|
|
电子束快速成形制备TC4合金的组织和拉伸性能分析 |
刘征1,2,刘建荣1( ),赵子博1,王磊1,王清江1,杨锐1 |
1. 中国科学院金属研究所 沈阳 110016 2. 中国科学技术大学材料科学与工程学院 沈阳 110016 |
|
Microstructure and Tensile Property of TC4 Alloy Produced via Electron Beam Rapid Manufacturing |
Zheng LIU1,2,Jianrong LIU1( ),Zibo ZHAO1,Lei WANG1,Qingjiang WANG1,Rui YANG1 |
1. Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China 2. School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China |
引用本文:
刘征,刘建荣,赵子博,王磊,王清江,杨锐. 电子束快速成形制备TC4合金的组织和拉伸性能分析[J]. 金属学报, 2019, 55(6): 692-700.
Zheng LIU,
Jianrong LIU,
Zibo ZHAO,
Lei WANG,
Qingjiang WANG,
Rui YANG.
Microstructure and Tensile Property of TC4 Alloy Produced via Electron Beam Rapid Manufacturing[J]. Acta Metall Sin, 2019, 55(6): 692-700.
[1] | Liu Z, Qin Z X, Liu F, et al. The microstructure and mechanical behaviors of the Ti-6.5Al-3.5Mo-1.5Zr-0.3Si alloy produced by laser melting deposition [J]. Mater. Charact., 2014, 97: 132 | [2] | Lu S L, Qian M, Tang H P, et al. Massive transformation in Ti-6Al-4V additively manufactured by selective electron beam melting [J]. Acta Mater., 2016, 104: 303 | [3] | Tan X P, Kok Y, Tan Y J, et al. Graded microstructure and mechanical properties of additive manufactured Ti-6Al-4V via electron beam melting [J]. Acta Mater., 2015, 97: 1 | [4] | Thijs L, Verhaeghe F, Craeghs T, et al. A study of the microstructural evolution during selective laser melting of Ti-6Al-4V [J]. Acta Mater., 2010, 58: 3303 | [5] | Banerjee D, Williams J C. Perspectives on titanium science and technology [J]. Acta Mater., 2013, 61: 844 | [6] | Liu Z, Zhao Z B, Liu J R, et al. Distinct dendritic α phase emerging on the surface of primary α phase in a compressed near-α titanium alloy [J]. J. Mater. Sci. Technol., 2018, 34: 666 | [7] | Zhao Z B, Wang Q J, Hu Q M, et al. Effect of β (110) texture intensity on α-variant selection and microstructure morphology during β→α phase transformation in near α titanium alloy [J]. Acta Mater., 2017, 126: 372 | [8] | Zhao Z B, Wang Q J, Liu J R, et al. Effect of heat treatment on the crystallographic orientation evolution in a near-α titanium alloy Ti60 [J]. Acta Mater., 2017, 131: 305 | [9] | Hrabe N, Quinn T. Effects of processing on microstructure and mechanical properties of a titanium alloy (Ti-6Al-4V) fabricated using electron beam melting (EBM), Part 1: Distance from build plate and part size [J]. Mater. Sci. Eng., 2013, A573: 264 | [10] | Hrabe N, Quinn T. Effects of processing on microstructure and mechanical properties of a titanium alloy (Ti-6Al-4V) fabricated using electron beam melting (EBM), Part 2: Energy input, orientation, and location [J]. Mater. Sci. Eng., 2013, A573: 271 | [11] | Xu W, Lui E W, Pateras A, et al. In situ tailoring microstructure in additively manufactured Ti-6Al-4V for superior mechanical performance [J]. Acta Mater., 2017, 125: 390 | [12] | Carroll B E, Palmer T A, Beese A M. Anisotropic tensile behavior of Ti-6Al-4V components fabricated with directed energy deposition additive manufacturing [J]. Acta Mater., 2015, 87: 309 | [13] | Liu Z, Zhao Z B, Liu J R, et al. Effect of α texture on the tensile deformation behavior of Ti-6Al-4V alloy produced via electron beam rapid manufacturing [J]. Mater. Sci. Eng., 2019, A742: 508 | [14] | Suo H B, Chen Z Y, Liu J R, et al. Microstructure and mechanical properties of Ti-6Al-4V by electron beam rapid manufacturing [J]. Rare Met. Mater. Eng., 2014, 43: 780 | [15] | Wang Y N, Huang J C. Texture analysis in hexagonal materials [J]. Mater. Chem. Phys., 2003, 81: 11 | [16] | Li W Y, Chen Z Y, Liu J R, et al. Effect of texture on anisotropy at 600 ℃ in a near-α titanium alloy Ti60 plate [J]. Mater. Sci. Eng., 2017, A688: 322 | [17] | Li W Y, Chen Z Y, Liu J R, et al. Rolling texture and its effect on tensile property of a near-α titanium alloy Ti60 plate [J]. J. Mater. Sci. Technol., 2019, 35: 790 | [18] | Al-Bermani S S, Blackmore M L, Zhang W, et al. The origin of microstructural diversity, texture, and mechanical properties in electron beam melted Ti-6Al-4V [J]. Metall. Mater. Trans., 2010, 41A: 3422 | [19] | Antonysamy A A, Meyer J, Prangnell P B. Effect of build geometry on the β-grain structure and texture in additive manufacture of Ti-6Al-4V by selective electron beam melting [J]. Mater. Charact., 2013, 84: 153 | [20] | Waryoba D R, Keist J S, Ranger C, et al. Microtexture in additively manufactured Ti-6Al-4V fabricated using directed energy deposition [J]. Mater. Sci. Eng., 2018, A734: 149 | [21] | Shi R, Dixit V, Fraser H L, et al. Variant selection of grain boundary α by special prior β grain boundaries in titanium alloys [J]. Acta Mater., 2014, 75: 156 | [22] | Bantounas I, Dye D, Lindley T C. The role of microtexture on the faceted fracture morphology in Ti-6Al-4V subjected to high-cycle fatigue [J]. Acta Mater., 2010, 58: 3908 | [23] | Bridier F, Villechaise P, Mendez J. Analysis of the different slip systems activated by tension in a α/β titanium alloy in relation with local crystallographic orientation [J]. Acta Mater., 2005, 53: 555 | [24] | Li H, Boehlert C J, Bieler T R, et al. Analysis of slip activity and heterogeneous deformation in tension and tension-creep of Ti-5Al-2.5Sn (wt %) using in-situ SEM experiments [J]. Philos. Mag., 2012, 92: 2923 | [25] | Li H, Boehlert C J, Bieler T R, et al. Examination of the distribution of the tensile deformation systems in tension and tension-creep of Ti-6Al-4V (wt.%) at 296 K and 728 K [J]. Philos. Mag., 2015, 95: 691 | [26] | Li H, Mason D E, Yang Y, et al. Comparison of the deformation behaviour of commercially pure titanium and Ti-5Al-2.5Sn (wt.%) at 296 and 728 K [J]. Philos. Mag., 2013, 93: 2875 | [27] | Hayes B J, Martin B W, Welk B, et al. Predicting tensile properties of Ti-6Al-4V produced via directed energy deposition [J]. Acta Mater., 2017, 133: 120 | [28] | Warwick J L W, Jones N G, Bantounas I, et al. In situ observation of texture and microstructure evolution during rolling and globularization of Ti-6Al-4V [J]. Acta Mater., 2013, 61: 1603 | [29] | Hirsch P B, Mitchell T E. Stage II work hardening in crystals [J]. Can. J. Phys., 1967, 45: 663 | [30] | Suri S, Viswanathan G B, Neeraj T, et al. Room temperature deformation and mechanisms of slip transmission in oriented single-colony crystals of an α/β titanium alloy [J]. Acta Mater., 1999, 47: 1019 | [31] | Ren Y M, Lin X, Fu X, et al. Microstructure and deformation behavior of Ti-6Al-4V alloy by high-power laser solid forming [J]. Acta Mater., 2017, 132: 82 | [32] | Tang Q. Research on defects formation mechanism of titanium alloy in electron beam freeform fabrication [D]. Wuhan: Huazhong University of Science and Technology, 2015 | [32] | (汤 群. 钛合金电子束快速成形缺陷形成机理研究 [D]. 武汉: 华中科技大学, 2015) |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|