Please wait a minute...
金属学报  2021, Vol. 57 Issue (3): 363-374    DOI: 10.11900/0412.1961.2020.00271
  研究论文 本期目录 | 过刊浏览 |
GH4169合金与S31042钢线性摩擦焊接头组织及力学性能
李彦默1,2, 郭小辉1, 陈斌1, 李培跃1, 郭倩颖2, 丁然2, 余黎明2(), 苏宇3, 李文亚3
1.洛阳船舶材料研究所 洛阳 471000
2.天津大学 材料科学与工程学院 天津 300354
3.西北工业大学 材料学院 西安 710072
Microstructure and Mechanical Properties of Linear Friction Welding Joint of GH4169 Alloy/S31042 Steel
LI Yanmo1,2, GUO Xiaohui1, CHEN Bin1, LI Peiyue1, GUO Qianying2, DING Ran2, YU Liming2(), SU Yu3, LI Wenya3
1.Luoyang Ship Material Research Institute, Luoyang 471000, China
2.School of Materials Science and Engineering, Tianjin University, Tianjin 300354, China
3.School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China
引用本文:

李彦默, 郭小辉, 陈斌, 李培跃, 郭倩颖, 丁然, 余黎明, 苏宇, 李文亚. GH4169合金与S31042钢线性摩擦焊接头组织及力学性能[J]. 金属学报, 2021, 57(3): 363-374.
Yanmo LI, Xiaohui GUO, Bin CHEN, Peiyue LI, Qianying GUO, Ran DING, Liming YU, Yu SU, Wenya LI. Microstructure and Mechanical Properties of Linear Friction Welding Joint of GH4169 Alloy/S31042 Steel[J]. Acta Metall Sin, 2021, 57(3): 363-374.

全文: PDF(5551 KB)   HTML
摘要: 

使用25 Hz振动频率、2 mm振幅、100 MPa摩擦压力和150 MPa顶锻压力的工艺参数对GH4169合金和S31042钢进行线性摩擦焊连接,通过OM、SEM和TEM分析异质接头的组织特征,并进行拉伸、硬度和蠕变实验测试异质接头在室温和高温环境下的力学性能。结果表明,GH4169合金与S31042钢的连接界面在线性摩擦焊过程中发生动态再结晶,形成无孔无裂纹的冶金结合,同时焊缝区在高温和应力作用下形成大量弥散分布的强化相颗粒。通过细晶强化和析出强化的综合作用,异质接头的抗拉强度高于S31042钢,焊缝区的硬度明显高于2种母材。

关键词 GH4169合金S31042钢线性摩擦焊再结晶高温性能    
Abstract

S31042 steel is a typical 25Cr-20Ni type austenitic heat-resistant steel with excellent resistance to oxidation and creep rupture strength near 600oC. This austenitic steel is widely used as a super-heater or re-heater in ultra-super critical plants with steam specifications as high as 600oC and 25 MPa. To reduce CO2 emissions and improve power generation, the application of advanced ultra-super critical plants (steam parameters 700oC and 30 MPa) can be promoted. Owing to its excellent mechanical properties as well as good corrosion resistance at elevated temperature above 650oC, GH4169 alloys have the potential to be used in advanced ultra-super critical plants. Practically, it is meaningful to investigate the welding process of GH4169/S31042 dissimilar materials. In this work, the joint between dissimilar materials (S31042/GH4169) was studied by linear friction welding, and the microstructures and mechanical properties of the joint were investigated by OM, SEM, TEM, hardness testing, tensile testing, and creep testing at 700oC. Good metallurgic bonding was obtained under the optimized welding process parameters of 25 Hz (frequency), 2 mm (amplitude), 100 MPa of frictional pressure, and 150 MPa of forging pressure. Dynamic recrystallization occurred and the secondary phase particles precipitated within the weld zone. The microhardness of the welded joint was higher than that of the base metal, and the tensile properties of the joint were higher than S31042 steel, which is attributed to both fine grain and dispersion strengthening.

Key wordsGH4169 alloy    S31042 steel    linear friction welding    recrystallization    high-temperature performance
收稿日期: 2020-07-21     
ZTFLH:  TG132.33  
基金资助:国家自然科学基金项目(U1660201)
作者简介: 李彦默,男,1988年生,博士生
图1  S31042/GH4169线性摩擦焊接头的宏观照片
图2  S31042/GH4169线性摩擦焊接头显微组织的OM像
图3  S31042/GH4169线性摩擦焊接头焊缝区显微组织的EDS及析出物SEM像
图4  GH4169合金一侧焊缝区析出相的TEM、HRTEM像及EDS分析
图5  S31042钢一侧不同区域显微组织的SEM像(a) near-weld line thermo-mechanically affected zone (b) far-weld line thermo-mechanically affected zone(c) heat affected zone (d) parent metal
图6  S31042钢一侧热影响区的TEM像及沉淀相的SAED花样
图7  GH4169合金一侧不同区域显微组织的SEM像(a) near-weld line thermo-mechanically affected zone (b) far-weld line thermo-mechanically affected zone(c) heat affect zone (d) parent metal
图8  S31042/GH4169线性摩擦焊接头焊缝区和热力影响区的EBSD图Color online(a) misorientation distribution (High angle grain boundaries with misorientation angles over 15° are represented by black lines, and low angle grain boundaries with misorientation angles lower than or equal to 15° are represented by red lines)(b) inverse pole figure(c) Kernel average misorientation (KAM)
图9  S3102钢一侧热力影响区至焊缝区显微组织的TEM像(a) dislocation (b) dislocation wall (c) dislocation cell(d) dislocation mesh (e) subgrain (f) recrystallization
图10  S31042/GH4169线性摩擦焊接头的显微硬度
图11  S31042/GH4169线性摩擦焊接头和其母材的工程应力-应变曲线
图12  S31042/GH4169线性摩擦焊接头拉伸试样的形貌
图13  S31042/GH4169线性摩擦焊接头和S314042钢在700℃、200 MPa下的蠕变曲线
图14  S31042钢和S31042/GH4169线性摩擦焊接头蠕变试样断口形貌的SEM像
图15  S31042/GH4169线性摩擦焊接头蠕变断裂试样的TEM像和SAED花样
1 Du H, Cheng Y, Hou L, et al. Evolution of intergranular corrosion resistance for HR3C heat-resistant austenitic stainless steel at elevated temperature [J]. Corros. Eng. Sci. Technol., 2017, 52: 343
2 Wang J, Qiao Y F, Dong N, et al. The Influence of temperature on the oxidation mechanism in air of HR3C and aluminum-containing 22Cr-25Ni austenitic stainless steels [J]. Oxid. Met., 2018, 89: 713
3 Fang Y Y, Zhao J, Li X N. Precipitates in HR3C steel aged at high temperature [J]. Acta Metall. Sin., 2010, 46: 844
3 方圆圆, 赵 杰, 李晓娜. HR3C钢高温时效过程中的析出相 [J]. 金属学报, 2010, 46: 844
4 Li Y M, Liu Y C, Liu C X, et al. Mechanism for the formation of Z-phase in 25Cr-20Ni-Nb-N austenitic stainless steel [J]. Mater. Lett., 2018, 233: 16
5 Hu G D, Wang P, Li D Z, et al. Precipitate evolution in a modified 25Cr-20Ni austenitic heat resistant stainless steel during creep rupture test at 750oC [J]. Acta Metall. Sin., 2018, 54: 1705
5 胡国栋, 王 培, 李殿中等. 新型25Cr-20Ni奥氏体耐热不锈钢750℃持久实验过程中析出相演变 [J]. 金属学报, 2018, 54: 1705
6 Yang Y H, Zhu L H, Wang Q J, et al. Microstructural evolution and the effect on hardness and plasticity of S31042 heat-resistant steel during creep [J]. Mater. Sci. Eng., 2014, A608: 164
7 Wang J Z, Liu Z D, Bao H S, et al. Evolution of precipitates of S31042 heat resistant steel during 700oC aging [J]. J. Iron Steel Res. Int., 2013, 20: 113
8 Peng Z F, Ren W, Yang C, et al. Relationship between the evolution of phase parameters of grain boundary M23C6 and embrittlement of HR3C super-heater tubes in service [J]. Acta Metall. Sin., 2015, 51: 1325
8 彭志方, 任 文, 杨 超等. HR3C钢运行过热器管的脆化与晶界M23C6相参量演化的关系 [J]. 金属学报, 2015, 51: 1325
9 Wang B, Liu Z C, Cheng S C, et al. Microstructure evolution and mechanical properties of HR3C steel during long-term aging at high temperature [J]. J. Iron. Steel Res. Int., 2014, 21: 765
10 Hu Z F, Zhang Z. Investigation the effect of precipitating characteristics on the creep behavior of HR3C austenitic steel at 650oC [J]. Mater. Sci. Eng., 2019, A742: 451
11 Hari P R, Arivazhagan N, Rao M N, et al. Hot corrosion studies on alloy 617 OCC in the context of its use in advanced ultra-supercritical (A-USC) power plants [J]. Trans. Indian Inst. Met., 2017, 70: 775
12 Aung N N, Liu X B. Effect of temperature on coal ash hot corrosion resistance of Inconel 740 superalloy [J]. Corros. Sci., 2014, 82: 227
13 Zhang H J, Li C, Liu Y C, et al. Effect of hot deformation on γ″ and δ phase precipitation of Inconel 718 alloy during deformation & isothermal treatment [J]. J. Alloys Compd., 2017, 716: 65
14 Zhang H J, Li C, Guo Q Y, et al. Hot tensile behavior of cold-rolled Inconel 718 alloy at 650oC: The role of δ phase [J]. Mater. Sci. Eng., 2018, A722: 136
15 Zhang X, Li H W, Zhan M, et al. Electron force-induced dislocations annihilation and regeneration of a superalloy through electrical in-situ transmission electron microscopy observations [J]. J. Mater. Sci. Technol., 2020, 36: 79
16 Zhang H J, Li C, Guo Q Y, et al. Deformation mechanism of L12-γ′ phase in bimodal γ″-γ′ precipitation hardened Inconel 718 superalloy [J]. Adv. Eng. Mater., 2018, 20: 1800652
17 Zhang H J, Li C, Liu Y C, et al. Precipitation behavior during high-temperature isothermal compressive deformation of Inconel 718 alloy [J]. Mater. Sci. Eng., 2016, A677: 515
18 Liu Y C, Zhang H J, Guo Q Y, et al. Microstructure evolution of Inconel 718 superalloy during hot working and its recent development tendency [J]. Acta Metall. Sin., 2018, 54: 1653
18 刘永长, 张宏军, 郭倩颖等. Inconel 718变形高温合金热加工组织演变与发展趋势 [J]. 金属学报, 2018, 54: 1653
19 Li W Y, Vairis A, Preuss M, et al. Linear and rotary friction welding review [J]. Int. Mater. Rev., 2016, 61: 71
20 Shao Y, Li Y M, Liu C X, et al. Annealing process optimization of high frequency longitudinal resistance welded low-carbon ferritic stainless steel pipe [J]. Acta Metall. Sin., 2019, 55: 1367
20 邵 毅, 李彦默, 刘晨曦等. 低碳铁素体不锈钢高频直缝电阻焊管退火工艺优化 [J]. 金属学报, 2019, 55: 1367
21 Ji Y J, Zhang T C, Zhang L F, et al. Structure and mechanical property of TC17 linear friction welding joint [J]. Trans. China Weld. Inst., 2019, 40(9): 156
21 季亚娟, 张田仓, 张连锋等. TC17钛合金线性摩擦焊接头组织及性能 [J]. 焊接学报, 2019, 40(9): 156
22 Chang C C, Zhang T C, Li J, et al. Microstructure and properties of linear friction welded joint of hyperoxia TC4/TC17 dissimilar titanium alloys [J]. Trans. China Weld. Inst., 2019, 40(12): 109
22 常川川, 张田仓, 李 菊等. 高氧TC4/TC17钛合金线性摩擦焊接头组织特征及力学性能 [J]. 焊接学报, 2019, 40(12): 109
23 Zhang C C, Zhang T C, Jin J L. Microstructure and mechanical properties of linear friction welding joint of TC21/TC4-DT [J]. Trans. China Weld. Inst., 2019, 40(12): 133
23 张传臣, 张田仓, 金俊龙. TC21+TC4-DT线性摩擦焊接头组织与力学性能试验 [J]. 焊接学报, 2019, 40(12): 133
24 Chang C C, Zhang T C, Li J. Study on microstructure and microhardness of linear friction welded joints of Ti-22Al-27Nb alloy [J]. Trans. China Weld. Inst., 2019, 40(3): 140
24 常川川, 张田仓, 李 菊. Ti-22Al-27Nb合金线性摩擦焊接头组织与显微硬度分析 [J]. 焊接学报, 2019, 40(3): 140
25 Ma T J, Chen T, Li W Y, et al. Formation mechanism of linear friction welded Ti-6Al-4V alloy joint based on microstructure observation [J]. Mater. Charact., 2011, 62: 130
26 Ma T J, Li W Y, Xu Q Z, et al. Microstructure evolution and mechanical properties of linear friction welded 45 steel joint [J]. Adv. Eng. Mater., 2007, 9: 703
27 Yang X W, Li W Y, Li J L, et al. Finite element modeling of the linear friction welding of GH4169 superalloy [J]. Mater. Des., 2015, 87: 215
28 Ma T J, Xiao Y, Li W Y, et al. Investigation on microstructure and texture evolution of linear friction welded IN718 superalloy joints [J]. Trans. China Weld. Inst., 2016, 37(11): 119
28 马铁军, 肖 遥, 李文亚等. 线性摩擦焊IN718接头微观组织与织构演变 [J]. 焊接学报, 2016, 37(11): 119
29 Duan L J, Liu Y C. Relationships between elastic constants and EAM/FS potential functions for cubic crystals [J]. Acta Metall. Sin., 2020, 56: 112
29 段灵杰, 刘永长. 立方晶体弹性常数和EAM/FS势函数的关系 [J]. 金属学报, 2020, 56: 112
30 Ma T J, Yan M, Yang X W, et al. Microstructure evolution in a single crystal nickel-based superalloy joint by linear friction welding [J]. Mater. Des., 2015, 85: 613
31 Chen X, Xie F Q, Ma T J, et al. Effects of post-weld heat treatment on microstructure and mechanical properties of linear friction welded Ti2AlNb alloy [J]. Mater. Des., 2016, 94: 45
32 He J C, Zhang T C, Li J. Effect of heat treatment on microstructure and hardness of Ti2AlNb linear friction welding joint [J]. Trans. China Weld. Inst., 2019, 40(4): 119
32 贺建超, 张田仓, 李 菊. 热处理对Ti2AlNb线性摩擦焊接头组织与硬度的影响 [J]. 焊接学报, 2019, 40(4): 119
33 Li J, Zhang T C, Guo D L. Influence of heat treatment on microstructure and mechanical properties of TC17(α+β)/TC17(β) linear friction welding joint [J]. Trans. China Weld. Inst., 2018, 39(5): 97
33 李 菊, 张田仓, 郭德伦. 热处理对TC17(α+β)/TC17(β)线性摩擦焊接头组织及力学性能的影响 [J]. 焊接学报, 2018, 39(5): 97
34 Li Y M, Liu C X, Yu L M, et al. Effect of high-temperature ageing on microstructure and mechanical properties of linear friction welded S31042 steel joint [J]. Acta Metall. Sin., 2018, 54: 981
34 李彦默, 刘晨曦, 余黎明等. 高温时效对S31042钢线性摩擦焊接头组织和力学性能的影响 [J]. 金属学报, 2018, 54: 981
[1] 赵鹏, 谢光, 段慧超, 张健, 杜奎. 两种高代次镍基单晶高温合金热机械疲劳中的再结晶行为[J]. 金属学报, 2023, 59(9): 1221-1229.
[2] 杜金辉, 毕中南, 曲敬龙. 三联冶炼GH4169合金研究进展[J]. 金属学报, 2023, 59(9): 1159-1172.
[3] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[4] 常松涛, 张芳, 沙玉辉, 左良. 偏析干预下体心立方金属再结晶织构竞争[J]. 金属学报, 2023, 59(8): 1065-1074.
[5] 李福林, 付锐, 白云瑞, 孟令超, 谭海兵, 钟燕, 田伟, 杜金辉, 田志凌. 初始晶粒尺寸和强化相对GH4096高温合金热变形行为和再结晶的影响[J]. 金属学报, 2023, 59(7): 855-870.
[6] 张伟东, 崔宇, 刘莉, 王文泉, 刘叡, 李蕊, 王福会. 600℃ NaCl盐雾环境下GH4169合金的腐蚀行为[J]. 金属学报, 2023, 59(11): 1475-1486.
[7] 娄峰, 刘轲, 刘金学, 董含武, 李淑波, 杜文博. 轧制态Mg-xZn-0.5Er合金板材组织及室温成形性能[J]. 金属学报, 2023, 59(11): 1439-1447.
[8] 吴彩虹, 冯迪, 臧千昊, 范诗春, 张豪, 李胤樹. 喷射成形AlSiCuMg合金的热变形组织演变及再结晶行为[J]. 金属学报, 2022, 58(7): 932-942.
[9] 任少飞, 张健杨, 张新房, 孙明月, 徐斌, 崔传勇. 新型Ni-Co基高温合金塑性变形连接中界面组织演化及愈合机制[J]. 金属学报, 2022, 58(2): 129-140.
[10] 姜伟宁, 武晓龙, 杨平, 顾新福, 解清阁. 热轧硅钢表层动态再结晶区形成规律及剪切织构特征[J]. 金属学报, 2022, 58(12): 1545-1556.
[11] 胡晨, 潘帅, 黄明欣. 高强高韧异质结构温轧TWIP[J]. 金属学报, 2022, 58(11): 1519-1526.
[12] 姜巨福, 张逸浩, 刘英泽, 王迎, 肖冠菲, 张颖. RAP法制备AlSi7Mg合金半固态坯料研究[J]. 金属学报, 2021, 57(6): 703-716.
[13] 倪珂, 杨银辉, 曹建春, 王刘行, 刘泽辉, 钱昊. 18.7Cr-1.0Ni-5.8Mn-0.2NNi型双相不锈钢的大变形热压缩软化行为[J]. 金属学报, 2021, 57(2): 224-236.
[14] 李金山, 唐斌, 樊江昆, 王川云, 花珂, 张梦琪, 戴锦华, 寇宏超. 高强亚稳β钛合金变形机制及其组织调控方法[J]. 金属学报, 2021, 57(11): 1438-1454.
[15] 刘超, 姚志浩, 江河, 董建新. GH4720Li合金毫米级粗大晶粒热变形获得均匀等轴晶粒的可行性及工艺控制[J]. 金属学报, 2021, 57(10): 1309-1319.