Please wait a minute...
金属学报  2019, Vol. 55 Issue (8): 1019-1033    DOI: 10.11900/0412.1961.2018.00470
  本期目录 | 过刊浏览 |
1. 重庆大学材料科学与工程学院 重庆 400044
2. 重庆大学电子显微镜中心 重庆 400044
Effect of Cross Rolling Cycle on the Deformed and Recrystallized Gradient in High-Purity Tantalum Plate
Jialin ZHU1,Shifeng LIU1(),Yu CAO1,Yahui LIU1,Chao DENG1,2,Qing LIU1,2
1. College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China
2. Electron Microscopy Center, Chongqing University, Chongqing 400044, China
全文: PDF(28078 KB)   HTML


关键词 高纯Ta交叉轧制周期储存能微剪切带再结晶    

Cross rolling plays an important role in the production of high-quality tantalum (Ta) sputtering targets, which are crucial in achieving thin films for micro-electronic components. However, the effect of the cross rolling cycle on the microstructure homogeneity is always ignored. Therefore, 1 and 2 cycle samples were obtained by a new approach named a 135° cross rolling. The deformation and recrystallization behavior of high-purity Ta plate then was systematically compared between 1 and 2 cross rolling cycles, aiming to elucidate why the increase of cross rolling cycles can effectively ameliorate the microstructure gradient along the thickness direction. XRD results showed that the 2 cycle sample through the thickness consisted of a relatively homogenous {111}<uvw> ([111]//normal direction (ND)) and {100}<uvw> ([100]//ND) fibers while texture distribution was extremely uneven for the 1 cycle sample. The stored energy was quantitatively analyzed by X-ray line profile analysis (XLPA) and it was found that the stored energy across the thickness distributed more homogeneously for the 2 cycle sample. Misorientation characteristics of deformed grains with different rolling cycles were analyzed in detail by visualizing the misorientation angle based on an electron backscatter diffraction dataset. Many well-defined microbands and microshear bands occurred in the {111} grain at the center layer for the 1 cycle sample, while it can be effectively destroyed with the increase of the cross rolling cycle and few peaks occurred in the "point to point" plot. Kernel average misorientation (KAM) and grain reference orientation deviation-hyper (GROD-Hyper) further confirmed their differences. Then, micorband and microshear bands were detailedly characterized by TEM, and the analysis based on relative Schmid factor suggested that the primary slip system activated in the {111} grains led to the formation of microbands in the 1 cycle sample, while multiple slip systems appeared to be activated in the 2 cycle sample and deformation was more uniform. Upon annealing, the remarkably reduced stored energy gap between the {111} and {100} grain as well as the relatively homogeneous deformation microstructure between the surface and center layer for the 2 cycle sample was conductive to synchronous recrystallization together, while the high stored energy as driving force and preferential nucleation sites at the center region led to faster recrystallization for the 1 cycle sample. The recrystallization microstructure was relatively uniform and smaller variation in grain size for the 2 cycle sample through the thickness, which was beneficial to the application of Ta sputtering target. Therefore, the increase of cross rolling cycle can ameliorate the recrystallized kinetics and microstructure of high purity Ta plate.

Key wordshigh-purity tantalum    cross rolling cycle    stored energy    microshear band    recrystallization
收稿日期: 2018-10-12     
ZTFLH:  TG146.4  
基金资助:国家自然科学基金项目(Nos.U51421001 and 51701302)
通讯作者: 刘施峰     E-mail:
Corresponding author: Shifeng LIU     E-mail:
作者简介: 祝佳林,男,1993年生,博士生


祝佳林,刘施峰,曹宇,柳亚辉,邓超,刘庆. 交叉轧制周期对高纯Ta板变形及再结晶梯度的影响[J]. 金属学报, 2019, 55(8): 1019-1033.
Jialin ZHU, Shifeng LIU, Yu CAO, Yahui LIU, Chao DENG, Qing LIU. Effect of Cross Rolling Cycle on the Deformed and Recrystallized Gradient in High-Purity Tantalum Plate. Acta Metall Sin, 2019, 55(8): 1019-1033.

链接本文:      或

图1  135°交叉轧制中第1周期和第2周期的工艺示意图
Rolling cycleRolling passEntrance thicknessExit thickness mmRolling gap geometryStrain per passTotal rolling reduction
First cycle120.017.22.0114.0014.0
Second cycle96.05.33.3111.6773.5
表1  周向轧制的具体参数
图2  1和2周期Ta板沿厚度方向的织构分布图
Rolling cyclePositionDiffraction planeYhkl[21,22,23]vhkl[21,22,23]BrBaEhkl
First cycleSurface(200)145.5170.3160.1850.1003.997
Second cycleSurface(200)145.5170.3160.1900.1004.306
表2  不同厚度层不同取向晶粒内的储存能及用于计算的相关参数
图3  1周期和2周期Ta板表面和中心层的取向成像图
图4  1和2周期Ta板表面和中心层{111}和{100}取向晶粒线扫描相邻点之间的取向差分布图
图5  1和2周期样品表面与中心层{111}与{100}晶粒内部的OIM、GROD-Hyper和KAM分布图
图6  1和2周期Ta板表面与中心层晶粒在1050 ℃退火不同时间的OIMs
图7  1和2周期Ta板在1050 ℃退火120 min后的晶粒尺寸分布图
图8  1和2周期Ta板表面和中心层在1050 ℃退火不同时间后的显微硬度曲线
γ fiber(60°, 55°, 45°)(195°, 55°, 45°)(330°, 55°, 45°)(105°, 55°, 45°)(240°, 55°, 45°)
(90°, 55°, 45°)(225°, 55°, 45°)(0°, 55°, 45°)(135°, 55°, 45°)(270°, 55°, 45°)
θ fiber(0°, 0°, 45°)(135°, 0°, 45°)(270°, 0°, 45°)(45°, 0°, 45°)(180°, 0°, 45°)
(45°, 0°, 45°)(180°, 0°, 45°)(315°, 0°, 45°)(90°, 0°, 45°)(225°, 0°, 45°)
表3  轧制织构随轧制方向旋转角度的演变
图9  1和2周期Ta板{111}和{100}晶粒内位错形貌的TEM像和SAED花样
Rolling cyclepositionPointEuler angle (φ1, φ, φ2)Maximum (SM)Secondary (SS)? / %
First cycleSurface-{111}P1(358.82, 36.219, 49.918)0.43170.39628.2233
P2(1.6153, 35.251, 47.642)0.42510.39247.6923
P3(3.5297, 35.013, 46.584)0.42190.39546.2811
Surface-{100}P1(97.475, 36.196, 2.1378)0.28360.26775.6064
P2(97.253, 36.315, 3.9174)0.28440.26955.2391
P3(97.851, 36.060, 3.2431)0.28710.26936.1999
Center-{111}P1(203.06, 39.914, 17.290)0.46570.395615.0526
P2(201.92, 40.490, 17.615)0.46630.392615.8052
P3(201.61, 40.022, 18.037)0.46750.395615.3796
Center-{100}P1(277.21, 20.078, 87.222)0.36690.33758.0130
P2(278.54, 20.308, 86.565)0.36900.33449.3766
P3(279.73, 20.075, 85.354)0.37020.33379.8595
Second cycleSurface-{111}P1(178.23, 33.425, 48.046)0.42690.40634.8254
P2(177.25, 32.668, 48.757)0.43050.41134.4599
P3(176.55, 33.356, 48.129)0.42470.40913.6731
Surface-{100}P1(284.72, 32.614, 74.052)0.30130.28415.7085
P2(287.28, 31.133, 72.346)0.30680.29075.2477
P3(285.63, 31.163, 73.580)0.30510.28875.3752
Center-{111}P1(38.471, 44.421, 2.9263)0.40780.37667.6508
P2(38.870, 44.086, 2.0842)0.40730.37906.9481
P3(39.115, 43.609, 1.7601)0.40890.37737.7280
Center-{100}P1(103.58, 34.267, 86.929)0.30670.29314.4343
P2(102.67, 34.886, 88.888)0.30440.28855.2233
P3(102.64, 35.064, 88.995)0.30370.28695.5317
表4  相对Schmid因子(?)及其相关参数
图10  沿图5a1~d1中线L1~L8的?分布图
图11  1和2周期Ta板表面和中心层{111}与{100}取向晶粒的衬度分布图
Rolling cyclePositionGrain orientationQi(gi)QmaxQminHi / (J·mol-1)
First cycleSurface{100}86.5121.513.53.241
Second cycleSurface{100}96.5130.523.53.178
表5  EBSD半定量评估Ta板表面和中心层{111}和{100}晶粒内的储存能及相关参数
[1] Michaluk C A. Correlating discrete orientation and grain size to the sputter deposition properties of tantalum [J]. J. Electron. Mater., 2002, 31: 2
[2] R W Jr Buckman. New applications for tantalum and tantalum alloys [J]. JOM, 2000, 52(3): 40
[3] Levine B R, Sporer S, Poggie R A, et al. Experimental and clinical performance of porous tantalum in orthopedic surgery [J]. Biomaterials, 2006, 27: 4671
[4] Patil N, Lee K, Goodman S B. Porous tantalum in hip and knee reconstructive surgery [J]. J. Biomed. Mater. Res., 2009, 89B: 242
[5] Sandim H R Z, Martins J P, Pinto A L, et al. Recrystallization of oligocrystalline tantalum deformed by cold rolling [J]. Mater. Sci. Eng., 2005, A392: 209
[6] Sandim H R Z, Martins J P, Padilha A F. Orientation effects during grain subdivision and subsequent annealing in coarse-grained tantalum [J]. Scr. Mater., 2001, 45: 733
[7] Raabe D, Schlenkert G, Weisshaupt H, et al. Texture and microstructure of rolled and annealed tantalum [J]. Mater. Sci. Technol., 1994, 10: 299
[8] Wright S I, Gray G T, Rollett A D. Textural and microstructural gradient effects on the mechanical behavior of a tantalum plate [J]. Metall. Mater. Trans., 1994, 25A: 1025
[9] Zhang Z Q, Zhang J, Liu S F, et al. Processing technology of high-purity tantalum sputtering target material [P]. Chin Pat, CN201010599296.5, 2011
[9] (张志清, 张 静, 刘施峰等. 一种高纯钽溅射靶材的加工工艺 [P]. 中国专利, CN201010599296.5, 2011)
[10] Pokross C. Controlling the texture of tantalum plate [J]. JOM, 1989, 41(10): 46
[11] Davenport S B, Higginson R L. Strain path effects under hot working: An introduction [J]. J. Mater. Process. Technol., 2000, 98: 267
[12] Oertel C G, Hünsche I, Skrotzki W, et al. Influence of cross rolling and heat treatment on texture and forming properties of molybdenum sheets [J]. Int. J. Refract. Met. Hard Mater., 2010, 28: 722
[13] Tóth L S, Beausir B, Orlov D, et al. Analysis of texture and R value variations in asymmetric rolling of IF steel [J]. J. Mater. Process. Technol., 2012, 212: 509
[14] Chino Y, Sassa K, Kamiya A, et al. Enhanced formability at elevated temperature of a cross-rolled magnesium alloy sheet [J]. Mater. Sci. Eng., 2006, A441: 349
[15] Clark J B, Garrett R K, Jungling T L, et al. Influence of transverse rolling on the microstructural and texture development in pure tantalum [J]. Metall. Trans., 1992, 23A: 2183
[16] Field D P, Yanke J M, Mcgowan E V, et al. Microstructural development in asymmetric processing of tantalum plate [J]. J. Electron. Mater., 2005, 34: 1521
[17] Mathaudhu S N, Barber R E, Hartwig K T. Microstructural refinement of tantalum for Nb3Sn superconductor diffusion barriers [J]. IEEE Trans. Appl. Supercond., 2005, 15: 3434
[18] Liu S F, Fan H Y, Deng C, et al. Through-thickness texture in clock-rolled tantalum plate [J]. Int. J. Refract. Met. Hard Mater., 2015, 48: 194
[19] Fan H Y, Liu S F, Li L J, et al. Largely alleviating the orientation dependence by sequentially changing strain paths [J]. Mater. Des., 2016, 97: 464
[20] Rajmohan N, Hayakawa Y, Szpunar J A, et al. Neutron diffraction method for stored energy measurement in interstitial free steel [J]. Acta Mater., 1997, 45: 2485
[21] Ruestes C J, Stukowski A, Tang Y, et al. Atomistic simulation of tantalum nanoindentation: Effects of indenter diameter, penetration velocity, and interatomic potentials on defect mechanisms and evolution [J]. Mater. Sci. Eng., 2014, A613: 390
[22] Ikehata H, Nagasako N, Kuramoto S, et al. Designing new structural materials using density functional theory: The example of gum metalTM [J]. MRS Bull., 2006, 31: 688
[23] Park Y B, Lee D N, Gottstein G. The evolution of recrystallization textures in body centred cubic metals [J]. Acta Mater., 1998, 46: 3371
[24] Liu Y H, Liu S F, Zhu J L, et al. Strain accommodation of <110>-normal direction-oriented grains in micro-shear bands of high-purity tantalum [J]. J. Mater. Sci., 2018, 53: 12543
[25] Bocos J L, Novillo E, Petite M M, et al. Aspects of orientation-dependent grain growth in extra-low carbon and interstitial-free steels during continuous annealing [J]. Metall. Mater. Trans., 2003, 34A: 827
[26] Haouaoui M, Hartwig K T, Payzant E A. Effect of strain path on texture and annealing microstructure development in bulk pure copper processed by simple shear [J]. Acta Mater., 2005, 53: 801
[27] Huh M Y, Engler O, Raabe D. On the influence of cross-rolling on shear band formation and texture evolution in low carbon steel sheets [J]. Textures Microstruct., 1995, 24: 225
[28] Vandermeer R A, Snyder W B. Recovery and recrystallization in rolled tantalum single crystals [J]. Metall. Trans., 1979, 10A: 1031
[29] Chen Q Z, Duggan B J. On cells and microbands formed in an interstitial-free steel during cold rolling at low to medium reductions [J]. Metall. Mater. Trans., 2004, 35A: 3423
[30] Hughes D A, Hansen N. Microstructural evolution in nickel during rolling and torsion [J]. Mater. Sci. Technol., 1991, 7: 544
[31] Morikawa T, Senba D, Higashida K, et al. Micro shear bands in cold-rolled austenitic stainless steel [J]. Mater. Trans. JIM, 2007, 40: 891
[32] Meyers M A, Nesterenko V F, LaSalvia J C, et al. Shear localization in dynamic deformation of materials: Microstructural evolution and self-organization [J]. Mater. Sci. Eng., 2001, A317: 204
[33] Luo J R, Godfrey A, Liu W, et al. Twinning behavior of a strongly basal textured AZ31 Mg alloy during warm rolling [J]. Acta Mater., 2012, 60: 1986
[34] Hines J A, Vecchio K S. Recrystallization kinetics within adiabatic shear bands [J]. Acta Mater., 1997, 45: 635
[35] Dey S, Gayathri N, Bhattacharya M, et al. In Situ XRD studies of the process dynamics during annealing in cold-rolled copper [J]. Metall. Mater. Trans., 2015, 47A: 6281
[36] Choi S H. Monte Carlo technique for simulation of recrystallization texture in interstitial free steels [J]. Mater. Sci. Forum, 2002, 408-412: 469
[37] Choi S H, Jin Y S. Evaluation of stored energy in cold-rolled steels from EBSD data [J]. Mater. Sci. Eng., 2004, A371: 149
[1] 陈文雄, 胡宝佳, 贾春妮, 郑成武, 李殿中. 热变形后Ni-30%Fe模型合金中奥氏体的亚动态软化行为[J]. 金属学报, 2020, 56(6): 874-884.
[2] 张阳, 邵建波, 陈韬, 刘楚明, 陈志永. Mg-5.6Gd-0.8Zn合金多向锻造过程中的变形机制及动态再结晶[J]. 金属学报, 2020, 56(5): 723-735.
[3] 曹育菡,王理林,吴庆峰,何峰,张忠明,王志军. CoCrFeNiMo0.2高熵合金的不完全再结晶组织与力学性能[J]. 金属学报, 2020, 56(3): 333-339.
[4] 于雷,罗海文. 部分再结晶退火对无取向硅钢的磁性能与力学性能的影响[J]. 金属学报, 2020, 56(3): 291-300.
[5] 李旭,杨庆波,樊祥泽,呙永林,林林,张志清. 变形参数对2195 Al-Li合金动态再结晶的影响[J]. 金属学报, 2019, 55(6): 709-719.
[6] 邓亚辉,杨银辉,曹建春,钱昊. 23Cr-2.2Ni-6.3Mn-0.26NNi型双相不锈钢动态再结晶行为研究[J]. 金属学报, 2019, 55(4): 445-456.
[7] 万志鹏, 王涛, 孙宇, 胡连喜, 李钊, 李佩桓, 张勇. GH4720Li合金热变形过程动态软化机制[J]. 金属学报, 2019, 55(2): 213-222.
[8] 钟茜婷, 王磊, 刘峰. Incoloy 028合金不连续动态再结晶中链状组织形成机理研究[J]. 金属学报, 2018, 54(7): 969-980.
[9] 鲍思前, 刘兵兵, 赵刚, 徐洋, 柯珊珊, 胡晓, 刘磊. Hi-B钢二次再结晶退火中异常长大Goss取向晶粒的三维形貌表征[J]. 金属学报, 2018, 54(6): 877-885.
[10] 苏煜森, 杨银辉, 曹建春, 白于良. 节Ni型2101双相不锈钢的高温热加工行为研究[J]. 金属学报, 2018, 54(4): 485-493.
[11] 黄俊, 罗海文. 退火工艺对含Nb高强无取向硅钢组织及性能的影响[J]. 金属学报, 2018, 54(3): 377-384.
[12] 刘永长, 张宏军, 郭倩颖, 周晓胜, 马宗青, 黄远, 李会军. Inconel 718变形高温合金热加工组织演变与发展趋势[J]. 金属学报, 2018, 54(11): 1653-1664.
[13] 王涛, 万志鹏, 孙宇, 李钊, 张勇, 胡连喜. 镍基变形高温合金动态软化行为与组织演变规律研究[J]. 金属学报, 2018, 54(1): 83-92.
[14] 徐洋,鲍思前,赵刚,黄祥斌,黄儒胜,刘兵兵,宋娜娜. Hi-B钢二次再结晶退火初期不同取向晶粒的三维形貌表征[J]. 金属学报, 2017, 53(5): 539-548.
[15] 韦康, 张麦仓, 谢锡善. 超超临界电站用镍基合金热加工过程的再结晶机理[J]. 金属学报, 2017, 53(12): 1611-1619.