|
|
交叉轧制周期对高纯Ta板变形及再结晶梯度的影响 |
祝佳林1,刘施峰1( ),曹宇1,柳亚辉1,邓超1,2,刘庆1,2 |
1. 重庆大学材料科学与工程学院 重庆 400044 2. 重庆大学电子显微镜中心 重庆 400044 |
|
Effect of Cross Rolling Cycle on the Deformed and Recrystallized Gradient in High-Purity Tantalum Plate |
Jialin ZHU1,Shifeng LIU1( ),Yu CAO1,Yahui LIU1,Chao DENG1,2,Qing LIU1,2 |
1. College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China 2. Electron Microscopy Center, Chongqing University, Chongqing 400044, China |
引用本文:
祝佳林,刘施峰,曹宇,柳亚辉,邓超,刘庆. 交叉轧制周期对高纯Ta板变形及再结晶梯度的影响[J]. 金属学报, 2019, 55(8): 1019-1033.
Jialin ZHU,
Shifeng LIU,
Yu CAO,
Yahui LIU,
Chao DENG,
Qing LIU.
Effect of Cross Rolling Cycle on the Deformed and Recrystallized Gradient in High-Purity Tantalum Plate[J]. Acta Metall Sin, 2019, 55(8): 1019-1033.
[1] | Michaluk C A. Correlating discrete orientation and grain size to the sputter deposition properties of tantalum [J]. J. Electron. Mater., 2002, 31: 2 | [2] | R W Jr Buckman. New applications for tantalum and tantalum alloys [J]. JOM, 2000, 52(3): 40 | [3] | Levine B R, Sporer S, Poggie R A, et al. Experimental and clinical performance of porous tantalum in orthopedic surgery [J]. Biomaterials, 2006, 27: 4671 | [4] | Patil N, Lee K, Goodman S B. Porous tantalum in hip and knee reconstructive surgery [J]. J. Biomed. Mater. Res., 2009, 89B: 242 | [5] | Sandim H R Z, Martins J P, Pinto A L, et al. Recrystallization of oligocrystalline tantalum deformed by cold rolling [J]. Mater. Sci. Eng., 2005, A392: 209 | [6] | Sandim H R Z, Martins J P, Padilha A F. Orientation effects during grain subdivision and subsequent annealing in coarse-grained tantalum [J]. Scr. Mater., 2001, 45: 733 | [7] | Raabe D, Schlenkert G, Weisshaupt H, et al. Texture and microstructure of rolled and annealed tantalum [J]. Mater. Sci. Technol., 1994, 10: 299 | [8] | Wright S I, Gray G T, Rollett A D. Textural and microstructural gradient effects on the mechanical behavior of a tantalum plate [J]. Metall. Mater. Trans., 1994, 25A: 1025 | [9] | Zhang Z Q, Zhang J, Liu S F, et al. Processing technology of high-purity tantalum sputtering target material [P]. Chin Pat, CN201010599296.5, 2011 | [9] | (张志清, 张 静, 刘施峰等. 一种高纯钽溅射靶材的加工工艺 [P]. 中国专利, CN201010599296.5, 2011) | [10] | Pokross C. Controlling the texture of tantalum plate [J]. JOM, 1989, 41(10): 46 | [11] | Davenport S B, Higginson R L. Strain path effects under hot working: An introduction [J]. J. Mater. Process. Technol., 2000, 98: 267 | [12] | Oertel C G, Hünsche I, Skrotzki W, et al. Influence of cross rolling and heat treatment on texture and forming properties of molybdenum sheets [J]. Int. J. Refract. Met. Hard Mater., 2010, 28: 722 | [13] | Tóth L S, Beausir B, Orlov D, et al. Analysis of texture and R value variations in asymmetric rolling of IF steel [J]. J. Mater. Process. Technol., 2012, 212: 509 | [14] | Chino Y, Sassa K, Kamiya A, et al. Enhanced formability at elevated temperature of a cross-rolled magnesium alloy sheet [J]. Mater. Sci. Eng., 2006, A441: 349 | [15] | Clark J B, Garrett R K, Jungling T L, et al. Influence of transverse rolling on the microstructural and texture development in pure tantalum [J]. Metall. Trans., 1992, 23A: 2183 | [16] | Field D P, Yanke J M, Mcgowan E V, et al. Microstructural development in asymmetric processing of tantalum plate [J]. J. Electron. Mater., 2005, 34: 1521 | [17] | Mathaudhu S N, Barber R E, Hartwig K T. Microstructural refinement of tantalum for Nb3Sn superconductor diffusion barriers [J]. IEEE Trans. Appl. Supercond., 2005, 15: 3434 | [18] | Liu S F, Fan H Y, Deng C, et al. Through-thickness texture in clock-rolled tantalum plate [J]. Int. J. Refract. Met. Hard Mater., 2015, 48: 194 | [19] | Fan H Y, Liu S F, Li L J, et al. Largely alleviating the orientation dependence by sequentially changing strain paths [J]. Mater. Des., 2016, 97: 464 | [20] | Rajmohan N, Hayakawa Y, Szpunar J A, et al. Neutron diffraction method for stored energy measurement in interstitial free steel [J]. Acta Mater., 1997, 45: 2485 | [21] | Ruestes C J, Stukowski A, Tang Y, et al. Atomistic simulation of tantalum nanoindentation: Effects of indenter diameter, penetration velocity, and interatomic potentials on defect mechanisms and evolution [J]. Mater. Sci. Eng., 2014, A613: 390 | [22] | Ikehata H, Nagasako N, Kuramoto S, et al. Designing new structural materials using density functional theory: The example of gum metalTM [J]. MRS Bull., 2006, 31: 688 | [23] | Park Y B, Lee D N, Gottstein G. The evolution of recrystallization textures in body centred cubic metals [J]. Acta Mater., 1998, 46: 3371 | [24] | Liu Y H, Liu S F, Zhu J L, et al. Strain accommodation of <110>-normal direction-oriented grains in micro-shear bands of high-purity tantalum [J]. J. Mater. Sci., 2018, 53: 12543 | [25] | Bocos J L, Novillo E, Petite M M, et al. Aspects of orientation-dependent grain growth in extra-low carbon and interstitial-free steels during continuous annealing [J]. Metall. Mater. Trans., 2003, 34A: 827 | [26] | Haouaoui M, Hartwig K T, Payzant E A. Effect of strain path on texture and annealing microstructure development in bulk pure copper processed by simple shear [J]. Acta Mater., 2005, 53: 801 | [27] | Huh M Y, Engler O, Raabe D. On the influence of cross-rolling on shear band formation and texture evolution in low carbon steel sheets [J]. Textures Microstruct., 1995, 24: 225 | [28] | Vandermeer R A, Snyder W B. Recovery and recrystallization in rolled tantalum single crystals [J]. Metall. Trans., 1979, 10A: 1031 | [29] | Chen Q Z, Duggan B J. On cells and microbands formed in an interstitial-free steel during cold rolling at low to medium reductions [J]. Metall. Mater. Trans., 2004, 35A: 3423 | [30] | Hughes D A, Hansen N. Microstructural evolution in nickel during rolling and torsion [J]. Mater. Sci. Technol., 1991, 7: 544 | [31] | Morikawa T, Senba D, Higashida K, et al. Micro shear bands in cold-rolled austenitic stainless steel [J]. Mater. Trans. JIM, 2007, 40: 891 | [32] | Meyers M A, Nesterenko V F, LaSalvia J C, et al. Shear localization in dynamic deformation of materials: Microstructural evolution and self-organization [J]. Mater. Sci. Eng., 2001, A317: 204 | [33] | Luo J R, Godfrey A, Liu W, et al. Twinning behavior of a strongly basal textured AZ31 Mg alloy during warm rolling [J]. Acta Mater., 2012, 60: 1986 | [34] | Hines J A, Vecchio K S. Recrystallization kinetics within adiabatic shear bands [J]. Acta Mater., 1997, 45: 635 | [35] | Dey S, Gayathri N, Bhattacharya M, et al. In Situ XRD studies of the process dynamics during annealing in cold-rolled copper [J]. Metall. Mater. Trans., 2015, 47A: 6281 | [36] | Choi S H. Monte Carlo technique for simulation of recrystallization texture in interstitial free steels [J]. Mater. Sci. Forum, 2002, 408-412: 469 | [37] | Choi S H, Jin Y S. Evaluation of stored energy in cold-rolled steels from EBSD data [J]. Mater. Sci. Eng., 2004, A371: 149 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|