Please wait a minute...
金属学报  2019, Vol. 55 Issue (6): 692-700    DOI: 10.11900/0412.1961.2019.00007
  本期目录 | 过刊浏览 |
电子束快速成形制备TC4合金的组织和拉伸性能分析
刘征1,2,刘建荣1(),赵子博1,王磊1,王清江1,杨锐1
1. 中国科学院金属研究所 沈阳 110016
2. 中国科学技术大学材料科学与工程学院 沈阳 110016
Microstructure and Tensile Property of TC4 Alloy Produced via Electron Beam Rapid Manufacturing
Zheng LIU1,2,Jianrong LIU1(),Zibo ZHAO1,Lei WANG1,Qingjiang WANG1,Rui YANG1
1. Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2. School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
全文: PDF(10313 KB)   HTML
摘要: 

针对电子束快速成形(EBRM)钛合金的组织特点,采用OM、SEM、XRD和TEM等实验手段,分析了EBRM制备TC4合金的微观组织和织构对其拉伸性能的影响规律。结果表明:TC4合金存在着平行于沉积方向的β柱状晶,且柱状晶的宽度随着沉积高度的增加,初始时迅速增加,之后增加的趋势变缓。由于沉积过程中循环的热作用,柱状晶内α片尺寸随着沉积高度的增加而减小。合金存在典型的转变α相织构。微观结构的梯度变化也导致了合金在不同位置的拉伸性能差异。随着X方向拉伸试样位置的升高,合金的屈服强度没有明显的变化,但抗拉强度有所提升;合金的塑性呈现上升的趋势。在合金底部,距离基板10和20 mm处的拉伸试样具有相近的加工硬化指数,低于合金中间的拉伸试样,而合金顶端拉伸试样的加工硬化指数较高。此外,合金还具有拉伸性能的各向异性,45°方向拉伸试样的强度高于X方向和Z方向的拉伸试样,同时Z方向拉伸试样的强度最低,这种强度各向异性主要归因于合金的转变α相织构。

关键词 电子束快速成形TC4合金显微组织织构拉伸性能    
Abstract

Electron beam rapid manufacturing (EBRM) is one of the 3D printing technologies. The main attractions of EBRM technology are its high efficiency and economy in fabricating large, complex near net shape components dielessly and only needing limited machining. In general, the microstructure and texture of titanium alloy can play a significant role in determining its mechanical behaviors. In the present work, the microstructure, texture and tensile property of TC4 alloy produced by electron beam rapid manufacturing (EBRM) are investigated. Results show that the microstructure is comprised of columnar prior β grains that orient parallel to the building direction. The width of the columnar β grains increased rapidly at the initial several build layers, and the subsequent increase rate of the width of the columnar β grains tends to slow down. Fine α lamellae with gradient size are observed inside the columnar prior β grains, which occur because the alloy experiences different complex thermal histories during the EBRM-produced process. The size of α lamellae tends to decrease with the increase of build layers. The XRD result shows that the TC4 alloy has a typical α phase texture, (the c-axes are either concentrated at about 45° or are perpendicular to the building direction). At the same time, the <$10\bar{1}0$> poles are relative to random distribution. For the tensile samples along the electron beam scanning direction, the yield strengths do not show significant change with the increase of build layers, but the tensile strengths increase. The ductility of the alloy also has an upward trend, despite of a slightly decreasing ductility in the top sample. The tensile samples at the bottom of the alloy (10 mm and 20 mm away from the substrate) have similar work hardening exponents, which are lower than the top sample. The top sample shows the highest work hardening exponent. This difference in the tensile properties can be highly attributed to the gradient microstructure. The alloy also presents obvious anisotropy in tensile strength. The tensile sample along the 45° direction has a higher strength than the sample along the X direction, while the tensile sample along the Z direction shows the lowest strength. This anisotropic strength is strongly associated with the α phase texture. When the loading direction is 45° to the building direction, most of the c-axes of α phase are about parallel to the loading direction, showing a "hard" orientation, leading to a higher strength than other oriented samples. Conversely, when the loading direction is along the building direction, most of the α phase present a "soft" orientation, resulting in lower strength compared to the tensile samples along the 45° or the X direction.

Key wordsEBRM    TC4 alloy    microstructure    texture    tensile property
收稿日期: 2019-01-09     
ZTFLH:  TG14  
基金资助:国家重点研发计划项目(No.2017YFB1103100);中国航空工业科学基金项目(No.20175492002)
通讯作者: 刘建荣     E-mail: jrliu@imr.ac.cn
Corresponding author: Jianrong LIU     E-mail: jrliu@imr.ac.cn
作者简介: 刘 征,男,1989年生,博士生

引用本文:

刘征,刘建荣,赵子博,王磊,王清江,杨锐. 电子束快速成形制备TC4合金的组织和拉伸性能分析[J]. 金属学报, 2019, 55(6): 692-700.
Zheng LIU, Jianrong LIU, Zibo ZHAO, Lei WANG, Qingjiang WANG, Rui YANG. Microstructure and Tensile Property of TC4 Alloy Produced via Electron Beam Rapid Manufacturing. Acta Metall Sin, 2019, 55(6): 692-700.

链接本文:

https://www.ams.org.cn/CN/10.11900/0412.1961.2019.00007      或      https://www.ams.org.cn/CN/Y2019/V55/I6/692

图1  电子束快速成形(EBRM)制备TC4合金的示意图和拉伸试样的取样位置示意图
图2  EBRM制备TC4合金X-Z面的OM像
图3  原始β晶粒和α板条宽度与沉积高度的关系
图4  EBRM制备TC4合金不同部位的SEM像
图5  TC4合金α相的{0001}和{101ˉ0}极图
图6  平行于X方向的拉伸试样在不同高度的力学性能
图7  拉伸试样的对数真应力-对数真应变曲线(应变2.5%~4.6%)和加工硬化指数
图8  TC4合金不同部位的TEM像
图9  EBRM制备TC4合金不同取向试样的拉伸强度
图10  晶粒沿不同拉伸方向的滑移程示意图
图11  TC4合金沿不同拉伸方向的反极图
[1] Liu Z, Qin Z X, Liu F, et al. The microstructure and mechanical behaviors of the Ti-6.5Al-3.5Mo-1.5Zr-0.3Si alloy produced by laser melting deposition [J]. Mater. Charact., 2014, 97: 132
[2] Lu S L, Qian M, Tang H P, et al. Massive transformation in Ti-6Al-4V additively manufactured by selective electron beam melting [J]. Acta Mater., 2016, 104: 303
[3] Tan X P, Kok Y, Tan Y J, et al. Graded microstructure and mechanical properties of additive manufactured Ti-6Al-4V via electron beam melting [J]. Acta Mater., 2015, 97: 1
[4] Thijs L, Verhaeghe F, Craeghs T, et al. A study of the microstructural evolution during selective laser melting of Ti-6Al-4V [J]. Acta Mater., 2010, 58: 3303
[5] Banerjee D, Williams J C. Perspectives on titanium science and technology [J]. Acta Mater., 2013, 61: 844
[6] Liu Z, Zhao Z B, Liu J R, et al. Distinct dendritic α phase emerging on the surface of primary α phase in a compressed near-α titanium alloy [J]. J. Mater. Sci. Technol., 2018, 34: 666
[7] Zhao Z B, Wang Q J, Hu Q M, et al. Effect of β (110) texture intensity on α-variant selection and microstructure morphology during βα phase transformation in near α titanium alloy [J]. Acta Mater., 2017, 126: 372
[8] Zhao Z B, Wang Q J, Liu J R, et al. Effect of heat treatment on the crystallographic orientation evolution in a near-α titanium alloy Ti60 [J]. Acta Mater., 2017, 131: 305
[9] Hrabe N, Quinn T. Effects of processing on microstructure and mechanical properties of a titanium alloy (Ti-6Al-4V) fabricated using electron beam melting (EBM), Part 1: Distance from build plate and part size [J]. Mater. Sci. Eng., 2013, A573: 264
[10] Hrabe N, Quinn T. Effects of processing on microstructure and mechanical properties of a titanium alloy (Ti-6Al-4V) fabricated using electron beam melting (EBM), Part 2: Energy input, orientation, and location [J]. Mater. Sci. Eng., 2013, A573: 271
[11] Xu W, Lui E W, Pateras A, et al. In situ tailoring microstructure in additively manufactured Ti-6Al-4V for superior mechanical performance [J]. Acta Mater., 2017, 125: 390
[12] Carroll B E, Palmer T A, Beese A M. Anisotropic tensile behavior of Ti-6Al-4V components fabricated with directed energy deposition additive manufacturing [J]. Acta Mater., 2015, 87: 309
[13] Liu Z, Zhao Z B, Liu J R, et al. Effect of α texture on the tensile deformation behavior of Ti-6Al-4V alloy produced via electron beam rapid manufacturing [J]. Mater. Sci. Eng., 2019, A742: 508
[14] Suo H B, Chen Z Y, Liu J R, et al. Microstructure and mechanical properties of Ti-6Al-4V by electron beam rapid manufacturing [J]. Rare Met. Mater. Eng., 2014, 43: 780
[15] Wang Y N, Huang J C. Texture analysis in hexagonal materials [J]. Mater. Chem. Phys., 2003, 81: 11
[16] Li W Y, Chen Z Y, Liu J R, et al. Effect of texture on anisotropy at 600 ℃ in a near-α titanium alloy Ti60 plate [J]. Mater. Sci. Eng., 2017, A688: 322
[17] Li W Y, Chen Z Y, Liu J R, et al. Rolling texture and its effect on tensile property of a near-α titanium alloy Ti60 plate [J]. J. Mater. Sci. Technol., 2019, 35: 790
[18] Al-Bermani S S, Blackmore M L, Zhang W, et al. The origin of microstructural diversity, texture, and mechanical properties in electron beam melted Ti-6Al-4V [J]. Metall. Mater. Trans., 2010, 41A: 3422
[19] Antonysamy A A, Meyer J, Prangnell P B. Effect of build geometry on the β-grain structure and texture in additive manufacture of Ti-6Al-4V by selective electron beam melting [J]. Mater. Charact., 2013, 84: 153
[20] Waryoba D R, Keist J S, Ranger C, et al. Microtexture in additively manufactured Ti-6Al-4V fabricated using directed energy deposition [J]. Mater. Sci. Eng., 2018, A734: 149
[21] Shi R, Dixit V, Fraser H L, et al. Variant selection of grain boundary α by special prior β grain boundaries in titanium alloys [J]. Acta Mater., 2014, 75: 156
[22] Bantounas I, Dye D, Lindley T C. The role of microtexture on the faceted fracture morphology in Ti-6Al-4V subjected to high-cycle fatigue [J]. Acta Mater., 2010, 58: 3908
[23] Bridier F, Villechaise P, Mendez J. Analysis of the different slip systems activated by tension in a α/β titanium alloy in relation with local crystallographic orientation [J]. Acta Mater., 2005, 53: 555
[24] Li H, Boehlert C J, Bieler T R, et al. Analysis of slip activity and heterogeneous deformation in tension and tension-creep of Ti-5Al-2.5Sn (wt %) using in-situ SEM experiments [J]. Philos. Mag., 2012, 92: 2923
[25] Li H, Boehlert C J, Bieler T R, et al. Examination of the distribution of the tensile deformation systems in tension and tension-creep of Ti-6Al-4V (wt.%) at 296 K and 728 K [J]. Philos. Mag., 2015, 95: 691
[26] Li H, Mason D E, Yang Y, et al. Comparison of the deformation behaviour of commercially pure titanium and Ti-5Al-2.5Sn (wt.%) at 296 and 728 K [J]. Philos. Mag., 2013, 93: 2875
[27] Hayes B J, Martin B W, Welk B, et al. Predicting tensile properties of Ti-6Al-4V produced via directed energy deposition [J]. Acta Mater., 2017, 133: 120
[28] Warwick J L W, Jones N G, Bantounas I, et al. In situ observation of texture and microstructure evolution during rolling and globularization of Ti-6Al-4V [J]. Acta Mater., 2013, 61: 1603
[29] Hirsch P B, Mitchell T E. Stage II work hardening in crystals [J]. Can. J. Phys., 1967, 45: 663
[30] Suri S, Viswanathan G B, Neeraj T, et al. Room temperature deformation and mechanisms of slip transmission in oriented single-colony crystals of an α/β titanium alloy [J]. Acta Mater., 1999, 47: 1019
[31] Ren Y M, Lin X, Fu X, et al. Microstructure and deformation behavior of Ti-6Al-4V alloy by high-power laser solid forming [J]. Acta Mater., 2017, 132: 82
[32] Tang Q. Research on defects formation mechanism of titanium alloy in electron beam freeform fabrication [D]. Wuhan: Huazhong University of Science and Technology, 2015
[32] (汤 群. 钛合金电子束快速成形缺陷形成机理研究 [D]. 武汉: 华中科技大学, 2015)
[1] 耿遥祥, 樊世敏, 简江林, 徐澍, 张志杰, 鞠洪博, 喻利花, 许俊华. 选区激光熔化专用AlSiMg合金成分设计及力学性能[J]. 金属学报, 2020, 56(6): 821-830.
[2] 李源才, 江五贵, 周宇. 纳米孔洞对单晶/多晶Ni复合体拉伸性能的影响[J]. 金属学报, 2020, 56(5): 776-784.
[3] 余晨帆, 赵聪聪, 张哲峰, 刘伟. 选区激光熔化316L不锈钢的拉伸性能[J]. 金属学报, 2020, 56(5): 683-692.
[4] 李秀程,孙明煜,赵靖霄,王学林,尚成嘉. 铁素体-贝氏体/马氏体双相钢中界面的定量化晶体学表征[J]. 金属学报, 2020, 56(4): 653-660.
[5] 杨柯,史显波,严伟,曾云鹏,单以银,任毅. 新型含Cu管线钢——提高管线耐微生物腐蚀性能的新途径[J]. 金属学报, 2020, 56(4): 385-399.
[6] 钱月,孙蓉蓉,张文怀,姚美意,张金龙,周邦新,仇云龙,杨健,成国光,董建新. NbFe22Cr5Al3Mo合金显微组织和耐腐蚀性能的影响[J]. 金属学报, 2020, 56(3): 321-332.
[7] 于雷,罗海文. 部分再结晶退火对无取向硅钢的磁性能与力学性能的影响[J]. 金属学报, 2020, 56(3): 291-300.
[8] 王希,刘仁慈,曹如心,贾清,崔玉友,杨锐. 冷却速率对β凝固γ-TiAl合金硼化物和室温拉伸性能的影响[J]. 金属学报, 2020, 56(2): 203-211.
[9] 肖宏,许朋朋,祁梓宸,吴宗河,赵云鹏. 感应加热异温轧制制备钢/铝复合板[J]. 金属学报, 2020, 56(2): 231-239.
[10] 程超,陈志勇,秦绪山,刘建荣,王清江. TA32钛合金厚板的微观组织、织构与力学性能[J]. 金属学报, 2020, 56(2): 193-202.
[11] 邓丽萍,崔凯旋,汪炳叔,向红亮,李强. AZ31镁合金室温多道次压缩过程微观组织和织构演变的研究[J]. 金属学报, 2019, 55(8): 976-986.
[12] 李鑫,董月成,淡振华,常辉,方志刚,郭艳华. 等通道角挤压制备超细晶纯Ti的腐蚀性能研究[J]. 金属学报, 2019, 55(8): 967-975.
[13] 刘巧沐,黄顺洲,刘芳,杨艳,南宏强,张东,孙文儒. B含量对K417G合金凝固过程中组织演变和力学性能的影响[J]. 金属学报, 2019, 55(6): 720-728.
[14] 蓝春波,梁家能,劳远侠,谭登峰,黄春艳,莫羡忠,庞锦英. 冷轧态Ti-35Nb-2Zr-0.3O合金的异常热膨胀行为[J]. 金属学报, 2019, 55(6): 701-708.
[15] 黄森森,马英杰,张仕林,齐敏,雷家峰,宗亚平,杨锐. α+β两相钛合金元素再分配行为及其对显微组织和力学性能的影响[J]. 金属学报, 2019, 55(6): 741-750.