike J I. Strengthening mechanisms of creep resistant tempered martensitic steel [J]. ISIJ Int., 2001, 41: 641
|
45 |
Liu Z D, Chen Z Z, He X K, et al. Systematical innovation of heat resistant materials used for 630-700oC advanced ultra-supercritical (A-USC) fossil fired boilers [J]. Acta Metall. Sin., 2020, 56: 539
|
45 |
刘正东, 陈正宗, 何西扣等. 630~700℃超超临界燃煤电站耐热管及其制造技术进展 [J]. 金属学报, 2020, 56: 539
|
46 |
Abe F, Kern T U, Viswanathan R. Creep-Resistant Steels [M]. Cambridge: Elsevier, 2008: 1
|
47 |
Song M, Wu Y D, Chen D, et al. Response of equal channel angular extrusion processed ultrafine-grained T91 steel subjected to high temperature heavy ion irradiation [J]. Acta Mater., 2014, 74: 285
|
48 |
Paúl A, Beirante A, Franco N, et al. Phase transformation and structural studies of EUROFER RAFM alloy [J]. Adv. Mater. Forum, 2006, 514-516: 500
|
49 |
Liu C X, Liu Y C, Zhang D T, et al. Kinetics of isochronal austenization in modified high Cr ferritic heat-resistant steel [J]. Appl. Phys., 2011, 105A: 949
|
50 |
Chen J G, Liu Y C, Liu C X, et al. Effects of tantalum on austenitic transformation kinetics of RAFM steel [J]. J. Iron Steel Res., Int., 2017, 24: 705
|
51 |
Wang D J, Liu Y C, Zhang Y H. Improved analytical model for isochronal transformation kinetics [J]. J. Mater. Sci., 2008, 43: 4876
|
52 |
Liu C X, Liu Y C, Zhang D T, et al. Research on splitting phenomenon of isochronal martensitic transformation in T91 ferritic steel [J]. Phase Trans., 2012, 85: 461
|
53 |
De Andrés C G, Jiménez J A, Álvarez L F. Splitting phenomena occurring in the martensitic transformation of Cr13 and CrMoV14 stainless steels in the absence of carbide precipitation [J]. Metall. Mater. Trans., 1996, 27A: 1799
|
54 |
Ferraris S A, Danon C A. Splitting phenomenon of martensitic transformation in a F82H reduced neutron activation steel [J]. Materia (Rio De Janeiro), 2018, 23(2), doi: 10.1590/S1517-707620180002.0372
|
55 |
Liu Y C, Sommer F, Mittemeijer E J. Abnormal austenite-ferrite transformation behaviour of pure iron [J]. Philos. Mag., 2004, 84: 1853
|
56 |
Liu Y C, Sommer F, Mittemeijer E J. Austenite-ferrite transformation kinetics under uniaxial compressive stress in Fe-2.96 at. % Ni alloy [J]. Acta Mater., 2009, 57: 2858
|
57 |
Liu Y C, Sommer F, Mittemeijer E J. Kinetics of the abnormal austenite-ferrite transformation behaviour in substitutional Fe-based alloys [J]. Acta Mater., 2004, 52: 2549
|
58 |
Villa M, Pantleon K, Reich M, et al. Kinetics of anomalous multi-step formation of lath martensite in steel [J]. Acta Mater., 2014, 80: 468
|
59 |
Mao C L, Liu C X, Yu L M, et al. Discontinuous lath martensite transformation and its relationship with annealing twin of parent austenite and cooling rate in low carbon RAFM steel [J]. Mater. Des., 2021, 197: 109252
|
60 |
Sakasegawa H, Tanigawa H, Kano S, et al. Precipitation behavior in F82H during heat treatments of blanket fabrication [J]. Fusion Eng. Des., 2011, 86: 2541
|
61 |
Zhou J H, Shen Y F, Jia N. Strengthening mechanisms of reduced activation ferritic/martensitic steels: A review [J]. Int. J. Min., Met. Mater., 2021, 28: 335
|
62 |
Chen J G, Liu C X, Wei C, et al. Effects of isothermal aging on microstructure and mechanical property of low-carbon RAFM steel [J]. Acta Metall. Sin. (Engl. Lett.), 2019, 32: 1151
|
63 |
Tan L, Byun T S, Katoh Y, et al. Stability of MX-type strengthening nanoprecipitates in ferritic steels under thermal aging, stress and ion irradiation [J]. Acta Mater., 2014, 71: 11
|
64 |
Zhou J H, Shen Y F, Hong Y Y, et al. Strengthening a fine-grained low activation martensitic steel by nanosized carbides [J]. Mater. Sci. Eng., 2020, A769: 138471
|
65 |
Jia C H, Liu Y C, Liu C X, et al. Precipitates evolution during tempering of 9CrMoCoB (CB2) ferritic heat-resistant steel [J]. Mater. Charact., 2019, 152: 12
|
66 |
Abe F. Analysis of creep rates of tempered martensitic 9%Cr steel based on microstructure evolution [J]. Mater. Sci. Eng., 2009, A510: 64
|
67 |
Taneike M, Sawada K, Abe F. Effect of carbon concentration on precipitation behavior of M23C6 carbides and MX carbonitrides in martensitic 9Cr steel during heat treatment [J]. Metall. Mater. Trans., 2004, 35A: 1255
|
68 |
Zhou X S, Liu Y C, Liu C X, et al. Evolution of creep damage in a modified ferritic heat resistant steel with excellent short-term creep performance and its oxide layer characteristic [J]. Mater. Sci. Eng., 2014, A608: 46
|
69 |
Tan L, Katoh Y, Snead L L. Stability of the strengthening nanoprecipitates in reduced activation ferritic steels under Fe2+ ion irradiation [J]. J. Nucl. Mater., 2014, 445: 104
|
70 |
Liu S C. Precipitation processes in Fe-Cr-5W ternary alloys [J]. J. Jpn Inst. Met., 1988, 52: 927
|
70 |
劉 世程. Fe-Cr-5W合金の時効析出過程 [J]. 日本金属学会誌, 1988, 52: 927
|
71 |
Zhu S, Yang M, Song X L, et al. Characterisation of Laves phase precipitation and its correlation to creep rupture strength of ferritic steels [J]. Mater. Charact., 2014, 98: 60
|
72 |
Dimmler G, Weinert P, Kozeschnik E, et al. Quantification of the Laves phase in advanced 9-12% Cr steels using a standard SEM [J]. Mater. Charact., 2003, 51: 341
|
73 |
Isik M I, Kostka A, Yardley V A, et al. The nucleation of Mo-rich Laves phase particles adjacent to M23C6 micrograin boundary carbides in 12% Cr tempered martensite ferritic steels [J]. Acta Mater., 2015, 90: 94
|
74 |
Duan L J, Liu Y C. Relationships between elastic constants and EAM/FS potential functions for cubic crystals [J]. Acta Metall. Sin., 2020, 56: 112
|
74 |
段灵杰, 刘永长. 立方晶体弹性常数和EAM/FS势函数的关系 [J]. 金属学报, 2020, 56: 112
|
75 |
Wang J, Yu L M, Li C, et al. Effect of different temperatures on He atoms behavior in α-Fe with and without dislocations [J]. Acta Metall. Sin., 2019, 55: 274
|
75 |
王 瑾, 余黎明, 李 冲等. 不同温度对含与不含位错α-Fe中He原子行为的影响 [J]. 金属学报, 2019, 55: 274
|
76 |
Mao C L, Ding R, Liu C X, et al. The influence of Cr on He trapping behavior and the coupling effect of Cr/He on the mechanical behavior of the C14-Laves Fe2W phase: First-principle and quasi-harmonic approximation studies [J]. Comput. Mater. Sci., 2021, 192: 110359
|
77 |
Dadé M, Malaplate J, Garnier J, et al. Influence of microstructural parameters on the mechanical properties of oxide dispersion strengthened Fe-14Cr steels [J]. Acta Mater., 2017, 127: 165
|
78 |
Tan L, Snead L L, Katoh Y. Development of new generation reduced activation ferritic-martensitic steels for advanced fusion reactors [J]. J. Nucl. Mater., 2016, 478: 42
|
79 |
Ramar A, Schäublin R. Analysis of hardening limits of oxide dispersion strengthened steel [J]. J. Nucl. Mater., 2013, 432: 323
|
80 |
Hajyakbary F, Sietsma J, Böttger A J, et al. An improved X-ray diffraction analysis method to characterize dislocation density in lath martensitic structures [J]. Mater. Sci. Eng., 2015, A639: 208
|
81 |
Susila P, Sturm D, Heilmaier M, et al. Effect of yttria particle size on the microstructure and compression creep properties of nanostructured oxide dispersion strengthened ferritic (Fe-12Cr-2W-0.5Y2O3) alloy [J]. Mater. Sci. Eng., 2011, A528: 4579
|
82 |
Wu Y T, Li C, Xia X C, et al. Precipitate coarsening and its effects on the hot deformation behavior of the recently developed γ'-strengthened superalloys [J]. J. Mater. Sci. Technol., 2021, 67: 95
|
83 |
Morito S, Yoshida H, Maki T, et al. Effect of block size on the strength of lath martensite in low carbon steels [J]. Mater. Sci. Eng., 2006, A438-440: 237
|
84 |
Taylor G I. The mechanism of plastic deformation of crystals. Part I.-Theoretical [J]. Proc. Roy. Soc., 1934, 145A: 362
|
85 |
Gladman T. Precipitation hardening in metals [J]. Met. Sci. J., 1999, 15: 30
|
86 |
Mao C L, Liu C X, Yu L M, et al. The correlation among microstructural parameter and dynamic strain aging (DSA) in influencing the mechanical properties of a reduced activated ferritic-martensitic (RAFM) steel [J]. Mater. Sci. Eng., 2019, A739: 90
|
87 |
Mao C L, Liu C X, Yu L M, et al. Mechanical properties and tensile deformation behavior of a reduced activated ferritic-martensitic (RAFM) steel at elevated temperatures [J]. Mater. Sci. Eng., 2018, A725: 283
|
88 |
Sahoo K C, Vanaja J, Parameswaran P, et al. Effect of thermal ageing on microstructure, tensile and impact properties of reduced activated ferritic-martensitic steel [J]. Mater. Sci. Eng., 2017, A686: 54
|
89 |
Sawada K, Miyahara K, Kushima H, et al. Contribution of microstructural factors to hardness change during creep exposure in mod. 9Cr-1Mo steel [J]. ISIJ Int., 2005, 45: 1934
|
90 |
Blum W, Götz G. Evolution of dislocation structure in martensitic steels: The subgrain size as a sensor for creep strain and residual creep life [J]. Steel Res., 1999, 70: 274
|
91 |
Sawada K, Takeda M, Maruyama K, et al. Effect of W on recovery of lath structure during creep of high chromium martensitic steels [J]. Mater. Sci. Eng., 1999, A267: 19
|
92 |
Sawada K, Maruyama K, Komine R, et al. Microstructural changes during creep and life assessment of mod. 9Cr-1Mo steel [J]. Tetsu Hagané, 1997, 83: 466
|
92 |
澤田 浩太, 丸山 公一, 小峰 龍司等. 改良9Cr-1Mo鋼のクリープ変形中の組織変化と寿命評価 [J]. 鉄と鋼, 1997; 83: 466
|
93 |
Kostka A, Tak K, Hellmig R, et al. On the contribution of carbides and micrograin boundaries to the creep strength of tempered martensite ferritic steels [J]. Acta Mater., 2007, 55: 539
|
94 |
Guo Q Y, Li Y M, Chen B, et al. Effect of high-temperature ageing on microstructure and creep properties of S31042 heat-resistant steel [J]. Acta Metall. Sin., 2021, 57: 82
|
94 |
郭倩颖, 李彦默, 陈 斌等. 高温时效处理对S31042耐热钢组织和蠕变性能的影响 [J]. 金属学报, 2021, 57: 82
|
95 |
Tan L, Yang Y, Busby J T. Effects of alloying elements and thermomechanical treatment on 9Cr reduced activation ferritic-martensitic (RAFM) steels [J]. J. Nucl. Mater., 2013, 442: S13
|
96 |
Hao T, Fan Z Q, Zhao S X, et al. Strengthening mechanism and thermal stability of severely deformed ferritic/martensitic steel [J]. Mater. Sci. Eng., 2014, A596: 244
|
97 |
Valiev R Z, Alexandrov I V, Zhu Y T, et al. Paradox of strength and ductility in metals processed bysevere plastic deformation [J]. J. Mater. Res., 2002, 17: 5
|
98 |
Liu W B, Zhang C, Xia Z X, et al. Strain-induced refinement and thermal stability of a nanocrystalline steel produced by surface mechanical attritiontreatment [J]. Mater. Sci. Eng., 2013, A568: 176
|
99 |
Samant S S, Singh I V, Singh R N. Influence of intermediate rolling on mechanical behavior of modified 9Cr-1Mo steel [J]. Mater. Sci. Eng., 2018, A738: 135
|
100 |
Song M, Sun C, Fan Z, et al. A roadmap for tailoring the strength and ductility of ferritic/martensitic T91 steel via thermo-mechanical treatment [J]. Acta Mater., 2016, 112: 361
|
101 |
Prakash P, Vanaja J, Reddy G V P, et al. On the effect of thermo-mechanical treatment on creep deformation and rupture behaviour of a reduced activation ferritic-martensitic steel [J]. J. Nucl. Mater., 2019, 520: 65
|
102 |
Mao C L, Liu C X, Liu G W, et al. The correlation between the microstructural parameters and mechanical properties of reduced activation ferritic-martensitic (RAFM) steel: Influence of roll deformation and medium temperature tempering [J]. Metall. Mater. Trans., 2021, 52A: 119
|
103 |
Chun Y B, Rhee C K, Lee D W, et al. Enhanced high-temperature mechanical properties of ARAA by thermo-mechanical processing [J]. Fusion Eng. Des., 2018, 136: 883
|
104 |
Abe F. Effect of quenching, tempering, and cold rolling on creep deformation behavior of a tempered martensitic 9Cr-1W steel [J]. Metall. Mater. Trans., 2003, 34A: 913
|
105 |
Kozikowski P M, Krawczyńska A T, Kulczyk M, et al. Tailoring mechanical properties of nano-structured Eurofer 97 steel for fusion applications [J]. Phys. Status Solidi, 2010, 7: 1388
|
106 |
Liu C X, Zhao Q H, Liu Y C, et al. Microstructural evolution of high Cr ferrite/martensite steel after deformation in metastable austenite zone [J]. Fusion Eng. Des., 2017, 125: 367
|
107 |
Shao Y, Liu C X, Yan Z S, et al. Formation mechanism and control methods of acicular ferrite in HSLA steels: A review [J]. J. Mater. Sci. Technol., 2018, 34: 737
|
108 |
Li X H, Liu Y C, Gan K F, et al. Acquiring a low yield ratio well synchronized with enhanced strength of HSLA pipeline steels through adjusting multiple-phase microstructures [J]. Mater. Sci. Eng., 2020, A785: 139350
|
109 |
Xie Z J, Han G, Zhou W H, et al. A novel multi-step intercritical heat treatment induces multi-phase microstructure with ultra-low yield ratio and high ductility in advanced high-strength steel [J]. Scr. Mater., 2018, 155: 164
|
110 |
Liu C X, Liu Y C, Zhang D T, et al. Bainite formation kinetics during isothermal holding in modified high Cr ferritic steel [J]. Metall. Mater. Trans., 2013, 44A: 5447
|
111 |
He H, Huang S H, Wang H, et al. Isothermal holding processes of a reduced activation ferritic/martensitic steel to form a bainitic/martensitic multiphase microstructure and its mechanical properties [J]. Mater. Sci. Eng., 2021, A822: 141645
|
112 |
Wang C C, Cui Q, Huo X J, et al. Design of reduced activation ferritic/martensitic steels by multiphase optimization during the entire processing [J]. ISIJ Int., 2019, 59: 1715
|
113 |
Liu W B, Zhang C, Xia Z X, et al. Improving high temperature creep resistance of reduced activation steels by addition of nitrogen and intermediate heat treatment [J]. J. Nucl. Mater., 2014, 455: 402
|
114 |
Watanabe T, Tabuchi M, Yamazaki M, et al. Creep damage evaluation of 9Cr-1Mo-V-Nb steel welded joints showing Type IV fracture [J]. Int. J. Press. Vessels Pip., 2006, 83: 63
|
115 |
Hongo H, Tabuchi M, Watanabe T. Type IV creep damage behavior in Gr.91 steel welded joints [J]. Metall. Mater. Trans., 2011, 43A: 1163
|
116 |
Abson D J, Rothwell J S. Review of type IV cracking of weldments in 9-12%Cr creep strength enhanced ferritic steels [J]. Int. Mater. Rev., 2013, 58: 437
|
117 |
Liu C X, Liu Y C, Zhou X S, et al. Application of difusion bonding technique in fabrication of blanket module components of nuclear fusion reactor [J]. J. Netshape Forming Eng., 2015, 7(1): 1
|
117 |
刘晨曦, 刘永长, 周晓胜等. 扩散连接技术在核聚变反应堆包层模块制造中的应用 [J]. 精密成形工程, 2015, 7(1): 1
|
118 |
Huang Q, Baluc N, Dai Y, et al. Recent progress of R&D activities on reduced activation ferritic/martensitic steels [J]. J. Nucl. Mater., 2013, 442: S2
|
119 |
Li C J, Huang Q Y, Wu Q S, et al. Welding techniques development of CLAM steel for test blanket module [J]. Fusion Eng. Des., 2009, 84: 1184
|
120 |
Cai W N, Daehn G, Vivek A, et al. A state-of-the-art review on solid-state metal joining [A]. Proceedings of the ASME 2018 13th International Manufacturing Science and Engineering Conference [C]. College Station, Texas, USA: American Society of Mechanical Engineers, 2018: 1
|
121 |
Cardella A, Rigal E, Bedel L, et al. The manufacturing technologies of the European breeding blankets [J]. J. Nucl. Mater., 2004, 329-333: 133
|
122 |
Zhou X S, Liu Y C, Yu L M, et al. Uniaxial diffusion bonding of CLAM/CLAM steels: Microstructure and mechanical performance [J]. J. Nucl. Mater., 2015, 461: 301
|
123 |
Chen J G, Liu C X, Wei C, et al. Study on microstructure and mechanical properties of direct diffusion bonded low-carbon RAFM steels [J]. J. Manuf. Processes, 2019, 43: 192
|
124 |
Li C, Huang Q, Zhang P. Effect of surface preparation on CLAM/CLAM hot isostatic pressing diffusion bonding joints [J]. J. Nucl. Mater., 2009, 386-388: 550
|
125 |
Gao Y, Wang Z M, Liu Y C, et al. Diffusion bonding of 9Cr martensitic/ferritic heat-resistant steels with an electrodeposited Ni interlayer [J]. Metals, 2018, 8: 1012
|
126 |
Zhou X S, Dong Y T, Liu C X, et al. Transient liquid phase bonding of CLAM/CLAM steels with Ni-based amorphous foil as the interlayer [J]. Mater. Des., 2015, 88: 1321
|
127 |
Cook G O, Sorensen C D. Overview of transient liquid phase and partial transient liquid phase bonding [J]. J. Mater. Sci., 2011, 46: 5305
|
128 |
Li W C, Li X H, Liu Y C, et al. Homogenization stage during TLP bonding of RAFM steel with a Fe-Si-B interlayer: Microstructure evolution and mechanical properties [J]. Mater. Sci. Eng., 2020, A780: 139205
|
129 |
Hua Y, Chen J G, Yu L M, et al. Microstructure evolution and mechanical properties of dissimilar material diffusion-bonded joint for high Cr ferrite heat resistant steel and austenitic heat resistant steel [J]. Acta Metall. Sin., 2022, doi: 10.11900/0412.1961.2020.00446
|
129 |
化 雨, 陈建国, 余黎明等. 高Cr铁素体耐热钢与奥氏体耐热钢的异种材料扩散连接接头组织演变及力学性能 [J]. 金属学报, 2022, doi: 10.11900/0412.1961.2020.00446
|
130 |
Noh S, Kim B, Kasada R, et al. Diffusion bonding between ODS ferritic steel and F82H steel for fusion applications [J]. J. Nucl. Mater., 2012, 426: 208
|
131 |
Fu H Y, Nagasaka T, Muroga T, et al. Microstructural characterization of a diffusion-bonded joint for 9Cr-ODS and JLF-1 reduced activation ferritic/martensitic steels [J]. Fusion Eng. Des., 2014, 89: 1658
|
132 |
Zhong Z H, Hinoki T, Kohyama A. Effect of holding time on the microstructure and strength of tungsten/ferritic steel joints diffusion bonded with a nickel interlayer [J]. Mater. Sci. Eng., 2009, A518: 167
|
133 |
Zhong Z H, Jung H C, Hinoki T, et al. Effect of joining temperature on the microstructure and strength of tungsten/ferritic steel joints diffusion bonded with a nickel interlayer [J]. J. Mater. Process. Technol., 2010, 210: 1805
|
134 |
Zhong Z H, Hinoki T, Nozawa T, et al. Microstructure and mechanical properties of diffusion bonded joints between tungsten and F82H steel using a titanium interlayer [J]. J. Alloys Compd., 2010, 489: 545
|
135 |
Basuki W W, Aktaa J. Investigation of tungsten/EUROFER97 diffusion bonding using Nb interlayer [J]. Fusion Eng. Des., 2011, 86: 2585
|
136 |
Basuki W W, Aktaa J. Diffusion bonding between W and EUROFER97 using V interlayer [J]. J. Nucl. Mater., 2012, 429: 335
|
137 |
Mishra R S, Ma Z Y. Friction stir welding and processing [J]. Mater. Sci. Eng., 2005, R50: 1
|
138 |
Cui L, Zhang C, Liu Y C, et al. Recent progress in friction stir welding tools used for steels [J]. J. Iron Steel Res. Int., 2018, 25: 477
|
139 |
Zhang C, Cui L, Liu Y C, et al. Microstructures and mechanical properties of friction stir welds on 9% Cr reduced activation ferritic/martensitic steel [J]. J. Mater. Sci. Technol., 2018, 34: 756
|
140 |
Zhang C, Cui L, Wang D P, et al. Effect of microstructures to tensile and impact properties of stir zone on 9%Cr reduced activation ferritic/martensitic steel friction stir welds [J]. Mater. Sci. Eng., 2018, A729: 257
|
141 |
Hua P, Moronov S, Nie C Z, et al. Microstructure and properties in friction stir weld of 12Cr steel [J]. Sci. Technol. Weld. Joining, 2014, 19: 76
|
142 |
Noh S, Ando M, Tanigawa H, et al. Friction stir welding of F82H steel for fusion applications [J]. J. Nucl. Mater., 2016, 478: 1
|
143 |
Manugula V L, Rajulapati K V, Reddy G M, et al. Influence of tool rotational speed and post-weld heat treatments on friction stir welded reduced activation ferritic-martensitic steel [J]. Metall. Mater. Trans., 2017, 48: 3702
|
144 |
Zhang C, Cui L, Wang D P, et al. The heterogeneous microstructure of heat affect zone and its effect on creep resistance for friction stir joints on 9Cr-1.5W heat resistant steel [J]. Scr. Mater., 2019, 158: 6
|
145 |
Cui L, Gao H, Li H J, et al. Effect of precipitate evolution on creep damage of reduced activation ferritic/martensitic steel friction stir welded joint [J]. J. Alloys Compd., 2019, 808: 151738
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|