Please wait a minute...
金属学报  2020, Vol. 56 Issue (4): 653-660    DOI: 10.11900/0412.1961.2019.00398
  研究论文 本期目录 | 过刊浏览 |
铁素体-贝氏体/马氏体双相钢中界面的定量化晶体学表征
李秀程,孙明煜,赵靖霄,王学林,尚成嘉()
北京科技大学钢铁共性技术协同创新中心 北京 100083
Quantitative Crystallographic Characterization of Boundaries in Ferrite-Bainite/Martensite Dual-Phase Steels
LI Xiucheng,SUN Mingyu,ZHAO Jingxiao,WANG Xuelin,SHANG Chengjia()
Collaborative Innovation Center of Steel Technology, University of Science and Technology Beijing, Beijing 100083, China
引用本文:

李秀程,孙明煜,赵靖霄,王学林,尚成嘉. 铁素体-贝氏体/马氏体双相钢中界面的定量化晶体学表征[J]. 金属学报, 2020, 56(4): 653-660.
Xiucheng LI, Mingyu SUN, Jingxiao ZHAO, Xuelin WANG, Chengjia SHANG. Quantitative Crystallographic Characterization of Boundaries in Ferrite-Bainite/Martensite Dual-Phase Steels[J]. Acta Metall Sin, 2020, 56(4): 653-660.

全文: PDF(9919 KB)   HTML
摘要: 

利用两相区轧制以及增加轧制后弛豫时间的方法,获得了具有不同铁素体-贝氏体/马氏体比例的双相显微组织实验用钢样品。通过对2种实验用钢的EBSD表征发现,对铁素体间的界面和铁素体与贝氏体/马氏体之间的界面而言,如果界面具有较大的整体取向差,则通常也具有较大的解理面取向差和滑移面取向差;但是如果贝氏体和马氏体内部变体间的界面具有较大的整体取向差,则通常也具有较大的解理面取向差,但并不一定具有较大的滑移面取向差,这种现象在马氏体组织中更为显著。双相钢的塑韧性不仅受到两相比例影响,还受两相晶粒细化程度的影响,所以要提高其综合力学性能,需要从有效滑移单元和有效解理单元2个方面对双相组织分别进行细化。

关键词 双相钢显微组织晶界取向差晶粒细化    
Abstract

In this study, two dual-phase steels with different ferrite-bainite/martensite ratios were obtained by rolling in two-phase region and setting the relaxation time after rolling. The tested steel with smaller ferrite content obtained higher yield strength and tensile strength, greater total elongation and lower ductile-brittle transition temperature; while the steel with higher ferrite content obtained higher uniform elongation and lower yield strength ratio. The EBSD characterization of the two steels shows that for the ferrite-ferrite boundaries and ferrite-bainite/martensite boundaries, if the interface has a large overall misorientation angle, it usually has a large cleavage plane misorientation angle and large slip plane misorientation angle; but for the variant-variant boundaries within bainite or martensite, if the interface has a large overall misorientation angle, it usually has a large cleavage plane misorientation angle, but not necessarily has a large slip plane misorientation angle, and this phenomenon is more significant in martensite microstructure. The ductility of dual-phase steel is not only affected by the proportion of the two phases, but also influenced by the grain refinement of the two phases. Therefore, in order to improve the comprehensive mechanical properties of the dual phase steel, it is necessary to refine the dual phase microstructure from the view of effective slip unit and the effective cleavage unit.

Key wordsdual-phase steel    microstructure    grain boundary    misorientation    grain refinement
收稿日期: 2019-11-22     
ZTFLH:  TG142  
基金资助:国家重点研发计划项目(2017YFB0304900)
作者简介: 李秀程,男,1983年生,博士
PassDQ810AC730

Thickness

mm

Temperature

Rolling reduction ratio / %

Thickness

mm

Temperature

Rolling reduction ratio / %
0801200-801200-
168110015.068110015.0
255105019.755105019.7
344100020.044100020.0
43395025.03495022.7
52783018.22883021.4
62382014.82481014.3
72081013.0227408.3
8---207309.1
表1  2种实验用钢的热轧工艺
图1  2种实验用钢显微组织的OM像
图2  2种实验用钢的低倍EBSD像及整体取向差5°以上界面(红线)分布图

Steel

Yield strength

MPa

Tensile strength

MPa

Yield ratio

Uniform elongation

%

Total elongation

%

DQ8105507990.6910.125.6
AC7304577530.6111.922.8
表2  2种实验用钢的拉伸力学性能
Steel-40 ℃-60 ℃-80 ℃
DQ810147, 149, 181 (average: 159)123, 139, 161 (141)28, 43, 14 (28)
AC73050, 44, 38 (44)22, 39, 15 (25)17, 16, 11 (15)
表3  2种实验用钢的系列低温Charpy冲击韧性 (J)
图3  DQ810样品的EBSD像及5°以上界面(红线)分布图,及点A到点B连线上各界面的取向差角度
图4  AC730样品的EBSD像及5°以上界面(红线)分布图,及点A到点B连线上各界面的取向差角度
图5  以整体取向差统计的2种实验用钢界面密度图(直方图)与分布图(线形图)
图6  以解理面取向差统计的2种实验用钢界面密度图(直方图)与分布图(线形图)
图7  以滑移面取向差统计的2种实验用钢界面密度图(直方图)与分布图(线形图)
[1] Xia D X, Wang X L, Li X C, et al. Properties and microstructure of thirdgeneration X90 pipeline steel [J]. Acta Metall. Sin., 2013, 49: 271
[1] 夏佃秀, 王学林, 李秀程等. X90级别第三代管线钢的力学性能与组织特征 [J]. 金属学报, 2013, 49: 271
[2] Nie W J, Shang C J, Guan H L, et al. Control of microstructures of ferrite/bainite (F/B) dual-phase steels and analysis of their resistance to deformation behavior [J]. Acta Metall. Sin., 2012, 48: 298
[2] 聂文金, 尚成嘉, 关海龙等. 铁素体/贝氏体(F/B)双相钢组织调控及其抗变形行为分析 [J]. 金属学报, 2012, 48: 298
[3] Meng D L, Kang Y L, Zheng X F, et al. Effect of two-stage controlled cooling on the microstructure and properties of Mo-containing X80 high-deformability pipeline steel [J]. J. Univ. Sci. Technol. Beijing, 2011, 33: 834
[3] 孟德亮, 康永林, 郑晓飞等. 两阶段控制冷却工艺对含钼X80抗大变形管线钢组织与性能的影响 [J]. 北京科技大学学报, 2011, 33: 834
[4] Zhou C, Yan L, Zhang P, et al. Microstructure and mechanical properties of EH47 high strength brittle crack arrest steel for container ship [J]. Trans. Mater. Heat Treat., 2017, 38(8): 83
[4] 周 成, 严 玲, 张 鹏等. 集装箱船用EH47高止裂钢的组织和性能 [J]. 材料热处理学报, 2017, 38(8): 83
[5] Ishikawa N, Endo S, Kondo J. High performance UOE linepipes [J]. JFE Technol. Rep., 2006, 12: 15
[6] Jiao D T, Cai Q W, Wu H B. Effects of cooling process after rolling on microstructure and yield ratio of high-strain pipeline steel X80 [J]. Acta Metall. Sin., 2009, 45: 1111
[6] 焦多田, 蔡庆伍, 武会宾. 轧后冷却制度对X80级抗大变形管线钢组织和屈强比的影响 [J]. 金属学报, 2009, 45: 1111
[7] Hanamura T, Yin F, Nagai K. Ductile-brittle transition temperature of ultrafine ferrite/cementite microstructure in a low carbon steel controlled by effective grain size [J]. ISIJ Int., 2004, 44: 610
[8] Morito S, Huang X, Furuhara T, et al. The morphology and crystallography of lath martensite in alloy steels [J]. Acta Mater., 2006, 54: 5323
[9] Kitahara H, Ueji R, Tsuji N, et al. Crystallographic features of lath martensite in low-carbon steel [J]. Acta Mater., 2006, 54: 1279
[10] Lambert-Perlade A, Gourgues A F, Pineau A. Austenite to bainite phase transformation in the heat-affected zone of a high strength low alloy steel [J]. Acta Mater., 2004, 52: 2337
[11] Karthikeyan T, Dash M K, Ravikirana K, et al. Effect of prior-austenite grain refinement on microstructure, mechanical properties and thermal embrittlement of 9Cr-1Mo-0.1C steel [J]. J. Nucl. Mater., 2017, 494: 260
[12] Miao C L, Shang C J, Zhang G D, et al. Recrystallization and strain accumulation behaviors of high Nb-bearing line pipe steel in plate and strip rolling [J]. Mater. Sci. Eng., 2010, A527: 4985
[13] Miao C L, Shang C J, Zurob H S, et al. Recrystallization, precipitation behaviors, and refinement of austenite grains in high Mn, high Nb steel [J]. Metall. Mater. Trans., 2012, 43A: 665
[14] Bouyne E, Flower H M, Lindley T C, et al. Use of EBSD technique to examine microstructure and cracking in a bainitic steel [J]. Scr. Mater., 1998, 39: 295
[15] Wang C F, Wang M Q, Shi J, et al. Effect of microstructural refinement on the toughness of low carbon martensitic steel [J]. Scr. Mater., 2008, 58: 492
[16] Tomita Y, Okabayashi K. Effect of microstructure on strength and toughness of heat-treated low alloy structural steels [J]. Metall. Trans., 1986, 17A: 1203
[17] Morito S, Yoshida H, Maki T, et al. Effect of block size on the strength of lath martensite in low carbon steels [J]. Mater. Sci. Eng., 2006, A438-440: 237
[18] Kim M C, Oh Y J, Hong J H. Characterization of boundaries and determination of effective grain size in Mn-Mo-Ni low alloy steel from the view of misorientation [J]. Scr. Mater., 2000, 43: 205
[19] Hwang B, Kim Y G, Lee S, et al. Effective grain size and Charpy impact properties of high-toughness X70 pipeline steels [J]. Metall. Mater. Trans., 2005, 36A: 2107
[20] Miao C L, Shang C J, Wang X M, et al. Microstructure and toughness of HAZ in X80 pipeline steel with high Nb content [J]. Acta Metall. Sin., 2010, 46: 541
[20] 缪成亮, 尚成嘉, 王学敏等. 高Nb X80管线钢焊接热影响区显微组织与韧性 [J]. 金属学报, 2010, 46: 541
[21] Lambert A, Garat X, Sturel T, et al. Application of acoustic emission to the study of cleavage fracture mechanism in a HSLA steel [J]. Scr. Mater., 2000, 43: 161
[22] You Y, Shang C J, Nie W J, et al. Investigation on the microstructure and toughness of coarse grained heat affected zone in X-100 multi-phase pipeline steel with high Nb content [J]. Mater. Sci. Eng., 2012, A558: 692
[23] Li X D, Ma X P, Subramanian S V, et al. Influence of prior austenite grain size on martensite-austenite constituent and toughness in the heat affected zone of 700 MPa high strength linepipe steel [J]. Mater. Sci. Eng., 2014, A616: 141
[24] Gourgues A F, Flower H M, Lindley T C. Electron backscattering diffraction study of acicular ferrite, bainite, and martensite steel microstructures [J]. Mater. Sci. Technol., 2000, 16: 26
[25] Morris J W, Lee C S, Guo Z. The Nature and consequences of coherent transformations in steel [J]. ISIJ Int., 2003, 43: 410
[26] Ghosh A, Kundu S, Chakrabarti D. Effect of crystallographic texture on the cleavage fracture mechanism and effective grain size of ferritic steel [J]. Scr. Mater., 2014, 81: 8
[27] Guo Z, Lee C S, Morris J W. On coherent transformations in steel [J]. Acta Mater., 2004, 52: 5511
[28] Wang X L, Ma X P, Wang Z Q, et al. Carbon microalloying effect of base material on variant selection in coarse grained heat affected zone of X80 pipeline steel [J]. Mater. Charact., 2019, 149: 26
[29] Stormvinter A, Miyamoto G, Furuhara T, et al. Effect of carbon content on variant pairing of martensite in Fe-C alloys [J]. Acta Mater., 2012, 60: 7265
[30] Kaneshita T, Miyamoto G, Furuhara T. Variant selection in grain boundary nucleation of bainite in Fe-2Mn-C alloys [J]. Acta Mater., 2017, 127: 368
[31] Morris J W. Stronger, tougher steels [J]. Science, 2008, 320: 1022
[32] Gui H, Gao X X, Bai Y, et al. Variant selection of bainite on the surface of allotriomorphic ferrite in a low carbon steel [J]. Mater. Charact., 2012, 67: 34
[33] Liu D S, Luo M, Cheng B G, et al. Microstructural evolution and ductile-to-brittle transition in a low-carbon MnCrMoNiCu heavy plate steel [J]. Metall. Mater. Tran., 2018, 49A: 4918
[34] Liu S L, Li X C, Guo H, et al. Selective role of bainitic lath boundary in influencing slip systems and consequent deformation mechanisms and delamination in high-strength low-alloy steel [J]. Philos. Mag., 2018, 98: 934
[1] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[2] 卢楠楠, 郭以沫, 杨树林, 梁静静, 周亦胄, 孙晓峰, 李金国. 激光增材修复单晶高温合金的热裂纹形成机制[J]. 金属学报, 2023, 59(9): 1243-1252.
[3] 张海峰, 闫海乐, 方烽, 贾楠. FeMnCoCrNi高熵合金双晶微柱变形机制的分子动力学模拟[J]. 金属学报, 2023, 59(8): 1051-1064.
[4] 徐永生, 张卫刚, 徐凌超, 但文蛟. 铁素体晶间变形协调与硬化行为模拟研究[J]. 金属学报, 2023, 59(8): 1042-1050.
[5] 常松涛, 张芳, 沙玉辉, 左良. 偏析干预下体心立方金属再结晶织构竞争[J]. 金属学报, 2023, 59(8): 1065-1074.
[6] 李福林, 付锐, 白云瑞, 孟令超, 谭海兵, 钟燕, 田伟, 杜金辉, 田志凌. 初始晶粒尺寸和强化相对GH4096高温合金热变形行为和再结晶的影响[J]. 金属学报, 2023, 59(7): 855-870.
[7] 王宗谱, 王卫国, Rohrer Gregory S, 陈松, 洪丽华, 林燕, 冯小铮, 任帅, 周邦新. 不同温度轧制Al-Zn-Mg-Cu合金再结晶后的{111}/{111}近奇异晶界[J]. 金属学报, 2023, 59(7): 947-960.
[8] 孙蓉蓉, 姚美意, 王皓瑜, 张文怀, 胡丽娟, 仇云龙, 林晓冬, 谢耀平, 杨健, 董建新, 成国光. Fe22Cr5Al3Mo-xY合金在模拟LOCA下的高温蒸汽氧化行为[J]. 金属学报, 2023, 59(7): 915-925.
[9] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[10] 赵亚峰, 刘苏杰, 陈云, 马会, 马广财, 郭翼. 铁素体-贝氏体双相钢韧性断裂过程中的夹杂物临界尺寸及孔洞生长[J]. 金属学报, 2023, 59(5): 611-622.
[11] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[12] 李殿中, 王培. 金属材料的组织定制[J]. 金属学报, 2023, 59(4): 447-456.
[13] 杨杜, 白琴, 胡悦, 张勇, 李志军, 蒋力, 夏爽, 周邦新. GH3535合金中晶界特征对碲致脆性开裂影响的分形分析[J]. 金属学报, 2023, 59(2): 248-256.
[14] 李昕, 江河, 姚志浩, 董建新. O原子对高温合金基体NiCoNiCr晶界作用的理论计算分析[J]. 金属学报, 2023, 59(2): 309-318.
[15] 朱智浩, 陈志鹏, 刘田雨, 张爽, 董闯, 王清. 基于不同 α / β 团簇式比例的Ti-Al-V合金的铸态组织和力学性能[J]. 金属学报, 2023, 59(12): 1581-1589.