|
|
含水条件下单晶Cu的应力松弛及弹性恢复 |
史俊勤1,孙琨2,方亮2,许少锋3( ) |
1. 西安稀有金属材料研究院有限公司 西安 710016 2. 西安交通大学金属材料强度国家重点实验室 西安 710049 3. 浙江大学宁波理工学院 宁波 315000 |
|
Stress Relaxation and Elastic Recovery of Monocrystalline Cu Under Water Environment |
Junqin SHI1,Kun SUN2,Liang FANG2,Shaofeng XU3( ) |
1. Xi’an Rare Metal Materials Institute Co. , Ltd. , Xi’an 710016, China 2. State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an 710049, China 3. Ningbo Institute of Technology, Zhejiang University, Ningbo 315000, China |
引用本文:
史俊勤,孙琨,方亮,许少锋. 含水条件下单晶Cu的应力松弛及弹性恢复[J]. 金属学报, 2019, 55(8): 1034-1040.
Junqin SHI,
Kun SUN,
Liang FANG,
Shaofeng XU.
Stress Relaxation and Elastic Recovery of Monocrystalline Cu Under Water Environment[J]. Acta Metall Sin, 2019, 55(8): 1034-1040.
[1] | Jin Y, Wei N. Research on stress relaxation of metals at elevated temperature [J]. J. Mechan. Strength, 1997, 19(3): 57 | [1] | (金 尧, 魏 楠. 金属高温应力松弛行为研究 [J]. 机械强度, 1997, 19(3): 57) | [2] | Guiu F, Pratt P L. Stress relaxation and the plastic deformation of solids [J]. Phys. Status Solidi., 1964, 6B: 111 | [3] | Zhan L H, Wang M, Huang M H. Prediction model for aging stress-relaxation behavior based on creep equations [J]. J. Mechan. Eng., 2013, 49(10): 70 | [3] | (湛利华, 王 萌, 黄明辉. 基于蠕变公式的时效应力松弛行为预测模型 [J]. 机械工程学报, 2013, 49(10): 70) | [4] | Gooch J W. Elastic Recovery [M]. New York: Springer, 2011: 213 | [5] | Peng Z J, Wen T, Gong J H, et al. Relationship between the ratio of Young's modulus to hardness and the elastic recovery of nanoindentation [J]. Key Eng. Mater., 2012, 492: 5 | [6] | Li Z H, Li Y F, Zhang C L, et al. Creep and stress relaxation in free-standing thin metal films controlled by coupled surface and grain boundary diffusion [J]. Acta Mater., 2012, 60: 3057 | [7] | Gurewitz G, Atzmon N, Rosen A. Creep and stress relaxation in 18% Ni (250) maraging steel [J]. Met. Sci. J., 1977, 4: 62 | [8] | Torres M A S, Voorwald H J C. An evaluation of shot peening, residual stress and stress relaxation on the fatigue life of AISI 4340 steel [J]. Int. J. Fatigue, 2002, 24: 877 | [9] | Gedeon M. Factors affecting stress relaxation and creep [J]. Technical TDBITS, 2010, 13: 1 | [10] | Blonski S, Brostow W, Kubát J. Molecular-dynamics simulations of stress relaxation in metals and polymers [J]. Phys. Rev., 1994, 49B: 6494 | [11] | Makeev M A, Kalia R K, Nakano A, et al. Effect of geometry on stress relaxation in InAs /GaAs rectangular nanomesas: Multimillion-atom molecular dynamics simulations [J]. J. Appl. Phys., 2005, 98: 114313 | [12] | Lane J M D. Cooling rate and stress relaxation in silica melts and glasses via microsecond molecular dynamics [J]. Phys. Rev., 2015, 92E: 012320 | [13] | Dong L, Schnitker J, Smith R W, et al. Stress relaxation and misfit dislocation nucleation in the growth of misfitting films: A molecular dynamics simulation study [J]. J. Appl. Phys., 1998, 83: 217 | [14] | Lau T T, Kushima A, Yip S. Atomistic simulation of creep in a nanocrystal [J]. Phys. Rev. Lett., 2010, 104: 175501 | [15] | Brostow W, Kubát J. Molecular-dynamics simulation of stress relaxation on a triangular lattice [J]. Phys. Rev., 1993, 47B: 7659 | [16] | Li Q K, Zhang Y, Chu W Y. Molecular dynamics simulation of plastic deformation during nanoindentation [J]. Acta Metall. Sin., 2004, 40: 1238 | [16] | (李启楷, 张 跃, 褚武杨. 纳米压痕形变过程的分子动力学模拟 [J]. 金属学报, 2004, 40: 1238) | [17] | Zhu Y, Zhang Y C, Qi S H, et al. Titanium nanometric cutting process based on molecular dynamics [J]. Rare Met. Mater. Eng., 2016, 45: 897 | [17] | (朱 瑛, 张银成, 齐顺河等. 基于分子动力学的金属钛纳米切削过程研究 [J]. 稀有金属材料与工程, 2016, 45: 897) | [18] | Wang C H, Fang T H, Cheng P C, et al. Simulation and experimental analysis of nanoindentation and mechanical properties of amorphous NiAl alloys [J]. J. Mol. Model., 2015, 21: 161 | [19] | Fang L, Sun K, Shi J Q, et al. Movement patterns of ellipsoidal particles with different axial ratios in three-body abrasion of monocrystalline copper: A large scale molecular dynamics study [J]. RSC Adv., 2017, 7: 26790 | [20] | Thouless M D, Gupta J, Harper J M E. Stress development and relaxation in copper films during thermal cycling [J]. J. Mater. Res., 1993, 8: 1845 | [21] | Taub A I, Luborsky F E. Creep, stress relaxation and structural change of amorphous alloys [J]. Acta Metall., 1981, 29: 1939 | [22] | Gupta I, Li J C M. Stress relaxation, internal stress, and work hardening in some bcc metals and alloys [J]. Metall. Trans., 1970, 1: 2323 | [23] | Bao Y W, Zhou Y C. Evaluating high-temperature modulus and elastic recovery of Ti3SiC2 and Ti3AlC2 ceramics [J]. Mater. Lett., 2003, 57: 4018 | [24] | Shi J Q, Zhang Y N, Sun K, et al. Effect of water film on the plastic deformation of monocrystalline copper [J]. RSC Adv., 2016, 6: 96824 | [25] | Shi J Q, Chen J, Sun K, et al. Water film facilitating plastic deformation of Cu thin film under different nanoindentation modes: A molecular dynamics study [J]. Mater. Chem. Phys., 2017, 198: 177 | [26] | Daw M S, Baskes M I. Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals [J]. Phys. Rev., 1984, 29B: 6443 | [27] | Daw M S, Foiles S M, Baskes M I. The embedded-atom method: A review of theory and applications [J]. Mater. Sci. Rep., 1993, 9: 251 | [28] | Girifalco L A, Weizer V G. Application of the Morse potential function to cubic metals [J]. Phys. Rev., 1959, 114: 687 | [29] | Ren J Q, Zhao J S, Dong Z G, et al. Molecular dynamics study on the mechanism of AFM-based nanoscratching process with water-layer lubrication [J]. Appl. Surf. Sci., 2015, 346: 84 | [30] | Boda D, Henderson D. The effects of deviations from Lorentz-Berthelot rules on the properties of a simple mixture [J]. Mol. Phys., 2008, 106: 2367 | [31] | Al-Matar A K, Rockstraw D A. A generating equation for mixing rules and two new mixing rules for interatomic potential energy parameters [J]. J. Comput. Chem., 2004, 25: 660 | [32] | Werder T, Walther J H, Jaffe R L, et al. On the water-carbon interaction for use in molecular dynamics simulations of graphite and carbon nanotubes [J]. J. Phys. Chem., 2003, 107B: 1345 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|