|
|
冷轧态Ti-35Nb-2Zr-0.3O合金的异常热膨胀行为 |
蓝春波1,2,梁家能1,劳远侠1,谭登峰1,黄春艳1,莫羡忠1,庞锦英1( ) |
1. 南宁师范大学化学与材料学院广西天然高分子化学与物理重点实验室 南宁 530001 2. 东南大学材料科学与工程学院 南京 211189 |
|
Anomalous Thermal Expansion Behavior of Cold-RolledTi-35Nb-2Zr-0.3O Alloy |
Chunbo LAN1,2,Jianeng LIANG1,Yuanxia LAO1,Dengfeng TAN1,Chunyan HUANG1,Xianzhong MO1,Jinying PANG1( ) |
1. Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, China 2. School of Materials Science and Engineering, Southeast University, Nanjing 211189, China |
引用本文:
蓝春波,梁家能,劳远侠,谭登峰,黄春艳,莫羡忠,庞锦英. 冷轧态Ti-35Nb-2Zr-0.3O合金的异常热膨胀行为[J]. 金属学报, 2019, 55(6): 701-708.
Chunbo LAN,
Jianeng LIANG,
Yuanxia LAO,
Dengfeng TAN,
Chunyan HUANG,
Xianzhong MO,
Jinying PANG.
Anomalous Thermal Expansion Behavior of Cold-RolledTi-35Nb-2Zr-0.3O Alloy[J]. Acta Metall Sin, 2019, 55(6): 701-708.
[1] | Kainuma R, Wang J J, Omori T, et al. Invar-type effect induced by cold-rolling deformation in shape memory alloys [J]. Appl. Phys. Lett., 2002, 80: 4348 | [2] | Nakai M, Niinomi M, Akahori T, et al. Anomalous thermal expansion of cold-rolled Ti-Nb-Ta-Zr alloy [J]. Mater. Trans., 2009, 50: 423 | [3] | Guillaume C E. The anomaly of the nickel-steels [J]. Proc. Phys. Soc. London, 1920, 32: 374 | [4] | Li X F, Chen N N, Li J J, et al. Effect of temperature and strain rate on deformation behavior of Invar 36 alloy [J]. Acta. Metall. Sin., 2017, 53: 968 | [4] | (李细锋, 陈楠楠, 李佼佼等. 温度与应变速率对Invar 36合金变形行为的影响 [J]. 金属学报, 2017, 53: 968) | [5] | Abdel-Hady M, Morinaga M. Controlling the thermal expansion of Ti alloys [J]. Scr. Mater., 2009, 61: 825 | [6] | Chen J, Hu L, Deng J X, et al. Negative thermal expansion in functional materials: Controllable thermal expansion by chemical modifications [J]. Chem. Soc. Rev., 2015, 44: 3522 | [7] | Liu X N, Lin K, Gao Q L, et al. Structure and phase transformation in the giant magnetostriction laves-phase SmFe2 [J]. Inorg. Chem., 2017, 57: 689 | [8] | Song Y Z, Chen J, Liu X Z, et al. Zero thermal expansion in magnetic and metallic Tb(Co,Fe)2 intermetallic compounds [J]. J. Am. Chem. Soc., 2018, 140: 602 | [9] | Kuramoto S, Furuta T, Hwang J H, et al. Plastic deformation in a multifunctional Ti-Nb-Ta-Zr-O alloy [J]. Metall. Mater. Trans., 2006, 37A: 657 | [10] | Furuta T, Kuramoto S, Chen R, et al. Effect of oxygen on phase stability and elastic deformation behavior in Gum metal [J]. J. Jpn. Inst. Met., 2006, 70: 579 | [11] | Wang W, Huang R, Zhao Y, et al. Adjustable zero thermal expansion in Ti alloys at cryogenic temperature [J]. J. Alloys Compd., 2018, 740: 47 | [12] | Saito T, Furuta T, Hwang J H, et al. Multifunctional alloys obtained via a dislocation-free plastic deformation mechanism [J]. Science, 2003, 300: 464 | [13] | Xing H, Guo W Y, Sun J. Substructure of recovered Ti-23Nb-0.7Ta-22r-O alloy [J]. Trans. Nonferrous Met. Soc. China, 2007, 17: 1456 | [14] | Talling R J, Dashwood R J, Jackson M, et al. On the mechanism of superelasticity in Gum metal [J]. Acta Mater., 2009, 57: 1188 | [15] | Talling R J, Dashwood R J, Jackson M, et al. Compositional variability in Gum metal [J]. Scr. Mater., 2009, 60: 1000 | [16] | Besse M, Castany P, Gloriant T. Mechanisms of deformation in Gum metal TNTZ-O and TNTZ titanium alloys: A comparative study on the oxygen influence [J]. Acta Mater., 2011, 59: 5982 | [17] | Yang Y, Li G P, Cheng G M, et al. Multiple deformation mechanisms of Ti-22.4Nb-0.73Ta-2.0Zr-1.34O alloy [J]. Appl. Phys. Lett., 2009, 94: 061901 | [18] | Kim H Y, Wei L S, Kobayashi S, et al. Nanodomain structure and its effect on abnormal thermal expansion behavior of a Ti-23Nb-2Zr-0.7Ta-1.2O alloy [J]. Acta Mater., 2013, 61: 4874 | [19] | Gutkin M Y, Ishizaki T, Kuramoto S, et al. Nanodisturbances in deformed Gum metal [J]. Acta Mater., 2006, 54: 2489 | [20] | Wei L S, Kim H Y, Miyazaki S. Effects of oxygen concentration and phase stability on nano-domain structure and thermal expansion behavior of Ti-Nb-Zr-Ta-O alloys [J]. Acta Mater., 2015, 100: 313 | [21] | Lan C B, Li G, Wu Y, et al. Effects of cold deformation on microstructure and mechanical properties of Ti-35Nb-2Zr-0.3O alloy for biomedical applications [J]. Trans. Nonferrous Met. Soc. China, 2017, 27: 1537 | [22] | Lan C B, Wu Y, Chen F. Effects of cold rolling on microstructure and anomalous thermal expansion behaviors of Ti-35Nb-2Zr-0.3O alloy [J]. Key Eng. Mater., 2017, 729: 46 | [23] | Guo W, Quadir M Z, Ferry M. The mode of deformation in a cold-swaged multifunctional Ti-Nb-Ta-Zr-O alloy [J]. Metall. Mater. Trans., 2013, 44A: 2307 | [24] | J W Jr Morris, Hanlumyuang Y, Sherburne M, et al. Anomalous transformation-induced deformation in <110> textured Gum metal [J]. Acta Mater., 2010, 58: 3271 | [25] | Lan C B, Wu Y, Guo L L, et al. Microstructure, texture evolution and mechanical properties of cold rolled Ti-32.5Nb-6.8Zr-2.7Sn biomedical beta titanium alloy [J]. J. Mater. Sci. Technol., 2018, 34: 788 | [26] | Lan C B, Wu Y, Guo L L, et al. Effects of cold rolling on microstructure, texture evolution and mechanical properties of Ti-32.5Nb-6.8Zr-2.7Sn-0.3O alloy for biomedical applications [J]. Mater. Sci. Eng., 2017, A690: 170 | [27] | Hwang J, Kuramoto S, Furuta T, et al. Phase-stability dependence of plastic deformation behavior in Ti-Nb-Ta-Zr-O alloys [J]. J. Mater. Eng. Perform., 2005, 14: 747 | [28] | Wei Q Q, Wang L Q, Fu Y F, et al. Influence of oxygen content on microstructure and mechanical properties of Ti-Nb-Ta-Zr alloy [J]. Mater. Des., 2011, 32: 2934 | [29] | Wang Y, Gao J H, Wu H J, et al. Strain glass transition in a multifunctional β-type Ti alloy [J]. Sci. Rep., 2015, 4: 3995 | [30] | Kim H Y, Sasaki T, Okutsu K, et al. Texture and shape memory behavior of Ti-22Nb-6Ta alloy [J]. Acta Mater., 2006, 54: 423 | [31] | Afonso C R M, Ferrandini P L, Ramirez A J, et al. High resolution transmission electron microscopy study of the hardening mechanism through phase separation in a β-Ti-35Nb-7Zr-5Ta alloy for implant applications [J]. Acta Biomater., 2010, 6: 1625 | [32] | Málek J, Hnilica F, Vesely J, et al. The influence of chemical composition and thermo-mechanical treatment on Ti-Nb-Ta-Zr alloys [J]. Mater. Des., 2012, 35: 731 | [33] | Guo Q H, Zhan Y Z, Mo H L, et al. Aging response of the Ti-Nb system biomaterials with β-stabilizing elements [J]. Mater. Des., 2010, 31: 4842 | [34] | Ferrandini P L, Cardoso F F, Souza S A, et al. Aging response of the Ti-35Nb-7Zr-5Ta and Ti-35Nb-7Ta alloys [J]. J. Alloys Compd., 2007, 433: 207 | [35] | Guo W Y, Li J, Sun J. Thermal expansion behavior of Ti-23Nb-0.7Ta-2Zr-O alloy [J]. Mater Res. Appl., 2010, 4: 169 | [35] | (郭文渊, 李 俊, 孙 坚. Ti-23Nb-0.7Ta-2Zr-O合金的热膨胀行为 [J]. 材料研究与应用, 2010, 4: 169) |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|