Please wait a minute...
金属学报  2020, Vol. 56 Issue (4): 642-652    DOI: 10.11900/0412.1961.2019.00395
  研究论文 本期目录 | 过刊浏览 |
高强度含NNi奥氏体不锈钢08Cr19Mn6Ni3Cu2N (QN1803)的显微组织及性能
蒋一1,程满浪2,姜海洪1,周庆龙1,姜美雪1,江来珠1(),蒋益明2
1.青拓集团有限公司 宁德 355006
2.复旦大学材料科学系 上海 200433
Microstructure and Properties of 08Cr19Mn6Ni3Cu2N (QN1803) High Strength Nitrogen Alloyed LowNickel Austenitic Stainless Steel
JIANG Yi1,CHENG Manlang2,JIANG Haihong1,ZHOU Qinglong1,JIANG Meixue1,JIANG Laizhu1(),JIANG Yiming2
1.Qing Tuo Group Co. , Ltd. , Ningde 355006, China
2.Department of Materials Science, Fudan University, Shanghai 200433, China
引用本文:

蒋一,程满浪,姜海洪,周庆龙,姜美雪,江来珠,蒋益明. 高强度含NNi奥氏体不锈钢08Cr19Mn6Ni3Cu2N (QN1803)的显微组织及性能[J]. 金属学报, 2020, 56(4): 642-652.
Yi JIANG, Manlang CHENG, Haihong JIANG, Qinglong ZHOU, Meixue JIANG, Laizhu JIANG, Yiming JIANG. Microstructure and Properties of 08Cr19Mn6Ni3Cu2N (QN1803) High Strength Nitrogen Alloyed LowNickel Austenitic Stainless Steel[J]. Acta Metall Sin, 2020, 56(4): 642-652.

全文: PDF(15314 KB)   HTML
摘要: 

借助Thermo-Calc热力学相图计算软件,设计了可用于替代06Cr19Ni10 (S30408)的高强度含N节Ni奥氏体不锈钢08Cr19Mn6Ni3Cu2N (QN1803),通过OM、SEM和电化学工作站等方法研究了其组织及性能。结果表明,当固溶温度从1040 ℃升至1120 ℃时, QN1803钢的晶粒尺寸均小于S30408,两者平均晶粒尺寸之差由1.8 μm提高至16.27 μm。N原子起到细晶和固溶强化的作用,使QN1803钢的屈服强度提高至400 MPa以上,达到S30408钢的1.3倍;N原子降低了奥氏体不锈钢的低温韧性,使QN1803钢在-60 ℃以下的冲击功显著低于S30408钢。经600~900 ℃敏化处理后,QN1803钢沿晶界析出富Cr的碳化物,析出的鼻尖温度为800 ℃;由于N原子抑制碳化物的形核和长大,QN1803钢发生晶间腐蚀需要更长的敏化时间,在700 ℃敏化处理时,QN1803钢发生晶间腐蚀所需要的时效时间是S30408钢的2倍。与S30408钢相比,QN1803钢钝化膜的N和Cr元素含量更高;QN1803钢属于稳态奥氏体不锈钢,具有与S30408钢相近的点蚀速率(4.72 g/(m2·h))和更高的点蚀电位(327 mV);经60%冷轧压下变形后,QN1803钢的耐点蚀能力是S30408钢的1.15倍,制品应力开裂风险更低。由于添加了1.65%的Cu元素,使 QN1803钢在5%H2SO4腐蚀溶液中,表面可生成一层保护基体的富铜膜,从而使其在稀H2SO4溶液中的耐腐蚀能力达到S30408钢的6.6倍。

关键词 节Ni奥氏体不锈钢高强度稳态奥氏体力学性能耐腐蚀性能    
Abstract

Nickel is a very important material, yet the resources are deficient. 08Cr19Ni10 (S30408) steel is expensive with containing 8% (mass fraction) nickel and has a low strength, while low nickel austenitic stainless steel has poor corrosion resistance property.In order to save nickel resources, the strength of austenitic stainless steel was improved by partly replacing Ni with Mn and N on the basis of ensuring that the corrosion is as well as S30408, 08Cr19Mn6Ni3Cu2N (QN1803) high strength nitrogen alloyed low nickel austenitic stainless steel was designed by Thermo-Calc software in place of S30408 steel. Microstructures, mechanical and corrosion resistant properties of QN1803 steel were investigated by means of OM, SEM, electrochemistry workstation and other methods. The results reveal the grain size of QN1803 steel is smaller than that of S30408, and difference of average grain size is increased from 1.8 μm to 16.27 μm with temperature rising from 1040 ℃ to 1120 ℃. Yield strength of QN1803 steel is increased to more than 400 MPa, and is 1.3 times than that of S30408 steel for nitrogen playing a role of grains refining and solution reinforcing. The impact energy of QN1803 steel is significantly lower than that of S30408 steel for nitrogen atoms reducing low temperature toughness of nitrogen alloyed austenitic stainless steel below -60 ℃. After 600~900 ℃ temperature ageing, chromium-rich carbideparticles first occur in grain boundaries, nose temperature of precipitation phase is 800 ℃; the inter-granular corrosion of QN1803 steel need more ageing time than S30408 steel, because nitrogen atoms can impede nucleation and growth of carbides, inter-granular corrosion of QN1803 steel is occured with double ageing time of S30408 steel at ageing temperature 700 ℃. Compared with S30408 steel, the passivation film depth of QN1803 steel has higher content of nitrogen and chromium; QN1803 steel has similar pitting corrosion rate (4.72 g/(m2·h)) and more stable austenitic microstructure and higher corrosion potential (327 mV); the pitting resistance of QN1803 steel is 1.15 times than that of S30408 steel with 60% cold reduction, and products have lower risk of stress cracking than S30408 steel. Due to addition of 1.65%Cu element improving corrosion resistance capability in dilute sulfuric acid solution, the surface of QN1803 steel can be enriched with a layer of copper-rich film protecting substrate, as a result, its corrosion resistance reaches 6.6 times than that of S30408 steel in 5% dilute sulfuric acid solution.

Key wordslow nickel austenitic stainless steel    high strength    stable austenite    mechanical property    corrosion resistant property
收稿日期: 2019-11-19     
ZTFLH:  TG142.1  
基金资助:福建省科技重大专项专题项目(2017HZ0001-3)
作者简介: 蒋 一,男,1988年生,硕士
SteelCSiMnCrNiMoCuNFe
08Cr19Mn6Ni3Cu2N (QN1803)0.0680.466.2018.203.010.121.650.241Bal.
06Cr19Ni10 (S30408)0.0400.451.0218.208.020.100.100.045Bal.
表1  08Cr19Mn6Ni3Cu2N和06Cr19Ni10奥氏体不锈钢的化学成分 (mass fraction / %)
图1  通过Thermo-Calc计算的QN1803和 S30408钢的相图
图2  QN1803和 S30408钢在Schaeffler-Delong图中的分布
图3  固溶温度对QN1803和S30408钢晶粒尺寸的影响

Steel

Hardness

HV

Tensile strength

MPa

Yield strength

MPa

Elongation

%

Yield ratio

QN1803215755425510.56
S30408165680285580.42
表2  QN1803和S30408钢的室温力学性能
图4  N含量对奥氏体不锈钢屈服强度和延伸率的影响
图5  QN1803和S30408钢不同温度下力学性能对比
图6  QN1803和S30408钢的冲击功对比
图7  冷变形对QN1803和S30408钢磁性相含量和相对磁导率的影响
图8  时效处理对QN1803钢显微组织的影响
图9  QN1803钢中碳化物析出曲线
图10  QN1803钢经900 ℃保温5 h后析出相的EPMA像及EDS分析
TemperatureAgeing time / min
5103060120300
600-0.080.120.130.300.80
650-0.130.772.122.314.69
7000.360.752.563.694.275.36
750-0.512.443.455.024.07
800-0.120.250.350.400.31
表3  QN1803钢不同敏化条件下电流比Ra (Ir/Ia)测试结果 (%)
图11  QN1803和S30408 钢热处理温度-时间-晶间腐蚀敏感性(TTS)曲线对比
图12  不同点蚀当量的奥氏体不锈钢的点蚀电位对比

Steel

Self-corrosive

potential / mV

Pitting potential

mV

Corrosion rate / (g·m-2·h-1)
In 6%FeCl3+0.16%HClIn 5%H2SO4In 5%HCl
QN1803-883274.7248.750.39
S30408-1102984.96321.641.98
表4  QN1803和S30408不锈钢的耐腐蚀性能对比
图13  QN1803和S30408钢表层合金元素分布
图14  Cr、N元素在QN1803和S30408钢表层的分布
图15  QN1803和S30408不锈钢的极化曲线对比
图16  QN1803和S30408钢经5%H2SO4溶液腐蚀6 h后表面形貌的EPMA像
图17  拉深制品在0.16%HCl+6%FeCl3溶液浸泡24 h后宏观形貌
[1] Li Z, Gao Q, He B, et al. Microstructure and mechanical properties of 1Cr17Mn9Ni4N steel [J]. J. Iron Steel Res., 2005, 17(2): 68
[1] 李 志, 高 谦, 何 冰等. 节镍型奥氏体不锈钢1Cr17Mn9Ni4N的组织和力学性能 [J]. 钢铁研究学报, 2005, 17(2): 68
[2] Mukherjee M, Pal T K. Role of microstructural constituents on surface crack formation during hot rolling of standard and low nickel austenitic stainless steels [J]. Acta Metall. Sin. (Engl. Lett., 2013, 26: 206
[3] Srikanth S, Saravanan P, Sisodia S, et al. Metallurgical investigation into the incidence of delayed catastrophic cracking in low nickel austenitic stainless steel coils [J]. J. Fail. Anal. Prev., 2014, 14: 220
[4] Monticelli C, Criado M, Fajardo S, et al. Corrosion behaviour of a low Ni austenitic stainless steel in carbonated chloride-polluted alkali-activated fly ash mortar [J]. Cem. Concr. Res., 2014, 55: 49
[5] Shin J H, Lee J, Min D J, et al. Solubility of nitrogen in high manganese steel (HMNS) melts: Interaction parameter between Mn and N [J]. Metall. Mater. Trans., 2011, 42B: 1081
[6] Lu S Y. Introduction to Stainless Steel [M]. Beijing: Chemical Industry Press, 2013: 27
[6] 陆世英. 不锈钢概论 [M]. 北京: 化学工业出版社, 2013: 27
[7] Du D X, Fu R D, Li Y J, et al. Modification of the Hall-Patch equation for friction-stir-processing microstructures of high-nitrogen steel [J]. Mater. Sci. Eng, 2015, A640: 190
[8] Feichtinger H K, Stein G. Melting of high nitrogen steels [J]. Mater. Sci. Forum, 1999, 318-320: 261
[9] Xue R R, Song Z G, Zheng W J, et al. Effect of adding nitrogen on grain size and mechanical properties of 316L [J]. J. Iron Steel Res., 2013, 25(10): 36
[9] 薛忍让, 宋志刚, 郑文杰等. 氮对316L晶粒尺寸和力学性能的影响 [J]. 钢铁研究学报, 2013, 25(10): 36
[10] Deng Y H, Yang Y H, Cao J C, et al. Research on dynamic recrystallization behavior of 23Cr-2.2Ni-6.3Mn-0.26N low nickel type duplex stainless steel [J]. Acta Metall. Sin., 2019, 55: 445
[10] 邓亚辉, 杨银辉, 曹建春等. 23Cr-2.2Ni-6.3Mn-0.26N节Ni型双相不锈钢动态再结晶行为研究 [J]. 金属学报, 2019, 55: 445
[11] Ma Y X. Research on microstructure and mechanism DBT of high nitrogenaustenitic stainless steel [D]. Kunming: Kunming University of Science and Technology, 2008
[11] 马玉喜. 高氮奥氏体不锈钢组织结构及韧脆转变机制的研究 [D]. 昆明: 昆明理工大学, 2008
[12] Kuniya J, Masaoka I, Sasaki R. Effect of cold work on the stress corrosion cracking of nonsensitized AISI 304 stainless steel in high-temperature oxygenated water [J]. Corrosion, 1988, 44: 21
[13] Hua B D, Shen X S, Zhou D R, et al. On the distribution of chromium in the chromiumdepleted zone of a sensitized 18-8 stainless steels [J]. Acta Metall. Sin., 1965, 8: 98
[13] 华保定, 沈行素, 周德瑞等. 铬在18铬-8镍型不锈钢晶粒边界的贫铬层中的分布 [J]. 金属学报, 1965, 8: 98
[14] Ogawa M, Hiraoka K, Katada Y, et al. Chromium nitride precipitation behavior in weld heat-affected zone of high nitrogen stainless steel [J]. ISIJ Int., 2002, 42: 1391
[15] Qin F M, Li Y J, Zhao X D, et al. Effect of nitrogen content on precipitation behavior and mechanical properties of Mn18Cr18N austenitic stainless steel [J]. Acta Metall. Sin., 2018, 54: 55
[15] 秦凤明, 李亚杰, 赵晓东等. 含N量对Mn18Cr18N奥氏体不锈钢的析出行为及力学性能的影响 [J]. 金属学报, 2018, 54: 55
[16] Fang F, Li J Y, Wang Y D, et al. Microstructure and property of Cr18Mn6Ni4N nickel-saving austenite stainless steel [J]. J. Harbin Eng. Univ., 2015, (2): 276
[16] 房 菲, 李静媛, 王一德, 等. 节镍奥氏体不锈钢Cr18Mn6Ni4N的组织及性能 [J]. 哈尔滨工程大学学报, 2015, (2): 276
[17] Jargelius R F A, Hertzman S, Symniotis E, et al. Evaluation of the EPR technique for measuring sensitization in type 304 stainless steel [J]. Corrosion, 1991, 47: 429
[18] Fang Z, Zhang L, Wu Y S, et al. Thioacetamide as an activator for the potentiodynamic reactivation method in evaluating susceptibility of type 304L stainless steel to intergranular corrosion [J]. Corrosion, 1995, 51: 124
[19] Xie C Y, Huang Z D, Chen L L, et al. Influence of heat treatment process on the intergranular corrosion susceptibility of 304 stainless steel evaluated by electrochemical potentiodynamic reactivation method [J]. Phys. Test. Chem. Anal. Part A: Phys. Test., 2017, 53(5): 303
[19] 谢春玉, 黄子东, 陈丽玲等. 使用电化学动电位再活化法研究热处理工艺对304不锈钢晶间腐蚀敏感性的影响 [J]. 理化检验(物理分册), 2017, 53(5): 303
[20] Li X, Ni Y F, Jiang Y M, et al. Intergranular corrosion of low Cr ferritic stainless steel 429 evaluated by the optimized double loop electrochemical potentiokinetic reactivation test [J]. Adv. Mater. Sci. Eng., 2015, 2015: 716874
[21] Sun J K, Sun L, Dai N W, et al. Investigation on ultra-pure ferritic stainless steel 436L susceptibility to intergranular corrosion using optimised double loop electrochemical potentiokinetic reactivation method [J]. Corros. Eng. Sci. Technol., 2018, 53: 574
[22] Their H, Bbaumel E. Influence of N on the dispersiveness of austenitic stainless steel [J]. Arch. Eisenhuttenwesen, 1969, 40: 333
[23] Huang J H, Fu Y F. Pitting resistance equivalent (PRE) and super stainless steel for pressure vessels [J]. Press. Vessel Technol., 2013, 30(4): 41
[23] 黄嘉琥, 付逸芳. 耐点蚀当量(PRE)与压力容器用超级不锈钢 [J]. 压力容器, 2013, 30(4): 41
[24] Huang M, Zhang T K, Lu S Y. Effect and ITS mechanism of nitrogen on pitting corrosion of austenitic stainless steel [J]. J. Iron Steel Res., 1991(Suppl.): 19
[24] 黄 敏, 张廷凯, 陆世英. 氮对奥氏体不锈钢耐点蚀性能的影响及机理探讨 [J]. 钢铁研究学报, 1991(增刊): 19
[25] Chen Z Q. Recent development in high nitrogen stainless steel research [J]. Baosteel Technol., 2005, (5): 11
[25] 陈志强. 高氮不锈钢研究的发展近况 [J]. 宝钢技术, 2005, (5): 11
[26] Lu S Y. Super Stainless Steel and High Nickel Corrosion Resistant Alloy [M]. Beijing: Chemical Industry Press, 2012: 1
[26] 陆世英. 超级不锈钢和高镍耐蚀合金 [M]. 北京: 化学工业出版社, 2012: 1
[27] Wu J. Duplex Stainless Steel [M]. Beijing: Metallurgical Industry Press, 1999: 1
[27] 吴 玖. 双相不锈钢 [M]. 北京: 冶金工业出版社, 1999: 1
[28] Ishii K, Ishii T, Ota H. Ni-and Mo-free ferritic stainless steel with high corrosion resistance, JFE443CT [J]. JFE Technical Report, 2008, (12): 39
[29] Velasco F, Ruiz-Román J M, Torralba J M, et al. Corrosion resistance of alloyed powder metallurgy austenitic stainless steels in acid solutions [J]. Br. Corros. J., 1996, 31: 295
[30] Jing Y X, Zhang Y, Dai A L, et al. Effect of copper on corrosion resistance of Cr-Mn stainless steel [J]. Corros. Prot., 2009, 30: 713
[30] 金云学, 张 艳, 戴安伦等. 铜对铬锰不锈钢耐蚀性的影响 [J]. 腐蚀与防护, 2009, 30: 713
[31] Qin Z R, Jing Y Z, Dong Z A. The influence of copper content to the microstructure and corrosion behavior of cast stainless steel [J]. Shanghai Met., 1995, 17(5): 51
[31] 秦紫瑞, 景银忠, 董哲安. Cu含量对铸造不锈钢的组织及其腐蚀行为的影响 [J]. 上海金属, 1995, 17(5): 51
[32] Nan L, Liu Y Q, Yang W C, et al. Study on antibacterial properties of coppercontaining antibacterial stainless steel [J]. Acta Metall. Sin., 2007, 43: 1065
[32] 南 黎, 刘永前, 杨伟超等. 含铜抗菌不锈钢的抗菌特性研究 [J]. 金属学报, 2007, 43: 1065
[1] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[2] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[3] 郑亮, 张强, 李周, 张国庆. /降氧过程对高温合金粉末表面特性和合金性能的影响:粉末存储到脱气处理[J]. 金属学报, 2023, 59(9): 1265-1278.
[4] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[5] 丁桦, 张宇, 蔡明晖, 唐正友. 奥氏体基Fe-Mn-Al-C轻质钢的研究进展[J]. 金属学报, 2023, 59(8): 1027-1041.
[6] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[7] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[8] 袁江淮, 王振玉, 马冠水, 周广学, 程晓英, 汪爱英. Cr2AlC涂层相结构演变对力学性能的影响[J]. 金属学报, 2023, 59(7): 961-968.
[9] 司永礼, 薛金涛, 王幸福, 梁驹华, 史子木, 韩福生. Cr添加对孪生诱发塑性钢腐蚀行为的影响[J]. 金属学报, 2023, 59(7): 905-914.
[10] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[11] 侯娟, 代斌斌, 闵师领, 刘慧, 蒋梦蕾, 杨帆. 尺寸设计对选区激光熔化304L不锈钢显微组织与性能的影响[J]. 金属学报, 2023, 59(5): 623-635.
[12] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[13] 刘满平, 薛周磊, 彭振, 陈昱林, 丁立鹏, 贾志宏. 后时效对超细晶6061铝合金微观结构与力学性能的影响[J]. 金属学报, 2023, 59(5): 657-667.
[14] 吴欣强, 戎利建, 谭季波, 陈胜虎, 胡小锋, 张洋鹏, 张兹瑜. Pb-Bi腐蚀Si增强型铁素体/马氏体钢和奥氏体不锈钢的研究进展[J]. 金属学报, 2023, 59(4): 502-512.
[15] 李述军, 侯文韬, 郝玉琳, 杨锐. 3D打印医用钛合金多孔材料力学性能研究进展[J]. 金属学报, 2023, 59(4): 478-488.